Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = amplitude attenuation coefficients

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2622 KiB  
Article
A Method for Evaluating the Performance of Main Bearings of TBM Based on Entropy Weight–Grey Correlation Degree
by Zhihong Sun, Yuanke Wu, Hao Xiao, Panpan Hu, Zhenyong Weng, Shunhai Xu and Wei Sun
Sensors 2025, 25(15), 4715; https://doi.org/10.3390/s25154715 (registering DOI) - 31 Jul 2025
Viewed by 140
Abstract
The main bearing of a tunnel boring machine (TBM) is a critical component of the main driving system that enables continuous excavation, and its performance is crucial for ensuring the safe operation of the TBM. Currently, there are few testing technologies for TBM [...] Read more.
The main bearing of a tunnel boring machine (TBM) is a critical component of the main driving system that enables continuous excavation, and its performance is crucial for ensuring the safe operation of the TBM. Currently, there are few testing technologies for TBM main bearings, and a comprehensive testing and evaluation system has yet to be established. This study presents an experimental investigation using a self-developed, full-scale TBM main bearing test bench. Based on a representative load spectrum, both operational condition tests and life cycle tests are conducted alternately, during which the signals of the main bearing are collected. The observed vibration signals are weak, with significant vibration attenuation occurring in the large structural components. Compared with the test bearing, which reaches a vibration amplitude of 10 g in scale tests, the difference is several orders of magnitude smaller. To effectively utilize the selected evaluation indicators, the entropy weight method is employed to assign weights to the indicators, and a comprehensive analysis is conducted using grey relational analysis. This strategy results in the development of a comprehensive evaluation method based on entropy weighting and grey relational analysis. The main bearing performance is evaluated under various working conditions and the same working conditions in different time periods. The results show that the greater the bearing load, the lower the comprehensive evaluation coefficient of bearing performance. A multistage evaluation method is adopted to evaluate the performance and condition of the main bearing across multiple working scenarios. With the increase of the test duration, the bearing performance exhibits gradual degradation, aligning with the expected outcomes. The findings demonstrate that the proposed performance evaluation method can effectively and accurately evaluate the performance of TBM main bearings, providing theoretical and technical support for the safe operation of TBMs. Full article
Show Figures

Figure 1

16 pages, 13319 KiB  
Article
Research on Acoustic Field Correction Vector-Coherent Total Focusing Imaging Method Based on Coarse-Grained Elastic Anisotropic Material Properties
by Tianwei Zhao, Ziyu Liu, Donghui Zhang, Junlong Wang and Guowen Peng
Sensors 2025, 25(15), 4550; https://doi.org/10.3390/s25154550 - 23 Jul 2025
Viewed by 205
Abstract
This study aims to address the challenges posed by uneven energy amplitude and a low signal-to-noise ratio (SNR) in the total focus imaging of coarse-crystalline elastic anisotropic materials. A novel method for acoustic field correction vector-coherent total focus imaging, based on the materials’ [...] Read more.
This study aims to address the challenges posed by uneven energy amplitude and a low signal-to-noise ratio (SNR) in the total focus imaging of coarse-crystalline elastic anisotropic materials. A novel method for acoustic field correction vector-coherent total focus imaging, based on the materials’ properties, is proposed. To demonstrate the effectiveness of this method, a test specimen, an austenitic stainless steel nozzle weld, was employed. Seven side-drilled hole defects located at varying positions and depths, each with a diameter of 2 mm, were examined. An ultrasound simulation model was developed based on material backscatter diffraction results, and the scattering attenuation compensation factor was optimized. The acoustic field correction function was derived by combining acoustic field directivity with diffusion attenuation compensation. The phase coherence weighting coefficients were calculated, followed by image reconstruction. The results show that the proposed method significantly improves imaging amplitude uniformity and reduces the structural noise caused by the coarse crystal structure of austenitic stainless steel. Compared to conventional total focus imaging, the detection SNR of the seven defects increased by 2.34 dB to 10.95 dB. Additionally, the defect localization error was reduced from 0.1 mm to 0.05 mm, with a range of 0.70 mm to 0.88 mm. Full article
(This article belongs to the Special Issue Ultrasound Imaging and Sensing for Nondestructive Testing)
Show Figures

Figure 1

36 pages, 29858 KiB  
Article
Mode Shape Extraction with Denoising Techniques Using Residual Responses of Contact Points of Moving Vehicles on a Beam Bridge
by Guandong Qiao, Xiaoyue Du, Qi Wang and Liu Jiang
Appl. Sci. 2025, 15(13), 7059; https://doi.org/10.3390/app15137059 - 23 Jun 2025
Viewed by 210
Abstract
This work introduces a novel approach to extract beam bridge mode shapes using the residual response between consecutive contact points of vehicles passing through a bridge. A comprehensive investigation is conducted on several critical parameters, including window size, vehicle velocity, road roughness, and [...] Read more.
This work introduces a novel approach to extract beam bridge mode shapes using the residual response between consecutive contact points of vehicles passing through a bridge. A comprehensive investigation is conducted on several critical parameters, including window size, vehicle velocity, road roughness, and beam damping property, as well as the influence of traffic flow. To enhance the mode shape extraction performance using the approximate expression of the contact points’ displacements under noisy disturbance, two new signal denoising methods, CEEMDAN-NSPCA and CEEMDAN-IWT, are proposed based on complete ensemble empirical mode decomposition (CEEMDAN). CEEMDAN-NSPCA integrates CEEMDAN with principal component analysis and a coefficient-based filtering strategy. While CEEMDAN-IWT utilizes an improved wavelet thresholding technique with adaptive threshold selection. The numerical simulations demonstrate that both methods could effectively attenuate high-frequency noise with small amplitudes and retain low-frequency components. Among them, CEEMDAN-IWT exhibits superior denoising performance and greater stability, making it particularly suitable for robust modal identification in noisy environments. Full article
(This article belongs to the Special Issue Advances in Architectural Acoustics and Vibration)
Show Figures

Figure 1

14 pages, 4226 KiB  
Article
Analysis of the Effect of the Skewed Rotor on Induction Motor Vibration
by Yunwen Xiang, Zhiqiang Liao, Defeng Kong and Baozhu Jia
Electronics 2025, 14(12), 2374; https://doi.org/10.3390/electronics14122374 - 10 Jun 2025
Viewed by 501
Abstract
Induction motors have a simple structure, have low manufacturing costs and are widely used. However, various vibration effects with mechanical or electromagnetic origins are also very common. To analyze the impact of rotor skewing on electromagnetic vibrations in induction motors, this paper investigated [...] Read more.
Induction motors have a simple structure, have low manufacturing costs and are widely used. However, various vibration effects with mechanical or electromagnetic origins are also very common. To analyze the impact of rotor skewing on electromagnetic vibrations in induction motors, this paper investigated the skew factor of skewed rotor slots and proposes an electromagnetic force wave analysis method. The method aimed to optimize the skew angle parameters for vibration amplitude reduction, with its effectiveness verified through simulations and experiments. Taking a 7.5 kW four-pole induction motor with 36 stator slots and 28 rotor slots as the research object, the suppression law of different skew parameters on force waves generated by stator harmonics was obtained. Results show that when the rotor is skewed by an angle equivalent to three stator teeth pitch, electromagnetic forces of different orders are attenuated by approximately 5% on average. Physical rotors with skew angles of 0°, 10°, 12.8°, 14°, and 20° were manufactured for experimental validation, while considering the influence of rotor skewing on starting torque and maximum torque. The study concludes that the amplitude of tooth harmonics varies with the skew coefficient, consistent with the skew factor analysis. By analyzing motor vibration with the skew coefficient, the amplitude relationship of electromagnetic vibration under different optimization parameters can be determined, thereby selecting reasonable skew parameters for rotor optimization. Full article
(This article belongs to the Special Issue Advanced Design in Electrical Machines)
Show Figures

Figure 1

18 pages, 2102 KiB  
Article
Analytical and Computational Methods for Optimizing Gabion-Pile Coastal Structures
by Vinsensia Ferren, Ikha Magdalena, Cherdvong Saengsupavanich, Muhammad Nabil Farras Dhiya, Sarinya Sanitwong-Na-Ayutthaya, Srinivasan Chandrasekaran, Imam Solekhudin, Mohammad Ivan Azis and Widowati
Water 2025, 17(4), 551; https://doi.org/10.3390/w17040551 - 14 Feb 2025
Cited by 1 | Viewed by 674
Abstract
Wooden or bamboo fences, commonly used for coastal protection, have limited effectiveness in reducing wave height due to their porous structure, which provides only moderate wave damping. To address this issue, our study proposes a modification that retains these fences while strategically incorporating [...] Read more.
Wooden or bamboo fences, commonly used for coastal protection, have limited effectiveness in reducing wave height due to their porous structure, which provides only moderate wave damping. To address this issue, our study proposes a modification that retains these fences while strategically incorporating submerged rocks, similar to gabions, to exploit friction and achieve significant wave height reduction. We employed a mathematical model based on modified Shallow Water Equations to investigate the wave attenuation. A key measure, the wave transmission coefficient (Kt), for quantifying wave height reduction was determined using both analytical and numerical methods. The numerical Kt obtained from simulations was 0.2831, whereas the analytically computed Kt value was 0.2622, which indicates a reduction of over 70% in the initial wave amplitude due to the combined effect of submerged rocks and wooden fences. These results, which align closely with experimental data, validate the credibility of our approach. A detailed sensitivity analysis illustrates the effectiveness of both wooden fences and submerged rocks in attenuating wave height, which depends on structure dimensions and friction coefficients. Optimization studies present various optimal structures, underscoring the critical role of the structure’s friction coefficient in minimizing the wave transmission coefficient, and recommend the use of rough materials for optimal wave height reduction. In summary, our paper offers a robust exploration of an innovative coastal protection strategy that integrates wooden fences and rocks. The validated model, supported by analytical, numerical, and experimental evidence, has the potential to provide practical insights for coastal engineers seeking efficient wave attenuation solutions. Full article
Show Figures

Figure 1

13 pages, 1465 KiB  
Article
Pre-Stack Nonlinear Direct Exact Inversion of Fracture Parameters in Deep Shale Reservoirs
by Meng Wang, Liang Yu, Tianchao Guo, Xiuyan Song, Xiaoxin Zhang and Yurun Rui
Processes 2025, 13(2), 426; https://doi.org/10.3390/pr13020426 - 5 Feb 2025
Viewed by 556
Abstract
A conventional linear pre-stack inversion method under the conventional stationary convolution model is limited by the assumptions of weak formation contrast change and small angle incidence and fails to take into account the amplitude attenuation of seismic wave propagation. Meanwhile, the resolution and [...] Read more.
A conventional linear pre-stack inversion method under the conventional stationary convolution model is limited by the assumptions of weak formation contrast change and small angle incidence and fails to take into account the amplitude attenuation of seismic wave propagation. Meanwhile, the resolution and precision of oil and gas evaluation and fracture characterization of shale reservoirs under complex geological conditions are low because the compaction and non-connectivity characteristics of deep shale reservoirs are not fully considered. Therefore, porous rock pores are divided into connected pores and disconnected pores. Combined with the effect of compaction on dry rock skeleton, a petrophysical model considering the compaction and pore dysconnectivity of deep shale reservoir is developed. The quantitative relationship between transverse isotropy with a vertical axis of symmetry (VTI) stiffness matrix, rock physical properties, and fracture parameters is established in this model. It provides a more accurate scheme for the original physical modeling of deep shale. This relationship is incorporated into the exact VTI reflection coefficient equation, and a nonstationary convolution operator is derived by using the attenuation theory of seismic wave propagation. A nonstationary pre-stack nonlinear direct inversion method of fracture parameters of shale reservoirs with horizontal fractures is proposed, which Improves the resolution and accuracy of shale reservoir gas bearing and fracture characteristics prediction. It provides a new way to accurately characterize the fracture development and oil-bearing property of shale reservoirs. A model test and field data test verify the effectiveness of this method. Full article
Show Figures

Figure 1

20 pages, 4829 KiB  
Article
Study on Sound Field Properties of Parametric Array Under the Influence of Underwater Waveguide Interface Scattering Based on Non-Paraxial Model—Theory and Experiment
by Yuan Cao, Jie Shi, Jiangyi Zhang, Yuezhu Cheng and Haokang Shi
J. Mar. Sci. Eng. 2025, 13(2), 286; https://doi.org/10.3390/jmse13020286 - 4 Feb 2025
Viewed by 738
Abstract
This paper theoretically and experimentally studies the effect of underwater waveguide interface scattering on the nonlinear sound field characteristics of parametric array (PA) radiation. Based on the image source method, the components of the sound field in the waveguide are first analyzed. Then, [...] Read more.
This paper theoretically and experimentally studies the effect of underwater waveguide interface scattering on the nonlinear sound field characteristics of parametric array (PA) radiation. Based on the image source method, the components of the sound field in the waveguide are first analyzed. Then, a non-paraxial model is developed to account for the influence of interface scattering. This model enables accurate calculation of the wide-angle sound field. The impact of the sound source depth and the interface reflection coefficient on the distribution of the difference-frequency wave (DFW) sound field in the waveguide is studied. The interface alters the phase distribution of the DFW’s virtual source density function, thereby affecting the sound field accumulation process. Waveguide interfaces with different absorption coefficients influence the amplitude oscillation caused by interface reflection and change the sidelobe size of the DFW beam. The DFW sound field distribution is measured at three typical frequencies. Simulation and experimental results show that the attenuation of the DFW’s axial sound pressure level in the waveguide oscillates, and the DFW’s beamwidth gradually widens as the frequency decreases. The calculated results from the proposed model agree well with the measured data, with average errors along the sound axis and depth being less than 3 dB and 6 dB, respectively. This demonstrates the model’s superior applicability compared to the existing free-field model. Full article
(This article belongs to the Topic Advances in Underwater Acoustics and Aeroacoustics)
Show Figures

Figure 1

21 pages, 12595 KiB  
Article
Study on Vibration Characteristics of Multi-Beam Structures with Stick and Slip at Joints
by Xian Zhang, Yingchun Xie, Peng Lyu, Donghong Ning and Zhixiong Li
Appl. Sci. 2025, 15(3), 1141; https://doi.org/10.3390/app15031141 - 23 Jan 2025
Viewed by 966
Abstract
Stick–slip phenomena may manifest at the joints during cyclic vibrations in beam structures connected by some forms of joint. This work incorporates the sticking–slip effect of joint connections into the dynamic analysis framework of multi-beam structures through changes in friction forces. The system [...] Read more.
Stick–slip phenomena may manifest at the joints during cyclic vibrations in beam structures connected by some forms of joint. This work incorporates the sticking–slip effect of joint connections into the dynamic analysis framework of multi-beam structures through changes in friction forces. The system characteristic equation is solved using the incremental harmonic balance method, the vibration characteristics of the connected structure are explored through the dynamic response, and the accuracy of the model established in this paper is verified through experiments. The equivalent stiffness and damping changes of a connecting beam under different connection states are investigated for the first time. The research indicates that the “tracking” phenomenon, induced by abrupt damping and resonance frequency variations due to low contact pressure and a low friction coefficient, leads to a relatively stable vibration response amplitude across an extended frequency range. This results in the gradual attenuation of resonance peaks within the frequency response curve, giving rise to a defined resonance frequency range. As connection stiffness diminishes, the system demonstrates characteristics of internal resonance. In addition, the influence characteristics of external excitation and connection joint position on the vibration response of multi-beam structures are also explored. This model provides an effective method for studying the vibration problems of complex beam frame structures. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

17 pages, 3598 KiB  
Article
Influence of Lamb Wave Anisotropy on Detection of Water-to-Ice Phase Transition
by Andrey Smirnov, Vladimir Anisimkin, Nikita Ageykin, Elizaveta Datsuk and Iren Kuznetsova
Sensors 2024, 24(24), 7969; https://doi.org/10.3390/s24247969 - 13 Dec 2024
Cited by 1 | Viewed by 649
Abstract
An important technical task is to develop methods for recording the phase transitions of water to ice. At present, many sensors based on various types of acoustic waves are suggested for solving this challenge. This paper focuses on the theoretical and experimental study [...] Read more.
An important technical task is to develop methods for recording the phase transitions of water to ice. At present, many sensors based on various types of acoustic waves are suggested for solving this challenge. This paper focuses on the theoretical and experimental study of the effect of water-to-ice phase transition on the properties of Lamb and quasi shear horizontal (QSH) acoustic waves of a higher order propagating in different directions in piezoelectric plates with strong anisotropy. Y-cut LiNbO3, 128Y-cut LiNbO3, and 36Y-cut LiTaO3 plates with a thickness of 500 μm and 350 μm were used as piezoelectric substrates. It was shown that the amplitude of the waves under study can decrease, increase, or remain relatively stable due to the water-to-ice phase transition, depending on the propagation direction and mode order. The greatest decrease in amplitude (42.1 dB) due to glaciation occurred for Lamb waves with a frequency of 40.53 MHz and propagating in the YX+30° LiNbO3 plate. The smallest change in the amplitude (0.9 dB) due to glaciation was observed for QSH waves at 56.5 MHz propagating in the YX+60° LiNbO3 plate. Additionally, it was also found that, in the YX+30° LiNbO3 plate, the water-to-ice transition results in the complete absorption of all acoustic waves within the specified frequency range (10–60 MHz), with the exception of one. The phase velocities, electromechanical coupling coefficients, elastic polarizations, and attenuation of the waves under study were calculated. The structures “air–piezoelectric plate–air”, “air–piezoelectric plate–liquid”, and “air–piezoelectric plate–ice” were considered. The results obtained can be used to develop methods for detecting ice formation and measuring its parameters. Full article
Show Figures

Figure 1

17 pages, 20539 KiB  
Article
Evaluation of Bonding Strength of Pipeline Coating Based on Circumferential Guided Waves
by Yunxiu Ma, Xiaoran Ding, Aocheng Wang, Gang Liu and Lei Chen
Coatings 2024, 14(12), 1526; https://doi.org/10.3390/coatings14121526 - 3 Dec 2024
Viewed by 1074
Abstract
The anti-corrosion layer of the pipe provides corrosion resistance and extends the lifespan of the whole pipeline. Heat-shrinkable tape is primarily used as the pipeline joint coating material bonded to the pipeline weld connection position after heating. Delineating the bonding strength and assessing [...] Read more.
The anti-corrosion layer of the pipe provides corrosion resistance and extends the lifespan of the whole pipeline. Heat-shrinkable tape is primarily used as the pipeline joint coating material bonded to the pipeline weld connection position after heating. Delineating the bonding strength and assessing the quality of the bonded structure is crucial for pipeline safety. A detection technology based on nonlinear ultrasound is presented to quantitatively evaluate the bonding strength of a steel-EVA-polyethylene three-layer annulus bonding structure. Using the Floquet boundary condition, the dispersion curves of phase velocity and group velocity for a three-layer annulus bonding structure are obtained. Additionally, wave structure analysis is employed in theoretical study to choose guided wave modes that are appropriate for detection. In this paper, guided wave amplitude, frequency attenuation, and nonlinear harmonics are used to evaluate the structural bonding strength. The results reveal that the detection method based on amplitude and frequency attenuation can be used to preliminarily screen the poor bonding, while the acoustic nonlinear coefficient is sensitive to bonding strength changes. This study introduces a comprehensive and precise pipeline joint bonding strength detection system leveraging ultrasonic-guided wave technology for pipeline coating applications. The detection system determines the bonding strength of bonded structures with greater precision than conventional ultrasonic inspection methods. Full article
(This article belongs to the Special Issue Mechanical Automation Design and Intelligent Manufacturing)
Show Figures

Figure 1

12 pages, 5961 KiB  
Article
In Situ Ultrasonic Characterization of Hydrogen Damage Evolution in X80 Pipeline Steel
by Bing Chen, Feifei Qiu, Li Xia, Lintao Xu, Junjun Jin and Guoqing Gou
Materials 2024, 17(23), 5891; https://doi.org/10.3390/ma17235891 - 1 Dec 2024
Cited by 1 | Viewed by 901
Abstract
A nondestructive evaluation of the hydrogen damage of materials in a hydrogen environment is important for monitoring the running conditions of various pieces of equipment. In this work, a new thermostatic electrolytic hydrogenation in situ ultrasonic test system (In Situ TEH-UT) was developed. [...] Read more.
A nondestructive evaluation of the hydrogen damage of materials in a hydrogen environment is important for monitoring the running conditions of various pieces of equipment. In this work, a new thermostatic electrolytic hydrogenation in situ ultrasonic test system (In Situ TEH-UT) was developed. The system operates by combining cross-correlation delay estimation and frequency domain amplitude estimation and hence improves measurement accuracy with respect to ultrasonic propagation time and amplitude, allowing in situ ultrasonic evaluation of the hydrogen-charging process in X80 pipeline steel. The experimental results show that under a 30 mA/cm2 hydrogen-charging current, the hydrogen saturation time of X80 pipeline steel is 800 min. Between 0 and 800 min, the attenuation coefficient and amplitude attenuation both demonstrate a strong linear relationship with the hydrogen-charging time. After 800 min, the attenuation coefficient and amplitude attenuation do not change further, while the attenuation coefficient fluctuates greatly. Through the characterization of the microstructures of the materials analyzed, it was found that hydrogen-induced cracks (HICs) constituted the main reason for the change in the ultrasonic parameters, and the mechanism behind the hydrogen-induced damage layer (HIDL) was determined. This study provides reference significance for clarifying the change mechanism of ultrasonic parameters under hydrogen damage conditions and determining the extent of hydrogen damage using an ultrasonic technique. Full article
(This article belongs to the Special Issue Advancements in Ultrasonic Testing for Metallurgical Materials)
Show Figures

Figure 1

22 pages, 27931 KiB  
Article
Experimental Measurements of Explosion Effects Propagating in the Real Geological Environment—Correlation with Small-Scale Model
by Daniel Papán, Emma Brozová and Zuzana Papánová
Buildings 2024, 14(11), 3603; https://doi.org/10.3390/buildings14113603 - 13 Nov 2024
Cited by 1 | Viewed by 1024
Abstract
This research focuses on comparing small-scale and full-scale measurements of wave propagation from explosions by using scaling relationships to find significant correlations between the two. The study investigates how seismic waves generated by explosions behave in the geological environment. The research covers various [...] Read more.
This research focuses on comparing small-scale and full-scale measurements of wave propagation from explosions by using scaling relationships to find significant correlations between the two. The study investigates how seismic waves generated by explosions behave in the geological environment. The research covers various aspects such as the development of the model, the explosive materials used, measurement methods, evaluation techniques, and relevant software. A scientific approach based on the principle of backward Fourier transform was used to process and evaluate the data, which helps to filter the frequencies. One of the important calculations discussed is the determination of the attenuation coefficient, which helps to describe how waves attenuate as they pass through a material. The research also deals with dynamic scaling, using the dynamic exponent as a scaling factor to provide a better understanding of the behavior of waves at different scales. By comparing real in situ data with results from small-scale models, the study provides a robust framework for predicting the effects of explosions in complex geological environments. The research results show a high correlation coherence of the statistical data files of up to 4.1%. For dynamic tasks and model scaling, an important result can be pointed out, namely the approximately fourfold decrease in the exponents of the dependence on the distance from the excitation source and the amplitudes between P-waves (0.4316) and R-waves (0.1219). Conclusions are targeted at the possibility of correlating three types of results: small-scale simulations, numerical simulations, and a real full-scale experiment. Full article
(This article belongs to the Special Issue Impact of Ambient Vibration on Evaluating Existing Buildings)
Show Figures

Figure 1

16 pages, 6442 KiB  
Article
Finite Element Simulation of Stoneley Wave Propagation in Fracture Zones in Wells
by Xinghua Qi, Yuxuan Wei, Shimao Wang and Zhuwen Wang
Mathematics 2024, 12(22), 3511; https://doi.org/10.3390/math12223511 - 10 Nov 2024
Viewed by 1102
Abstract
The formation and development of fractures increase reservoir heterogeneity and improve reservoir performance. Therefore, it is of great research value to accurately identify the development of fractures. In this paper, two- and three-dimensional models are constructed based on the finite element method and [...] Read more.
The formation and development of fractures increase reservoir heterogeneity and improve reservoir performance. Therefore, it is of great research value to accurately identify the development of fractures. In this paper, two- and three-dimensional models are constructed based on the finite element method and compared with the real axis integration method. The influence of different geometric parameters on the Stoneley wave amplitude is studied to assess the propagation of Stoneley waves in the fracture zone in the well. The results show a significant positive correlation between the width and number of fractures and the attenuation coefficient of Stoneley waves. The fracture angle has a negative correlation with the attenuation coefficient and lesser impact on Stoneley waves. In addition, Stoneley waves are less sensitive to changes in fracture location, while the sensitivity to fracture spacing is significant in the range of 50 cm to 75 cm. The main propagation depth of Stoneley waves occurs 20 cm from the wall of the well. Quantitative analyses of the fracture width, number, location, spacing, depth, and angle are conducted to determine the influence of the fracture parameters on the Stoneley wave attenuation coefficient, clarify Stoneley wave propagation in wells, and provide a theoretical basis for the accurate evaluation of fractures. Full article
(This article belongs to the Topic Analytical and Numerical Models in Geo-Energy)
Show Figures

Figure 1

21 pages, 7373 KiB  
Article
Characteristics, Relationships, and Differences in Muscle Activity and Impact Load Attenuation During Tennis Forehand Stroke with Different Grips
by Rui Dong, Xinyu Su, Shichen Li, Xindi Ni and Ye Liu
Life 2024, 14(11), 1433; https://doi.org/10.3390/life14111433 - 6 Nov 2024
Cited by 3 | Viewed by 1549
Abstract
In forehand strokes with different grips in tennis, the forearm muscle activities, the distribution and attenuation of the impact loads, and the effects of the muscles on the impact load attenuation exhibited different characteristics. This study aimed to explore these characteristics by analyzing [...] Read more.
In forehand strokes with different grips in tennis, the forearm muscle activities, the distribution and attenuation of the impact loads, and the effects of the muscles on the impact load attenuation exhibited different characteristics. This study aimed to explore these characteristics by analyzing electromyography (EMG) and acceleration data, and comparing the differences between the Eastern and Western grips. Fourteen level II or above tennis players (ten males, aged 22.4 ± 3.6 years; four females, aged 19.8 ± 2.0 years) were recruited and instructed to perform forehand strokes using the Eastern and Western grips, respectively. The EMG of eight forearm muscles and the acceleration data at the ulnar and radial sides of the wrist and elbow were collected. The root mean square (RMS), the peaks of the impact load, the amplitude of impact load attenuation (AC), and the jerk value (Jerk) were calculated. The cross-correlation coefficients and time delays of EMG–EMG, EMG–AC, and EMG–jerk were obtained using the cross-correlation method. The results showed that in the Eastern grip group (group E), the RMS of the flexor carpi ulnaris (FCU) was significantly greater than that in the Western grip group (group W). In group E, the peaks of impact load, AC, and Jerk on the Y axis of the wrist ulnar side were all significantly higher than those in group W. The activity of the extensor digitorum commonis (EDC) had significantly different effects on the amplitude and rate of impact load attenuation at specific locations in different grips, especially at the elbow (p < 0.05). The conclusion indicated that the FCU exhibited higher levels of EMG activity in the Eastern grip. This grip responded to greater impact loads with more substantial and rapid attenuation on the wrist ulnar side. Furthermore, the EDC appeared to contribute more to the amplitude of impact load attenuation in the Western grip and to have a more significant influence on the rate of impact load attenuation in the Eastern grip, especially at the elbow. These results suggest that tennis players and coaches should pay more attention to improving the strength of the EDC and FCU, which can improve sports performance and comfort, as well as prevent sports injuries. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

15 pages, 2459 KiB  
Review
Review of Research Progress on Acoustic Test Equipment for Hydrate-Bearing Sediments
by Shihui Sun, Xiaohan Zhang and Yunjian Zhou
Processes 2024, 12(11), 2337; https://doi.org/10.3390/pr12112337 - 24 Oct 2024
Viewed by 992
Abstract
When acoustic waves propagate through hydrate samples, they carry extensive information related to their physical and mechanical properties. These details are comprehensively reflected in acoustic parameters such as velocity, attenuation coefficient, waveform, frequency, spectrum, and amplitude variations. Based on these parameters, it is [...] Read more.
When acoustic waves propagate through hydrate samples, they carry extensive information related to their physical and mechanical properties. These details are comprehensively reflected in acoustic parameters such as velocity, attenuation coefficient, waveform, frequency, spectrum, and amplitude variations. Based on these parameters, it is possible to invert the physical and mechanical indicators and microstructural characteristics of hydrate samples, thereby addressing a series of issues in hydrate development engineering. This study first provides an overview of the current applications and prospects of acoustic testing in hydrate development. Subsequently, it systematically elaborates on the progress in research on acoustic testing systems for hydrate samples, including the principles of acoustic testing, ship-borne hydrate core acoustic detection systems, laboratory hydrate sample acoustic testing systems, and resonance column experimental systems. Based on this foundation, this study further discusses the development trends and challenges of acoustic testing equipment for hydrate-bearing sediments. Full article
Show Figures

Figure 1

Back to TopTop