Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = ancient virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 776 KiB  
Case Report
Emergence of Bictegravir Resistance in a Treatment-Experienced PWH on Functional Monotherapy and Rapid Replacement by an Ancient Wild-Type Strain Following Transient Treatment Interruption
by Pietro B. Faré, Gabriela Ziltener, Judith Bergadà Pijuan, Irene A. Abela, Britta L. Hirsch, Michael Huber, Johannes Nemeth and Huldrych F. Günthard
Viruses 2025, 17(5), 699; https://doi.org/10.3390/v17050699 - 13 May 2025
Viewed by 503
Abstract
A treatment-experienced, highly adherent person living with HIV for over 25 years developed resistance mutations against all four major ART classes, including bictegravir (BIC). This led to viral failure on a quadruple regimen including BIC and doravirine (DOR). Resistance emergence was associated with [...] Read more.
A treatment-experienced, highly adherent person living with HIV for over 25 years developed resistance mutations against all four major ART classes, including bictegravir (BIC). This led to viral failure on a quadruple regimen including BIC and doravirine (DOR). Resistance emergence was associated with M184V, thymidine analog mutations (TAMs), NNRTI mutations (108I, 234I, 318F), and INSTI mutations (T97A, G140S, Q148H, G149A), likely driven by suboptimal BIC levels due to divalent cation interactions. During a two-month ART interruption, the resistant virus was rapidly replaced by an ancient wild-type strain. Despite resistance to all four ART classes, a genotype-adapted salvage regimen, including fostemsavir, achieved viral suppression within seven months. Full article
(This article belongs to the Special Issue Pharmacology of Antiviral Drugs, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 1012 KiB  
Review
The Impact of Vitamin D in the Prevention of Influenza, COVID-19, and Dengue: A Review
by Mario Galindo-Méndez, Mario Galindo-Ruiz, María Florencia Concheso-Venegas, Sebastián Uriel Mendoza-Molina, David Orozco-Cruz and Efraín Weintraub-Benzion
Biomedicines 2025, 13(4), 927; https://doi.org/10.3390/biomedicines13040927 - 9 Apr 2025
Viewed by 1611
Abstract
Since its discovery, vitamin D (VD) has been known for its implications in maintaining bone homeostasis. However, in recent years it has been discovered that the vitamin D receptor is expressed on different cells of the immune system and that these cells can [...] Read more.
Since its discovery, vitamin D (VD) has been known for its implications in maintaining bone homeostasis. However, in recent years it has been discovered that the vitamin D receptor is expressed on different cells of the immune system and that these cells can locally produce the active form of this molecule, calcitriol, strongly suggesting that this vitamin might play a key role in both branches of the immune system, innate and adaptive. Recent evidence has demonstrated that VD participates in the different protective phases of the immune system against invading microorganisms, including in the activation and production of antimicrobial peptides, in the inactivation of replication of infectious agents, in the prevention of the exposure of cellular receptors to microbial adhesion, and, more importantly, in the modulation of the inflammatory response. In recent years, the world has witnessed major outbreaks of an ancient infectious disease, dengue fever; the emergence of a pandemic caused by an unknown virus, SARS-CoV-2; and the resurgence of a common respiratory infection, influenza. Despite belonging to different viral families, the etiological agents of these infections present a common trait: their capacity to cause complications not only through their cytopathic effect on target tissues but also through the excessive inflammatory response produced by the human host against an infection. This review outlines the current understanding of the role that vitamin D plays in the prevention of the aforementioned diseases and in the development of their complications through its active participation as a major modulator of the immune response. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

6 pages, 656 KiB  
Editorial
Vistas in Signaling Pathways Implicated in HSV-1 Reactivation
by Kostas A. Papavassiliou, Amalia A. Sofianidi, Fotios G. Spiliopoulos, Vassiliki A. Gogou and Athanasios G. Papavassiliou
Int. J. Mol. Sci. 2024, 25(22), 12472; https://doi.org/10.3390/ijms252212472 - 20 Nov 2024
Cited by 1 | Viewed by 1623
Abstract
Ancient Greek physicians, including Hippocrates, documented skin conditions resembling herpes as early as 500 before common era (BCE), but it was not until the 1920s that Lowenstein successfully isolated the herpes virus from human lesions, significantly advancing our understanding of the infection [...] [...] Read more.
Ancient Greek physicians, including Hippocrates, documented skin conditions resembling herpes as early as 500 before common era (BCE), but it was not until the 1920s that Lowenstein successfully isolated the herpes virus from human lesions, significantly advancing our understanding of the infection [...] Full article
(This article belongs to the Special Issue Recent Advances in Herpesviruses)
Show Figures

Figure 1

16 pages, 5075 KiB  
Article
The Oncoprotein Fra-2 Drives the Activation of Human Endogenous Retrovirus Env Expression in Adult T-Cell Leukemia/Lymphoma (ATLL) Patients
by Julie Tram, Laetitia Marty, Célima Mourouvin, Magali Abrantes, Ilham Jaafari, Raymond Césaire, Philippe Hélias, Benoit Barbeau, Jean-Michel Mesnard, Véronique Baccini, Laurent Chaloin and Jean-Marie Jr. Peloponese
Cells 2024, 13(18), 1517; https://doi.org/10.3390/cells13181517 - 10 Sep 2024
Viewed by 1738
Abstract
Human endogenous retroviruses (HERVs) are retroviral sequences integrated into 8% of the human genome resulting from ancient exogenous retroviral infections. Unlike endogenous retroviruses of other mammalian species, HERVs are mostly replication and retro-transposition defective, and their transcription is strictly regulated by epigenetic mechanisms [...] Read more.
Human endogenous retroviruses (HERVs) are retroviral sequences integrated into 8% of the human genome resulting from ancient exogenous retroviral infections. Unlike endogenous retroviruses of other mammalian species, HERVs are mostly replication and retro-transposition defective, and their transcription is strictly regulated by epigenetic mechanisms in normal cells. A significant addition to the growing body of research reveals that HERVs’ aberrant activation is often associated with offsetting diseases like autoimmunity, neurodegenerative diseases, cancers, and chemoresistance. Adult T-cell leukemia/lymphoma (ATLL) is a very aggressive and chemoresistant leukemia caused by the human T-cell leukemia virus type 1 (HTLV-1). The prognosis of ATLL remains poor despite several new agents being approved in the last few years. In the present study, we compare the expression of HERV genes in CD8+-depleted PBMCs from HTLV-1 asymptomatic carriers and patients with acute ATLL. Herein, we show that HERVs are highly upregulated in acute ATLL. Our results further demonstrate that the oncoprotein Fra-2 binds the LTR region and activates the transcription of several HERV families, including HERV-H and HERV-K families. This raises the exciting possibility that upregulated HERV expression could be a key factor in ATLL development and the observed chemoresistance, potentially leading to new therapeutic strategies and significantly impacting the field of oncology and virology. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Lymphomas)
Show Figures

Figure 1

15 pages, 1625 KiB  
Article
The Relationship between HERV, Interleukin, and Transcription Factor Expression in ZIKV Infected versus Uninfected Trophoblastic Cells
by Anderson Luís da Costa, Paula Prieto-Oliveira, Márcia Duarte-Barbosa, Robert Andreata-Santos, Cristina M. Peter, Thamires Prolo de Brito, Fernando Antoneli, Ricardo Durães-Carvalho, Marcelo R. S. Briones, Juliana T. Maricato, Paolo M. A. Zanotto, Denis Jacob Machado and Luiz M. R. Janini
Cells 2024, 13(17), 1491; https://doi.org/10.3390/cells13171491 - 5 Sep 2024
Viewed by 1642
Abstract
Zika virus (ZIKV) is an arbovirus with maternal, sexual, and TORCH-related transmission capabilities. After 2015, Brazil had the highest number of ZIVK-infected pregnant women who lost their babies or delivered them with Congenital ZIKV Syndrome (CZS). ZIKV triggers an immune defense in the [...] Read more.
Zika virus (ZIKV) is an arbovirus with maternal, sexual, and TORCH-related transmission capabilities. After 2015, Brazil had the highest number of ZIVK-infected pregnant women who lost their babies or delivered them with Congenital ZIKV Syndrome (CZS). ZIKV triggers an immune defense in the placenta. This immune response counts with the participation of interleukins and transcription factors. Additionally, it has the potential involvement of human endogenous retroviruses (HERVS). Interleukins are immune response regulators that aid immune tolerance and support syncytial structure development in the placenta, where syncytin receptors facilitate vital cell-to-cell fusion events. HERVs are remnants of ancient viral infections that integrate into the genome and produce syncytin proteins crucial for placental development. Since ZIKV can infect trophoblast cells, we analyzed the relationship between ZIKV infection, HERV, interleukin, and transcription factor modulations in the placenta. To investigate the impact of ZIKV on trophoblast cells, we examined two cell types (BeWo and HTR8) infected with ZIKV-MR766 (African) and ZIKV-IEC-Paraíba (Asian–Brazilian) using Taqman and RT2 Profiler PCR Array assays. Our results indicate that early ZIKV infection (24–72 h) does not induce differential interleukins, transcription factors, and HERV expression. However, we show that the expression of a few of these host defense genes appears to be linked independently of ZIKV infection. Future studies involving additional trophoblastic cell lineages and extended infection timelines will illuminate the dynamic interplay between ZIKV, HERVs, interleukins, and transcription factors in the placenta. Full article
Show Figures

Figure 1

15 pages, 2477 KiB  
Article
Identification and Characterization of a Novel B Cell Epitope of ASFV Virulence Protein B125R Monoclonal Antibody
by Yanyan Zhao, Haojie Ren, Zhizhao Lin, Saiyan Shi, Biao Zhang, Yuhang Zhang, Shichong Han, Wen-Rui He, Bo Wan, Man Hu and Gai-Ping Zhang
Viruses 2024, 16(8), 1257; https://doi.org/10.3390/v16081257 - 5 Aug 2024
Viewed by 1675
Abstract
The African swine fever virus (ASFV) is an ancient, structurally complex, double-stranded DNA virus that causes African swine fever. Since its discovery in Kenya and Africa in 1921, no effective vaccine or antiviral strategy has been developed. Therefore, the selection of more suitable [...] Read more.
The African swine fever virus (ASFV) is an ancient, structurally complex, double-stranded DNA virus that causes African swine fever. Since its discovery in Kenya and Africa in 1921, no effective vaccine or antiviral strategy has been developed. Therefore, the selection of more suitable vaccines or antiviral targets is the top priority to solve the African swine fever virus problem. B125R, one of the virulence genes of ASFV, encodes a non-structural protein (pB125R), which is important in ASFV infection. However, the epitope of pB125R is not well characterized at present. We observed that pB125R is specifically recognized by inactivated ASFV-positive sera, suggesting that it has the potential to act as a protective antigen against ASFV infection. Elucidation of the antigenic epitope within pB125R could facilitate the development of an epitope-based vaccine targeting ASFV. In this study, two strains of monoclonal antibodies (mAbs) against pB125R were produced by using the B cell hybridoma technique, named 9G11 and 15A9. The antigenic epitope recognized by mAb 9G11 was precisely located by using a series of truncated ASFV pB125R. The 52DPLASQRDIYY62 (epitope on ASFV pB125R) was the smallest epitope recognized by mAb 9G11 and this epitope was highly conserved among different strains. The key amino acid sites were identified as D52, Q57, R58, and Y62 by the single-point mutation of 11 amino acids of the epitope by alanine scanning. In addition, the immunological effects of the epitope (pB125R-DY) against 9G11 were evaluated in mice, and the results showed that both full-length pB125R and the epitope pB125R-DY could induce effective humoral and cellular immune responses in mice. The mAbs obtained in this study reacted with the eukaryotic-expressed antigen proteins and the PAM cell samples infected with ASFV, indicating that the mAb can be used as a good tool for the detection of ASFV antigen infection. The B cell epitopes identified in this study provide a fundamental basis for the research and development of epitope-based vaccines against ASFV. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

28 pages, 7550 KiB  
Article
Potential Transcriptional Enhancers in Coronaviruses: From Infectious Bronchitis Virus to SARS-CoV-2
by Roberto Patarca and William A. Haseltine
Int. J. Mol. Sci. 2024, 25(15), 8012; https://doi.org/10.3390/ijms25158012 - 23 Jul 2024
Viewed by 1483
Abstract
Coronaviruses constitute a global threat to human and animal health. It is essential to investigate the long-distance RNA-RNA interactions that approximate remote regulatory elements in strategies, including genome circularization, discontinuous transcription, and transcriptional enhancers, aimed at the rapid replication of their large genomes, [...] Read more.
Coronaviruses constitute a global threat to human and animal health. It is essential to investigate the long-distance RNA-RNA interactions that approximate remote regulatory elements in strategies, including genome circularization, discontinuous transcription, and transcriptional enhancers, aimed at the rapid replication of their large genomes, pathogenicity, and immune evasion. Based on the primary sequences and modeled RNA-RNA interactions of two experimentally defined coronaviral enhancers, we detected via an in silico primary and secondary structural analysis potential enhancers in various coronaviruses, from the phylogenetically ancient avian infectious bronchitis virus (IBV) to the recently emerged SARS-CoV-2. These potential enhancers possess a core duplex-forming region that could transition between closed and open states, as molecular switches directed by viral or host factors. The duplex open state would pair with remote sequences in the viral genome and modulate the expression of downstream crucial genes involved in viral replication and host immune evasion. Consistently, variations in the predicted IBV enhancer region or its distant targets coincide with cases of viral attenuation, possibly driven by decreased open reading frame (ORF)3a immune evasion protein expression. If validated experimentally, the annotated enhancer sequences could inform structural prediction tools and antiviral interventions. Full article
(This article belongs to the Special Issue RNA in Biology and Medicine)
Show Figures

Graphical abstract

15 pages, 5447 KiB  
Article
A Natural Bioactive Peptide from Pinctada fucata Pearls Can Be Used as a Potential Inhibitor of the Interaction between SARS-CoV-2 and ACE2 against COVID-19
by Yayu Wang, Qin Wang, Xinjiani Chen, Bailei Li, Zhen Zhang, Liping Yao, Xiaojun Liu and Rongqing Zhang
Int. J. Mol. Sci. 2024, 25(14), 7902; https://doi.org/10.3390/ijms25147902 - 19 Jul 2024
Cited by 2 | Viewed by 1532
Abstract
The frequent occurrence of viral infections poses a serious threat to human life. Identifying effective antiviral components is urgent. In China, pearls have been important traditional medicinal ingredients since ancient times, exhibiting various therapeutic properties, including detoxification properties. In this study, a peptide, [...] Read more.
The frequent occurrence of viral infections poses a serious threat to human life. Identifying effective antiviral components is urgent. In China, pearls have been important traditional medicinal ingredients since ancient times, exhibiting various therapeutic properties, including detoxification properties. In this study, a peptide, KKCH, which acts against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was derived from Pinctada fucata pearls. Molecular docking showed that it bound to the same pocket of the SARS-CoV-2 S protein and cell surface target angiotensin-converting enzyme II (ACE2). The function of KKCH was analyzed through surface plasmon resonance (SPR), Enzyme-Linked Immunosorbent Assays, immunofluorescence, and simulation methods using the SARS-CoV-2 pseudovirus and live virus. The results showed that KKCH had a good affinity for ACE2 (KD = 6.24 × 10−7 M) and could inhibit the binding of the S1 protein to ACE2 via competitive binding. As a natural peptide, KKCH inhibited the binding of the SARS-CoV-2 S1 protein to the surface of human BEAS-2B and HEK293T cells. Moreover, viral experiments confirmed the antiviral activity of KKCH against both the SARS-CoV-2 spike pseudovirus and SARS-CoV-2 live virus, with half-maximal inhibitory concentration (IC50) values of 398.1 μM and 462.4 μM, respectively. This study provides new insights and potential avenues for the prevention and treatment of SARS-CoV-2 infections. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

25 pages, 5820 KiB  
Article
Inhibition of SARS-CoV-2-Induced NLRP3 Inflammasome-Mediated Lung Cell Inflammation by Triphala-Loaded Nanoparticle Targeting Spike Glycoprotein S1
by Chuda Chittasupho, Sonthaya Umsumarng, Kamonwan Srisawad, Punnida Arjsri, Rungsinee Phongpradist, Weerasak Samee, Wipawan Tingya, Chadarat Ampasavate and Pornngarm Dejkriengkraikul
Pharmaceutics 2024, 16(6), 751; https://doi.org/10.3390/pharmaceutics16060751 - 2 Jun 2024
Cited by 7 | Viewed by 2147
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, poses a significant global health threat. The spike glycoprotein S1 of the SARS-CoV-2 virus is known to induce the production of pro-inflammatory mediators, contributing to hyperinflammation in COVID-19 patients. Triphala, an ancient Ayurvedic remedy composed of dried [...] Read more.
The COVID-19 pandemic, caused by SARS-CoV-2, poses a significant global health threat. The spike glycoprotein S1 of the SARS-CoV-2 virus is known to induce the production of pro-inflammatory mediators, contributing to hyperinflammation in COVID-19 patients. Triphala, an ancient Ayurvedic remedy composed of dried fruits from three plant species—Emblica officinalis (Family Euphorbiaceae), Terminalia bellerica (Family Combretaceae), and Terminalia chebula (Family Combretaceae)—shows promise in addressing inflammation. However, the limited water solubility of its ethanolic extract impedes its bioavailability. In this study, we aimed to develop nanoparticles loaded with Triphala extract, termed “nanotriphala”, as a drug delivery system. Additionally, we investigated the in vitro anti-inflammatory properties of nanotriphala and its major compounds, namely gallic acid, chebulagic acid, and chebulinic acid, in lung epithelial cells (A549) induced by CoV2-SP. The nanotriphala formulation was prepared using the solvent displacement method. The encapsulation efficiency of Triphala in nanotriphala was determined to be 87.96 ± 2.60% based on total phenolic content. In terms of in vitro release, nanotriphala exhibited a biphasic release profile with zero-order kinetics over 0–8 h. A549 cells were treated with nanotriphala or its active compounds and then induced with 100 ng/mL of spike S1 subunit (CoV2-SP). The results demonstrate that chebulagic acid and chebulinic acid are the active compounds in nanotriphala, which significantly reduced cytokine release (IL-6, IL-1β, and IL-18) and suppressed the expression of inflammatory genes (IL-6, IL-1β, IL-18, and NLRP3) (p < 0.05). Mechanistically, nanotriphala and its active compounds notably attenuated the expression of inflammasome machinery proteins (NLRP3, ASC, and Caspase-1) (p < 0.05). In conclusion, the nanoparticle formulation of Triphala enhances its stability and exhibits anti-inflammatory properties against CoV2-SP-induction. This was achieved by suppressing inflammatory mediators and the NLRP3 inflammasome machinery. Thus, nanotriphala holds promise as a supportive preventive anti-inflammatory therapy for COVID-19-related chronic inflammation. Full article
Show Figures

Figure 1

27 pages, 6688 KiB  
Article
Reconstructing Prehistoric Viral Genomes from Neanderthal Sequencing Data
by Renata C. Ferreira, Gustavo V. Alves, Marcello Ramon, Fernando Antoneli and Marcelo R. S. Briones
Viruses 2024, 16(6), 856; https://doi.org/10.3390/v16060856 - 27 May 2024
Cited by 3 | Viewed by 5413
Abstract
DNA viruses that produce persistent infections have been proposed as potential causes for the extinction of Neanderthals, and, therefore, the identification of viral genome remnants in Neanderthal sequence reads is an initial step to address this hypothesis. Here, as proof of concept, we [...] Read more.
DNA viruses that produce persistent infections have been proposed as potential causes for the extinction of Neanderthals, and, therefore, the identification of viral genome remnants in Neanderthal sequence reads is an initial step to address this hypothesis. Here, as proof of concept, we searched for viral remnants in sequence reads of Neanderthal genome data by mapping to adenovirus, herpesvirus and papillomavirus, which are double-stranded DNA viruses that may establish lifelong latency and can produce persistent infections. The reconstructed ancient viral genomes of adenovirus, herpesvirus and papillomavirus revealed conserved segments, with nucleotide identity to extant viral genomes and variable regions in coding regions with substantial divergence to extant close relatives. Sequence reads mapped to extant viral genomes showed deamination patterns of ancient DNA, and these ancient viral genomes showed divergence consistent with the age of these samples (≈50,000 years) and viral evolutionary rates (10−5 to 10−8 substitutions/site/year). Analysis of random effects showed that the Neanderthal mapping to genomes of extant persistent viruses is above what is expected by random similarities of short reads. Also, negative control with a nonpersistent DNA virus does not yield statistically significant assemblies. This work demonstrates the feasibility of identifying viral genome remnants in archaeological samples with signal-to-noise assessment. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

15 pages, 1464 KiB  
Review
From Satirical Poems and Invisible Poisons to Radical Surgery and Organized Cervical Cancer Screening—A Historical Outline of Cervical Carcinoma and Its Relation to HPV Infection
by Leonard Jung, Gilbert Georg Klamminger, Bert Bier and Elke Eltze
Life 2024, 14(3), 307; https://doi.org/10.3390/life14030307 - 27 Feb 2024
Cited by 1 | Viewed by 2406
Abstract
Over the last century, the narrative of cervical cancer history has become intricately tied to virus research, particularly the human papillomavirus (HPV) since the 1970s. The unequivocal proof of HPV’s causal role in cervical cancer has placed its detection at the heart of [...] Read more.
Over the last century, the narrative of cervical cancer history has become intricately tied to virus research, particularly the human papillomavirus (HPV) since the 1970s. The unequivocal proof of HPV’s causal role in cervical cancer has placed its detection at the heart of early screening programs across numerous countries. From a historical perspective, sexually transmitted genital warts have been already documented in ancient Latin literature; the remarkable symptoms and clinical descriptions of progressed cervical cancer can be traced back to Hippocrates and classical Greece. However, in the new era of medicine, it was not until the diagnostic–pathological accomplishments of Aurel Babeş and George Nicolas Papanicolaou, as well as the surgical accomplishments of Ernst Wertheim and Joe Vincent Meigs, that the prognosis and prevention of cervical carcinoma were significantly improved. Future developments will likely include extended primary prevention efforts consisting of better global access to vaccination programs as well as adapted methods for screening for precursor lesions, like the use of self-sampling HPV-tests. Furthermore, they may also advantageously involve additional novel diagnostic methods that could allow for both an unbiased approach to tissue diagnostics and the use of artificial-intelligence-based tools to support decision making. Full article
(This article belongs to the Special Issue Obstetrics and Gynecology Medicine: Go From Bench to Bedside)
Show Figures

Figure 1

17 pages, 1696 KiB  
Review
Roles of Human Endogenous Retroviruses and Endogenous Virus-Like Elements in Cancer Development and Innate Immunity
by Hirokazu Katoh and Tomoyuki Honda
Biomolecules 2023, 13(12), 1706; https://doi.org/10.3390/biom13121706 - 24 Nov 2023
Cited by 8 | Viewed by 3443
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections in the host genome. Although mutations and silencing mechanisms impair their original role in viral replication, HERVs are believed to play roles in various biological processes. Long interspersed nuclear elements (LINEs) are non-LTR [...] Read more.
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections in the host genome. Although mutations and silencing mechanisms impair their original role in viral replication, HERVs are believed to play roles in various biological processes. Long interspersed nuclear elements (LINEs) are non-LTR retrotransposons that have a lifecycle resembling that of retroviruses. Although LINE expression is typically silenced in somatic cells, it also contributes to various biological processes. The aberrant expression of HERVs and LINEs is closely associated with the development of cancer and/or immunological diseases, suggesting that they are integrated into various pathways related to the diseases. HERVs/LINEs control gene expression depending on the context as promoter/enhancer elements. Some RNAs and proteins derived from HERVs/LINEs have oncogenic potential, whereas others stimulate innate immunity. Non-retroviral endogenous viral elements (nrEVEs) are a novel type of virus-like element in the genome. nrEVEs may also be involved in host immunity. This article provides a current understanding of how these elements impact cellular physiology in cancer development and innate immunity, and provides perspectives for future studies. Full article
Show Figures

Figure 1

10 pages, 1640 KiB  
Brief Report
Evolutionary Insight into the Association between New Jersey Polyomavirus and Humans
by Aref-Abdolllah Aghebatrafat, Chris Lauber, Kevin Merkel, Barbara Fruth, Kevin Langergraber, Martha M. Robbins, Roman M. Wittig, Fabian H. Leendertz and Sébastien Calvignac-Spencer
Viruses 2023, 15(11), 2248; https://doi.org/10.3390/v15112248 - 13 Nov 2023
Viewed by 1844
Abstract
Advances in viral discovery techniques have led to the identification of numerous novel viruses in human samples. However, the low prevalence of certain viruses in humans raises doubts about their association with our species. To ascertain the authenticity of a virus as a [...] Read more.
Advances in viral discovery techniques have led to the identification of numerous novel viruses in human samples. However, the low prevalence of certain viruses in humans raises doubts about their association with our species. To ascertain the authenticity of a virus as a genuine human-infecting agent, it can be useful to investigate the diversification of its lineage within hominines, the group encompassing humans and African great apes. Building upon this rationale, we examined the case of the New Jersey polyomavirus (NJPyV; Alphapolyomavirus terdecihominis), which has only been detected in a single patient thus far. In this study, we obtained and analyzed sequences from closely related viruses infecting all African great ape species. We show that NJPyV nests within the diversity of these viruses and that its lineage placement is compatible with an ancient origin in humans, despite its apparent rarity in human populations. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

5 pages, 185 KiB  
Editorial
Special Issue “Hepatitis B Virus: New Breakthroughs to Conquer an Ancient Disease”
by Thomas Tu and Mark W. Douglas
Viruses 2023, 15(11), 2173; https://doi.org/10.3390/v15112173 - 30 Oct 2023
Viewed by 1444
Abstract
Chronic hepatitis B affects >300 million people worldwide and is a major cause of liver disease, causing ~800,000 deaths each year [...] Full article
(This article belongs to the Special Issue Hepatitis B Virus: New Breakthroughs to Conquer an Ancient Disease)
19 pages, 1578 KiB  
Review
Therapeutic Potential of Cannabis: A Comprehensive Review of Current and Future Applications
by Zach J. Leinen, Rahul Mohan, Lakmini S. Premadasa, Arpan Acharya, Mahesh Mohan and Siddappa N. Byrareddy
Biomedicines 2023, 11(10), 2630; https://doi.org/10.3390/biomedicines11102630 - 25 Sep 2023
Cited by 46 | Viewed by 24093
Abstract
Historically, cannabis has been valued for its pain-relieving, anti-inflammatory, and calming properties. Ancient civilizations like the Egyptians, Greeks, and Chinese medicines recognized their therapeutic potential. The discovery of the endocannabinoid system, which interacts with cannabis phytoconstituents, has scientifically explained how cannabis affects the [...] Read more.
Historically, cannabis has been valued for its pain-relieving, anti-inflammatory, and calming properties. Ancient civilizations like the Egyptians, Greeks, and Chinese medicines recognized their therapeutic potential. The discovery of the endocannabinoid system, which interacts with cannabis phytoconstituents, has scientifically explained how cannabis affects the human immune system, including the central nervous system (CNS). This review explores the evolving world of cannabis-based treatments, spotlighting its diverse applications. By researching current research and clinical studies, we probe into how cannabinoids like Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) help to manage conditions ranging from chronic pain, persistent inflammation, cancer, inflammatory bowel disease, and neurological disorders to even viral diseases such as Human Immunodeficiency virus (HIV), SARS-CoV-2. and the emerging monkeypox. The long-term recreational use of cannabis can develop into cannabis use disorder (CUD), and therefore, understanding the factors contributing to the development and maintenance of cannabis addiction, including genetic predisposition, neurobiological mechanisms, and environmental influences, will be timely. Shedding light on the adverse impacts of CUD underscores the importance of early intervention, effective treatment approaches, and public health initiatives to address this complex issue in an evolving landscape of cannabis policies and perceptions. Full article
(This article belongs to the Special Issue Therapeutic Potential for Cannabis and Cannabinoids 2.0)
Show Figures

Figure 1

Back to TopTop