Review of Research Progress on Acoustic Test Equipment for Hydrate-Bearing Sediments
Abstract
:1. Introduction
2. Application Status and Prospects of Acoustic Testing in Hydrate Development
- (1)
- Evaluation of hydrate development strata integrity and wellbore stability (determination of the reservoir state through changes in acoustic signals);
- (2)
- Geological stratification and saturation determination of hydrate reservoirs;
- (3)
- Seismic response analysis and bottom simulating reflector (BSR) identification (identification of BSR through the difference in wave velocity between hydrates and free gas layers);
- (4)
- Calculation of the dynamic Young modulus, shear modulus, and Poisson’s ratio of hydrate samples;
- (5)
- Establishment of correlations between the acoustic parameters of hydrate samples and geotechnical parameters using correlation analysis;
- (6)
- Identification of the fractures and characterization of anisotropy in hydrate reservoirs;
- (7)
- Description of the internal crack development and evolution laws under loading conditions in hydrate samples;
- (8)
- Study of the damage evolution equations and constitutive relationships under the uniaxial, triaxial, and creep tests of hydrate samples;
- (9)
- Analysis of porous medium fluid flow effects in hydrate reservoirs;
- (10)
- Inversion of the physical parameters of hydrate reservoirs such as porosity, density, pressure, temperature, and fracture.
3. Research Progress of Hydrate Acoustic Testing Systems
3.1. Bend Element Testing Systems
3.1.1. Shipboard Hydrate Core Acoustic Detection Systems
3.1.2. Laboratory Hydrate Sample Acoustic Testing Systems
- One-dimensional indoor hydrate sample acoustic testing systems
- Multi-dimensional Indoor Hydrate Sample Acoustic Testing Systems
- Hydrate Sample Combined Acoustic Detection System
3.2. Resonant Column Experiment System
4. Conclusions and Outlook
- (1)
- Acoustic testing is a non-destructive method that can be widely applied in various fields of hydrate testing. It indirectly extracts the physical and mechanical properties of hydrate-bearing sediment samples and holds promising development prospects.
- (2)
- Currently, established acoustic measurement devices effectively characterize the overall geophysical properties of hydrate samples. However, there is still a lack of description regarding local and microscopic variations. Even with the application of two-dimensional acoustic imaging technology, the characterization accuracy remains notably low. Therefore, developing higher-level acoustic tomography imaging technology is crucial for accurately locating internal defects and studying the microscopic evolution of hydrate samples in the future.
- (3)
- Feasibility studies of four-dimensional ultrasonic testing are recommended. Establishing a four-dimensional ultrasonic testing system to extract parameters such as velocity, travel time, amplitude, AVO (amplitude versus offset) response, impedance, and reflectivity can provide higher-level monitoring and analysis of fluid movement patterns, pressure, and temperature changes during hydrate formation or decomposition. This approach allows for a more systematic and detailed analysis of microscopic structural changes.
- (4)
- The application of acoustic emission technology, as an important branch of acoustic measurement, has rarely been reported for hydrate-bearing samples. This technology holds great potential for monitoring grain dislocation movement, crack propagation, and evolution within hydrate-bearing samples and has significant practical implications for the future development of hydraulic fracturing for increased production from hydrate resources.
Funding
Conflicts of Interest
References
- Mienert, J.; Vanneste, M.; Bünz, S.; Andreassen, K.; Haflidason, H.; Sejrup, H.P. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide. Mar. Pet. Geol. 2005, 22, 233–244. [Google Scholar] [CrossRef]
- Sloan, E.D. Fundamental principles and applications of natural gas hydrates. Nature 2003, 426, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Boswell, R. Is Gas Hydrate Energy Within Reach? Science 2009, 325, 957–958. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lu, Y.; Cheng, J.; Han, Q.; Hu, Z.; Wang, L. Geomechanics involved in gas hydrate recovery. Chin. J. Chem. Eng. 2019, 27, 2099–2106. [Google Scholar] [CrossRef]
- Makogon, Y.F. Natural gas hydrates—A promising source of energy. J. Nat. Gas Sci. Eng. 2010, 2, 49–59. [Google Scholar] [CrossRef]
- Wu, P.; Li, Y.; Sun, X.; Liu, W.; Song, Y. Mechanical Characteristics of Hydrate-Bearing Sediment: A Review. Energy Fuels 2021, 35, 1041–1057. [Google Scholar] [CrossRef]
- Makogon, Y.; Holditch, S.; Makogon, T. Natural gas-hydrates—A potential energy source for the 21st Century. J. Pet. Sci. Eng. 2007, 56, 14–31. [Google Scholar] [CrossRef]
- Liu, L.; Sun, Z.; Zhang, L.; Wu, N.; Yichao, Q.; Jiang, Z.; Geng, W.; Cao, H.; Zhang, X.; Zhai, B.; et al. Progress in Global Gas Hydrate Development and Production as a New Energy Resource. Acta Geol. Sin.-Engl. Ed. 2019, 93, 731–755. [Google Scholar] [CrossRef]
- Boswell, R.; Collett, T.S. Current perspectives on gas hydrate resources. Energy Environ. Sci. 2011, 4, 1206–1215. [Google Scholar] [CrossRef]
- Ning, F.; Yu, Y.; Kjelstrup, S.; Vlugt, T.J.H.; Glavatskiy, K. Mechanical properties of clathrate hydrates: Status and perspectives. Energy Environ. Sci. 2012, 5, 6779–6795. [Google Scholar] [CrossRef]
- Wu, N.; Li, Y.; Chen, Q.; Liu, C.; Jin, Y.; Tan, M.; Dong, L.; Hu, G. Sand Production Management during Marine Natural Gas Hydrate Exploitation: Review and an Innovative Solution. Energy Fuels 2021, 35, 4617–4632. [Google Scholar] [CrossRef]
- Sun, X.; Yao, D.; Qu, J.; Sun, S.; Qin, Z.; Tao, L.; Zhao, Y. A novel transient hole cleaning algorithm for horizontal wells based on drift-flux model. Geoenergy Sci. Eng. 2024, 233, 212517. [Google Scholar] [CrossRef]
- Li, Y.; Hu, G.; Liu, C.; Wu, N.; Chen, Q.; Liu, L.; Li, C. Gravel sizing method for sand control packing in hydrate production test wells. Pet. Explor. Dev. 2017, 44, 1016–1021. [Google Scholar] [CrossRef]
- Feng, J.; Yan, T.; Hou, Z. Numerical Simulation Study of Factors Influencing Ultrasonic Cavitation Bubble Evolution on Rock Surfaces during Ultrasonic-Assisted Rock Breaking. Water 2024, 16, 2234. [Google Scholar] [CrossRef]
- Li, Y.; Dong, L.; Wu, N.; Nouri, A.; Liao, H.; Chen, Q.; Sun, J.; Liu, C. Influences of hydrate layered distribution patterns on triaxial shearing characteristics of hydrate-bearing sediments. Eng. Geol. 2021, 294, 106375. [Google Scholar] [CrossRef]
- Wan, Y.; Wu, N.; Chen, Q.; Li, W.; Hu, G.; Huang, L.; Ouyang, W. Coupled thermal-hydrodynamic-mechanical–chemical numerical simulation for gas production from hydrate-bearing sediments based on hybrid finite volume and finite element method. Comput. Geotech. 2022, 145, 104692. [Google Scholar] [CrossRef]
- Jin, G.; Lei, H.; Xu, T.; Liu, L.; Xin, X.; Zhai, H.; Liu, C. Seafloor subsidence induced by gas recovery from a hydrate-bearing sediment using multiple well system. Mar. Pet. Geol. 2019, 107, 438–450. [Google Scholar] [CrossRef]
- Yan, C.; Ren, X.; Cheng, Y.; Song, B.; Li, Y.; Tian, W. Geomechanical issues in the exploitation of natural gas hydrate. Gondwana Res. 2020, 81, 403–422. [Google Scholar] [CrossRef]
- Misyura, S. Developing the environmentally friendly technologies of combustion of gas hydrates. Reducing harmful emissions during combustion. Environ. Pollut. 2020, 265, 114871. [Google Scholar] [CrossRef]
- Bojanowski, M.J.; Oszczypko-Clowes, M.; Barski, M.; Oszczypko, N.; Radzikowska, M.; Ciesielska, Z. Slope destabilization provoked by dissociation of gas hydrates in the Outer Carpathian basin during the Oligocene: Sedimentological, petrographic, isotopic and biostratigraphic record. Mar. Pet. Geol. 2021, 123, 104585. [Google Scholar] [CrossRef]
- Farahani, M.V.; Hassanpouryouzband, A.; Yang, J.; Tohidi, B. Insights into the climate-driven evolution of gas hydrate-bearing permafrost sediments: Implications for prediction of environmental impacts and security of energy in cold regions. RSC Adv. 2021, 11, 14334–14346. [Google Scholar] [CrossRef] [PubMed]
- Farahani, M.V.; Hassanpouryouzband, A.; Yang, J.; Tohidi, B. Development of a coupled geophysical–geothermal scheme for quantification of hydrates in gas hydrate-bearing permafrost sediments. Phys. Chem. Chem. Phys. 2021, 23, 24249–24264. [Google Scholar] [CrossRef] [PubMed]
- Ruppel, C. Permafrost-Associated Gas Hydrate: Is It Really Approximately 1% of the Global System? J. Chem. Eng. Data 2015, 60, 429–436. [Google Scholar] [CrossRef]
- Clayton, C.R.I.; Priest, J.A.; Best, A.I. The effects of disseminated methane hydrate on the dynamic stiffness and damping of a sand. Geotechnique 2005, 55, 423–434. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, X.; Zhou, Y. Stability Characteristics of Natural Gas Hydrate Wellbores Based on Thermo-Hydro-Mech Modeling. Processes 2024, 12, 2196. [Google Scholar] [CrossRef]
- Sun, T.; Wen, Z.; Yang, J.; Yang, K.; Han, Z.; He, J. Analysis of Factors Influencing the Stability of Submarine Hydrate-Bearing Slopes during Depressurization Production. Processes 2024, 12, 679. [Google Scholar] [CrossRef]
- Cheng, Y.; Xue, M.; Shi, J.; Li, Y.; Yan, C.; Han, Z.; Yang, J. Numerical Simulating the Influences of Hydrate Decomposition on Wellhead Stability. Processes 2023, 11, 1586. [Google Scholar] [CrossRef]
- Lee, C.; Yun, T.S.; Lee, J.-S.; Bahk, J.J.; Santamarina, J.C. Geotechnical characterization of marine sediments in the Ulleung Basin, East Sea. Eng. Geol. 2011, 117, 151–158. [Google Scholar] [CrossRef]
- Cheng, K.; Zhang, J.; Miao, Y.; Ruan, B.; Peng, T. The effect of plastic fines on the shear modulus and damping ratio of silty sands. Bull. Eng. Geol. Environ. 2019, 78, 5865–5876. [Google Scholar] [CrossRef]
- Lee, J.-W.; Kim, H.; Oh, T.-M. Acoustic Emission Characteristics during Uniaxial Compressive Loading for Concrete Specimens according to Sand Content Ratio. KSCE J. Civ. Eng. 2020, 24, 2808–2823. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Murton, J.; Liu, S.-J.; Sui, L.-L.; Zhang, S.; Wang, L.; Kong, L.-H.; Ding, H. Sensitivity and regression analysis of acoustic parameters for determining physical properties of frozen fine sand with ultrasonic test. Q. J. Eng. Geol. Hydrogeol. 2021, 54, qjegh2020-021. [Google Scholar] [CrossRef]
- Wang, J.; Li, G.; Kan, G.; Hou, Z.; Meng, X.; Liu, B.; Liu, C.; Lei, S. High frequency dependence of sound speed and attenuation in coral sand sediments. Ocean Eng. 2021, 234, 109215. [Google Scholar] [CrossRef]
- Bhutale, S.S.; Dalvi, R.S. Effect of Fines Content on Dynamic Properties of Sand Using Bender Element. In Soil Dynamics: Select Proceedings of 7th ICRAGEE 2020; Springer: Singapore, 2021; pp. 11–22. [Google Scholar]
- Sharma, M.; Satyam, N.; Reddy, K.R. Effect of freeze-thaw cycles on engineering properties of biocemented sand under different treatment conditions. Eng. Geol. 2021, 284, 106022. [Google Scholar] [CrossRef]
- Liu, T.; Tang, H.; Wu, P.; Wang, H.; Song, Y.; Li, Y. Acoustic characteristics on clayey-silty sediments of the South China Sea during methane hydrate formation and dissociation. Energy 2023, 282, 128978. [Google Scholar] [CrossRef]
- Ye, Y. Development of the Experiment Detection Technique In Natural Gas Hydrates: Experimental Techniques and Their Applications; Springer: Berlin/Heidelberg, Germany, 2012; pp. 19–87. [Google Scholar]
- Chen, M.; Li, Y.; Merey, Ş.; Wu, N.; Hu, Q.; Zhang, Y.; Dong, L.; Yu, G.; Jiang, H. Review on the Test Methods and Devices for Mechanical Properties of Hydrate-Bearing Sediments. Sustainability 2022, 14, 6239. [Google Scholar] [CrossRef]
- Collett, T. Results at Mallik highlight progress in gas hydrate energy resource research and development. Petrophysics 2005, 46, SPWLA-2005-v46n3a6. [Google Scholar]
- Santamarina, J.C.; Dai, S.; Jang, J.; Terzariol, M. Pressure Core Characterization Tools for Hydrate-Bearing Sediments. Sci. Drill. 2012, 14, 44–48. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, W.; Xue, K.; Wei, R.; Ling, Z. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures. Rev. Sci. Instrum. 2018, 89, 054904. [Google Scholar] [CrossRef]
- Schultheiss, P.J.; Francis, T.J.G.; Holland, M.; Roberts, J.A.; Amann, H.; Thjunjoto; Parkes, R.J.; Martin, D.; Rothfuss, M.; Tyunder, F.; et al. Pressure coring, logging and subsampling with the HYACINTH system. Geol. Soc. Lond. Spéc. Publ. 2006, 267, 151–163. [Google Scholar] [CrossRef]
- Priest, J.A.; Druce, M.; Roberts, J.; Schultheiss, P.; Nakatsuka, Y.; Suzuki, K. PCATS Triaxial: A new geotechnical apparatus for characterizing pressure cores from the Nankai Trough, Japan. Mar. Pet. Geol. 2015, 66, 460–470. [Google Scholar] [CrossRef]
- Priest, J.A.; Hayley, J.L.; Smith, W.E.; Schultheiss, P.; Roberts, J. PCATS triaxial testing: Geomechanical properties of sediments from pressure cores recovered from the Bay of Bengal during expedition NGHP-02. Mar. Pet. Geol. 2019, 108, 424–438. [Google Scholar] [CrossRef]
- Li, X.; Jiang, L.; Chu, J.; Zhao, J.; Song, Y. In-situ ultrasonic measurement for hydrate pressure cores sampled by deep sea drilling. Measurement 2023, 221, 113529. [Google Scholar] [CrossRef]
- Ebinuma, T.; Suzuki, K.; Nagao, J.; Oyama, H.; Narita, H. Ultrasonic Wave Velocities Associated With Formation and Dissociation of Methane Hydrate in Artificial Sandy Sediments. In Offshore Technology Conference; OTC: Houston, TX, USA, 2008; p. OTC-19260. [Google Scholar] [CrossRef]
- Liu, T.; Wu, P.; You, Z.; Yu, T.; Song, Q.; Song, Y.; Li, Y. Deformation characteristics on anisotropic consolidated methane hydrate clayey-silty sediments of the South China Sea under heat injection. Energy 2023, 280, 128190. [Google Scholar] [CrossRef]
- Lijith, K.; Rao, R.S.; Singh, D.N. Detection of formation and dissociation of CO2 hydrates in fine-sands through acoustic waves. Fuel 2024, 357, 129802. [Google Scholar] [CrossRef]
- Li, F.-G.; Sun, C.-Y.; Zhang, Q.; Liu, X.-X.; Guo, X.-Q.; Chen, G.-J. Laboratory Measurements of the Effects of Methane/Tetrahydrofuran Concentration and Grain Size on the P-Wave Velocity of Hydrate-Bearing Sand. Energy Fuels 2011, 25, 2076–2082. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, F.-G.; Sun, C.-Y.; Li, Q.-P.; Wu, X.-Y.; Liu, B.; Chen, G.-J. Compressional wave velocity measurements through sandy sediments containing methane hydrate. Am. Miner. 2011, 96, 1425–1432. [Google Scholar] [CrossRef]
- Wang, X.-H.; Li, F.-G.; Xu, Y.-X.; Sun, C.-Y.; Pan, H.; Liu, B.; Yang, L.-Y.; Chen, G.-J.; Li, Q.-P. Elastic properties of hydrate-bearing sandy sediment during CH4–CO2 replacement. Energy Convers. Manag. 2015, 99, 274–281. [Google Scholar] [CrossRef]
- Sæther, M.; Almenningen, S.; Ersland, G.; Lunde, P. Compressional wave phase velocity measurements during hydrate growth in partially and fully water saturated sandstone. Fuel 2022, 324, 124522. [Google Scholar] [CrossRef]
- Luo, Y.; Peng, J.; Li, P.; He, J.; Li, L. Influence of heterogeneous hydrate distribution on the compressional wave velocity of hydrate-bearing sediment specimens. J. Nat. Gas Sci. Eng. 2015, 22, 90–97. [Google Scholar] [CrossRef]
- Zhu, Y.-J.; Huang, X.; Li, H.; Zhu, Y.-J.; Wang, X.-H.; Sun, Y.-F.; Xiao, P.; Sun, C.-Y.; Chen, G.-J. Study on acoustic properties of hydrate-bearing sediments with reconstructed CO2 hydrate in different layers during CH4 hydrate mining. Ultrason. Sonochemistry 2023, 100, 106641. [Google Scholar] [CrossRef]
- Zhu, Y.-J.; Yang, X.-M.; Huang, X.; Li, H.; Wang, X.-H.; Sun, Y.-F.; Xiao, P.; Sun, C.-Y.; Chen, G.-J. Acoustic characterization of hydrate formation and decomposition in clay-bearing sediments. Pet. Sci. 2024, 21, 2830–2838. [Google Scholar] [CrossRef]
- Bu, Q.; Hu, G.; Ye, Y.; Liu, C.; Li, C.; Wang, J. Experimental study on 2-D acoustic characteristics and hydrate distribution in sand. Geophys. J. Int. 2017, 211, 990–1004. [Google Scholar] [CrossRef]
- Hu, G.W.; Ye, Y.G.; Zhang, J.; Liu, C.L.; Diao, S.B.; Wang, J.S. Acoustic properties of gas hydrate–bearing consolidated sediments and experimental testing of elastic velocity models. J. Geophys. Res. 2010, 115, 2008JB006160. [Google Scholar] [CrossRef]
- Hu, G.; Ye, Y.; Zhang, J.; Liu, C.; Li, Q. Acoustic response of gas hydrate formation in sediments from South China Sea. Mar. Pet. Geol. 2014, 52, 1–8. [Google Scholar] [CrossRef]
- Ye, Y.G.; Zhang, J.; Hu, G.W.; Diao, S.; Liu, C.L. Combined detection technique of ultrasonic and time domain reflectometry in gas hydrate. Mar. Geol. Quat. Geol. 2008, 28, 101–107. [Google Scholar]
- Hu, G.; Ye, Y.; Zhang, J.; Diao, S.; Liu, C. Acoustic Properties of Hydrate-Bearing Unconsolidated Sediments Measured by the Bender Element Technique. Chin. J. Geophys. 2012, 55, 635–647. [Google Scholar] [CrossRef]
- Bu, Q.; Hu, G.; Liu, C.; Xing, T.; Li, C.; Meng, Q. Acoustic characteristics and micro-distribution prediction during hydrate dissociation in sediments from the South China Sea. J. Nat. Gas Sci. Eng. 2019, 65, 135–144. [Google Scholar] [CrossRef]
- Ren, S.R.; Liu, Y.; Liu, Y.; Zhang, W. Acoustic velocity and electrical resistance of hydrate bearing sediments. J. Pet. Sci. Eng. 2010, 70, 52–56. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Z.; He, T.; Lu, H.; Zhang, Y. Growth pattern of dispersed methane hydrates in brine-saturated unconsolidated sediments via joint velocity and resistivity analysis. J. Nat. Gas Sci. Eng. 2021, 96, 104279. [Google Scholar] [CrossRef]
- Zhu, P.; Ma, T.; Chen, M.; Yin, L.; Zhang, C.; Wei, W.; Teng, Z.-D. Petrophysical experiment-based evaluation method for the saturation of gas hydrate. Unconv. Resour. 2022, 2, 158–169. [Google Scholar] [CrossRef]
- Hu, Q.; Li, Y.; Wu, N.; Jiang, Y.; Sun, X.; Wang, H.; Bu, Q.; Hu, G. Influences of stress state on compressional wave velocity of sandy hydrate-bearing sediment: Experiments and modeling. Geoenergy Sci. Eng. 2024, 234, 212683. [Google Scholar] [CrossRef]
- Hu, Q.; Li, Y.; Sun, X.; Chen, M.; Bu, Q.; Gong, B. Integrating test device and method for creep failure and ultrasonic response of methane hydrate-bearing sediments. Rev. Sci. Instrum. 2023, 94, 025105. [Google Scholar] [CrossRef]
- Winters, W.J.; Dillon, W.P.; Pecher, I.A.; Mason, D.H. GHASTLI-Determining Physical Properties of Sediment Containing Natural and Laboratory-Formed Gas Hydrate. In Natural Gas Hydrate: In Oceanic and Permafrost Environments; Coastal Systems & Continental Margins; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
- Winters, W.; Waite, W.; Mason, D.; Gilbert, L.; Pecher, I. Methane gas hydrate effect on sediment acoustic and strength properties. J. Pet. Sci. Eng. 2007, 56, 127–135. [Google Scholar] [CrossRef]
- Bu, Q.; Xing, T.; Li, C.; Zhao, J.; Liu, C.; Wang, Z.; Zhao, W.; Kang, J.; Meng, Q.; Hu, G. Effect of Hydrate Microscopic Distribution on Acoustic Characteristics during Hydrate Dissociation: An Insight from Combined Acoustic-CT Detection Study. J. Mar. Sci. Eng. 2022, 10, 1089. [Google Scholar] [CrossRef]
- Chen, J.; Hu, G.; Bu, Q.; Liu, C.; Dong, L.; Wan, Y.; Mao, P.; Guo, Y.; Wang, Z. Elastic wave velocities of hydrate-bearing sands containing methane gas bubbles: Insights from CT-acoustic observation and theoretical analysis. J. Nat. Gas Sci. Eng. 2021, 88, 103844. [Google Scholar] [CrossRef]
- Chen, J.; Hu, G.; Bu, Q.; Wu, N.; Liu, C.; Chen, Q.; Li, C.; Wan, Y.; Wang, Z.; Zhao, W.; et al. Elastic wave velocity of marine sediments with free gas: Insights from CT-acoustic observation and theoretical analysis. Mar. Pet. Geol. 2023, 150, 106169. [Google Scholar] [CrossRef]
- Huang, L.; Xu, C.; Iqbal, K. Acoustic properties of hydrate-bearing sediments in permafrost from hydrate formation to shear processes. Cold Reg. Sci. Technol. 2024, 224, 104253. [Google Scholar] [CrossRef]
- Drnevich, V. Resonant-Column Testing—Problems and Solutions. In Dynamic Geotechnical Testing; Silver, M., Tiedemann, D., Eds.; ASTM International: West Conshohocken, PA, USA, 1978. [Google Scholar]
- Richard, F.E.; Woods, R.E.; Hall, J.R., Jr. Vibration of Soils and Foundations; Prentice-Hall: New York, NY, USA, 1970. [Google Scholar]
- Song, B.; Tsinaris, A.; Anastasiadis, A.; Pitilakis, K.; Chen, W. Small-strain stiffness and damping of Lanzhou loess. Soil Dyn. Earthq. Eng. 2017, 95, 96–105. [Google Scholar] [CrossRef]
- Patiño, H.; Martínez, E.; Galindo, R. Dynamic Behavior of a Granular Medium Subjected to Resonant Column Tests: Application to Ottawa Sand. Geotech. Test. J. 2020, 43, 132–150. [Google Scholar] [CrossRef]
- Cascante, G.; Santamarina, C.; Yassir, N. Flexural excitation in a standard torsional-resonant column device. Can. Geotech. J. 1998, 35, 478–490. [Google Scholar] [CrossRef]
- Schaeffer, K.; Bearce, R.; Wang, J. Dynamic Modulus and Damping Ratio Measurements from Free-Free Resonance and Fixed-Free Resonant Column Procedures. J. Geotech. Geoenvironmental Eng. 2013, 139, 2145–2155. [Google Scholar] [CrossRef]
- Stokoe, K.; Darendeli, M.; Andrus, R.; Brown, L. Dynamic Soil Properties: Laboratory, Field and Correlation Studies. In Proceedings of the 2nd International Conference on Earthquake & Geotechnical Engineering, Lisboa, Portugal, 21–25 June 1999; pp. 811–846. [Google Scholar]
- Priest, J.A.; Best, A.I.; Clayton, C.R.I. A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand. J. Geophys. Res. 2005, 110, 2004JB003259. [Google Scholar] [CrossRef]
- Clayton, C.; Priest, J.; Rees, E. The effects of hydrate cement on the stiffness of some sands. Géotechnique 2010, 60, 435–445. [Google Scholar] [CrossRef]
- Priest, J.A.; Best, A.I.; Clayton, C.R.I. Attenuation of seismic waves in methane gas hydrate-bearing sand. Geophys. J. Int. 2006, 164, 149–159. [Google Scholar] [CrossRef]
- Priest, J.A.; Rees, E.V.L.; Clayton, C.R.I. Influence of gas hydrate morphology on the seismic velocities of sands. J. Geophys. Res. 2009, 114, 2009JB006284. [Google Scholar] [CrossRef]
- Sultaniya, A.K.; Priest, J.A.; Clayton, C.R.I. Measurements of the changing wave velocities of sand during the formation and dissociation of disseminated methane hydrate. J. Geophys. Res. Solid Earth 2015, 120, 778–789. [Google Scholar] [CrossRef]
- Liu, Z.; Kim, J.; Hu, G.; Hu, W.; Ning, F. Geomechanical Property Evolution of Hydrate-Bearing Sediments under Dynamic Loads: Nonlinear Behaviors of Modulus and Damping Ratio. Eng. Geol. 2021, 295, 106427. [Google Scholar] [CrossRef]
- Dvorkin, J.; Prasad, M.; Sakai, A.; Lavoie, D. Elasticity of marine sediments: Rock physics modeling. Geophys. Res. Lett. 1999, 26, 1781–1784. [Google Scholar] [CrossRef]
- Andreassen, K.; Mienert, J.; Bryn, P.; Singh, S.C. A Double Gas-Hydrate Related Bottom Simulating Reflector at the Norwegian Continental Margin. Ann. N. Y. Acad. Sci. 2000, 912, 126–135. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Q.; Wu, N.; Wang, H.; Sun, X.; Hu, G.; Sun, Z.; Jiang, Y. Acoustic characterization for creep behaviors of marine sandy hydrate-bearing sediment. Sci. Rep. 2023, 13, 22199. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Zhang, X.; Zhou, Y. Review of Research Progress on Acoustic Test Equipment for Hydrate-Bearing Sediments. Processes 2024, 12, 2337. https://doi.org/10.3390/pr12112337
Sun S, Zhang X, Zhou Y. Review of Research Progress on Acoustic Test Equipment for Hydrate-Bearing Sediments. Processes. 2024; 12(11):2337. https://doi.org/10.3390/pr12112337
Chicago/Turabian StyleSun, Shihui, Xiaohan Zhang, and Yunjian Zhou. 2024. "Review of Research Progress on Acoustic Test Equipment for Hydrate-Bearing Sediments" Processes 12, no. 11: 2337. https://doi.org/10.3390/pr12112337
APA StyleSun, S., Zhang, X., & Zhou, Y. (2024). Review of Research Progress on Acoustic Test Equipment for Hydrate-Bearing Sediments. Processes, 12(11), 2337. https://doi.org/10.3390/pr12112337