Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = ammonia vapor sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2217 KiB  
Article
Gaseous Ammonia Sensing from Liquids via a Portable Chemosensor with Signal Correction for Humidity
by Andrea Rescalli, Ilaria Porello, Pietro Cerveri and Francesco Cellesi
Biosensors 2025, 15(7), 407; https://doi.org/10.3390/bios15070407 - 25 Jun 2025
Viewed by 370
Abstract
Ammonia (NH3) detection in liquids and biological fluids is essential for monitoring environmental contamination and industrial processes, ensuring food safety, and diagnosing health conditions. Existing detection techniques are often unsuitable for point-of-care (POC) use due to limitations including complex sample handling, [...] Read more.
Ammonia (NH3) detection in liquids and biological fluids is essential for monitoring environmental contamination and industrial processes, ensuring food safety, and diagnosing health conditions. Existing detection techniques are often unsuitable for point-of-care (POC) use due to limitations including complex sample handling, lack of portability, and poor compatibility with miniaturized systems. This study introduces a proof-of-concept for a compact, portable device tailored for POC detection of gaseous ammonia released from liquid samples. The device combines a polyaniline (PANI)-based chemoresistive sensor with interdigitated electrodes and a resistance readout circuit, enclosed in a gas-permeable hydrophobic membrane that permits ammonia in the vapor phase only to reach the sensing layer, ensuring selectivity and protection from liquid interference. The ink formulation was optimized. PANI nanoparticle suspension exhibited a monomodal, narrow particle size distribution with an average size of 120 nm and no evidence of larger aggregates. A key advancement of this device is its ability to limit the impact of water vapor, a known source of interference in PANI-based sensors, while maintaining a simple sensor design. A tailored signal processing strategy was implemented, extracting the slope of resistance variation over time as a robust metric for ammonia quantification. The sensor demonstrated reliable performance across a concentration range of 1.7 to 170 ppm with strong logarithmic correlation (R2 = 0.99), and very good linear correlations in low (R2 = 0.96) and high (R2 = 0.97) subranges. These findings validate the feasibility of this POC platform for sensitive, selective, and practical ammonia detection in clinical and environmental applications. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

16 pages, 4005 KiB  
Article
Development of a Sensitive Colorimetric Indicator for Detecting Beef Spoilage in Smart Packaging
by Dariush Karimi Alavijeh, Bentolhoda Heli and Abdellah Ajji
Sensors 2024, 24(12), 3939; https://doi.org/10.3390/s24123939 - 18 Jun 2024
Cited by 5 | Viewed by 3040
Abstract
This study aimed to fabricate and characterize a novel colorimetric indicator designed to detect ammonia (NH3) and monitor meat freshness. The sensing platform was constructed using electrospun nanofibers made from polylactic acid (PLA), which were then impregnated with anthocyanins as a [...] Read more.
This study aimed to fabricate and characterize a novel colorimetric indicator designed to detect ammonia (NH3) and monitor meat freshness. The sensing platform was constructed using electrospun nanofibers made from polylactic acid (PLA), which were then impregnated with anthocyanins as a natural pH-sensitive dye, extracted from red cabbage. This research involved investigating the relationship between the various concentrations of anthocyanins and the colorimetric platform’s efficiency when exposed to ammonia vapor. Scanning electron microscope (SEM) results were used to examine the morphology and structure of the nanofiber mats before and after the dip-coating process. The study also delved into the selectivity of the indicator when exposed to various volatile organic compounds (VOCs) and their stability under extreme humidity levels. Furthermore, the platform’s sensitivity was evaluated as it encountered ammonia (NH3) in concentrations ranging from 1 to 100 ppm, with varying dye concentrations. The developed indicator demonstrated an exceptional detection limit of 1 ppm of MH3 within just 30 min, making it highly sensitive to subtle changes in gas concentration. The indicator proved effective in assessing meat freshness by detecting spoilage levels in beef over time. It reliably identified spoilage after 10 h and 7 days, corresponding to bacterial growth thresholds (107 CFU/mL), both at room temperature and in refrigerated environments, respectively. With its simple visual detection mechanism, the platform offered a straightforward and user-friendly solution for consumers and industry professionals alike to monitor packaged beef freshness, enhancing food safety and quality assurance. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

15 pages, 1403 KiB  
Article
Deep Learning for Gas Sensing via Infrared Spectroscopy
by M. Arshad Zahangir Chowdhury and Matthew A. Oehlschlaeger
Sensors 2024, 24(6), 1873; https://doi.org/10.3390/s24061873 - 14 Mar 2024
Cited by 9 | Viewed by 3210
Abstract
Deep learning methods, a powerful form of artificial intelligence, have been applied in a number of spectroscopy and gas sensing applications. However, the speciation of multi-component gas mixtures from infrared (IR) absorption spectra using deep learning remains to be explored. Here, we propose [...] Read more.
Deep learning methods, a powerful form of artificial intelligence, have been applied in a number of spectroscopy and gas sensing applications. However, the speciation of multi-component gas mixtures from infrared (IR) absorption spectra using deep learning remains to be explored. Here, we propose a one-dimensional deep convolutional neural network gas classification model for the identification of small molecules of interest based on IR absorption spectra in flexible user-defined frequency ranges. The molecules considered include ten that are of interest in the atmosphere or in industrial and environmental processes: water vapor, carbon dioxide, ozone, nitrous oxide, carbon monoxide, methane, nitric oxide, sulfur dioxide, nitrogen dioxide, and ammonia. A simulated dataset of IR absorption spectra for mixtures of these molecules diluted in air was generated and used to train a deep learning model. The model was tested against simulated spectra containing noise and was found to provide speciation predictions with accuracy from 82 to 97%. The internal operation of the model was investigated using class activation maps that illustrate how the model prioritizes spectral information for classification. Finally, the model was demonstrated for the prediction of speciation for two synthetic experimental mixture spectra. The proposed model and the dataset generation strategies are generalized and can be implemented for other gases, different frequency ranges, and spectroscopy types. The multi-component speciation method developed herein is the first application of a convolutional neural network model, trained on HITRAN-based simulations, for spectral identification. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

24 pages, 14215 KiB  
Article
Ambient Monitoring Portable Sensor Node for Robot-Based Applications
by Mohammed Faeik Ruzaij Al-Okby, Steffen Junginger, Thomas Roddelkopf, Jiahao Huang and Kerstin Thurow
Sensors 2024, 24(4), 1295; https://doi.org/10.3390/s24041295 - 17 Feb 2024
Cited by 6 | Viewed by 2074
Abstract
The leakage of gases and chemical vapors is a common accident in laboratory processes that requires a rapid response to avoid harmful effects if humans and instruments are exposed to this leakage. In this paper, the performance of a portable sensor node designed [...] Read more.
The leakage of gases and chemical vapors is a common accident in laboratory processes that requires a rapid response to avoid harmful effects if humans and instruments are exposed to this leakage. In this paper, the performance of a portable sensor node designed for integration with mobile and stationary robots used to transport chemical samples in automated laboratories was tested and evaluated. The sensor node has four main layers for executing several functions, such as power management, control and data preprocessing, sensing gases and environmental parameters, and communication and data transmission. The responses of three metal oxide semiconductor sensors, BME680, ENS160, and SGP41, integrated into the sensing layer have been recorded for various volumes of selected chemicals and volatile organic compounds, including ammonia, pentane, tetrahydrofuran, butanol, phenol, xylene, benzene, ethanol, methanol, acetone, toluene, and isopropanol. For mobile applications, the sensor node was attached to a sample holder on a mobile robot (ASTI ProBOT L). In addition, the sensor nodes were positioned close to automation systems, including stationary robots. The experimental results revealed that the tested sensors have a different response to the tested volumes and can be used efficiently for hazardous gas leakage detection and monitoring. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

21 pages, 4296 KiB  
Article
Highly Selective Polyene-Polyyne Resistive Gas Sensors: Response Tuning by Low-Energy Ion Irradiation
by Ilya A. Zavidovskiy, Oleg A. Streletskiy, Islam F. Nuriahmetov, Olesya Yu. Nishchak, Natalya F. Savchenko, Andrey A. Tatarintsev and Alexander V. Pavlikov
J. Compos. Sci. 2023, 7(4), 156; https://doi.org/10.3390/jcs7040156 - 11 Apr 2023
Cited by 12 | Viewed by 3525
Abstract
The formation of polyene-polyyne-based nanocomposites by dehydrohalogenation of the drop-cast-deposited polyvinylidene fluoride, assessment and ion-induced tailoring of their gas sensing properties are reported. The investigated structure was analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, transmission electron microscopy and Fourier-transform infrared spectroscopy, [...] Read more.
The formation of polyene-polyyne-based nanocomposites by dehydrohalogenation of the drop-cast-deposited polyvinylidene fluoride, assessment and ion-induced tailoring of their gas sensing properties are reported. The investigated structure was analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, transmission electron microscopy and Fourier-transform infrared spectroscopy, revealing the thickness-dependent incomplete dehydrofluorination of the structure and its porosity induced by KOH treatment. The polyene-polyyne structures modified by low-energy Ar+ were studied by SEM and Raman spectroscopy, which showed the morphology variation, the shortening of chains and the graphitization of samples. The resistive gas sensing properties of the samples were analyzed at room temperature, revealing selective sensing of ammonia vapor by non-irradiated sample and the enhancement of the sensing properties for ethanol and water vapor after ion irradiation. With the ion dose enlargement, the change in the sensing response from electrical conductivity increase to decrease was observed for ammonia and ethanol, allowing us to discuss the origin and tunability of the sensing mechanism of the samples. Full article
(This article belongs to the Special Issue Radiation Effects in Polymer Hybrids)
Show Figures

Graphical abstract

16 pages, 2965 KiB  
Article
Energy-Efficient Chemiresistive Sensor Array Based on SWCNT Networks, WO3 Nanochannels and SWCNT-Pt Heterojunctions for NH3 Detection against the Background Humidity
by Alexey V. Romashkin, Andrey V. Lashkov, Victor V. Sysoev, Nikolay S. Struchkov, Evgeny V. Alexandrov and Denis D. Levin
Chemosensors 2022, 10(11), 476; https://doi.org/10.3390/chemosensors10110476 - 12 Nov 2022
Cited by 2 | Viewed by 2129
Abstract
Recently, promising results have been achieved in improving the sensitivity to ammonia in gas sensors through the use of structures composed of heterojunctions or nanochannels. However, their sensitivity is highly dependent on the background humidity under air conditions. The sensor structures which could [...] Read more.
Recently, promising results have been achieved in improving the sensitivity to ammonia in gas sensors through the use of structures composed of heterojunctions or nanochannels. However, their sensitivity is highly dependent on the background humidity under air conditions. The sensor structures which could ensure selective ammonia detection with a low detection limit, despite interference from changing background humidity, remain highly demanded. In this work, we consider sensing units containing (i) nanochannels formed by a continuous tungsten oxide nanolayer to appear in contact between single-walled carbon nanotubes (SWCNTs) and a Pt sublayer and (ii) SWCNT-Pt junctions in frames of mass-scale microelectronic technologies. SWCNTs were deposited by spray-coating on a thin WO3/Pt/W sublayer formed by a photolithographic pattern to be accompanied by satellite samples with just SWCNTs for reference purposes. We elucidate the specific differences that appeared in the response of sensors based on SWCNT-Pt junctions and WO3 nanochannels relative to satellite SWCNT samples with a similar SWCNT network density. Particularly, while a similar response to NH3 vapors mixed with dry air is observed for each sensor type, the response to NH3 is reduced significantly in the presence of background humidity, of 45 rel.%, especially in the case of WO3 nanochannel structures even at room temperature. A multisensor array based on the four various sensing structures involving SWCNT-Pt junctions, WO3 nanochannels, and their satellite-only-SWCNT ones allowed us to determine a correct ammonia concentration via utilizing the linear discriminant analysis despite the presence of background air humidity. Thus, such an energy-efficient multisensor system can be used for environmental monitoring of ammonia content, health monitoring, and other applications. Full article
(This article belongs to the Special Issue Gas Sensors for Monitoring Environmental Changes)
Show Figures

Graphical abstract

10 pages, 2975 KiB  
Article
Additively Manufactured Detection Module with Integrated Tuning Fork for Enhanced Photo-Acoustic Spectroscopy
by Roberto Viola, Nicola Liberatore and Sandro Mengali
Sensors 2022, 22(19), 7193; https://doi.org/10.3390/s22197193 - 22 Sep 2022
Cited by 4 | Viewed by 2154
Abstract
Starting from Quartz-Enhanced Photo-Acoustic Spectroscopy (QEPAS), we have explored the potential of a tightly linked method of gas/vapor sensing, from now on referred to as Tuning-Fork-Enhanced Photo-Acoustic Spectroscopy (TFEPAS). TFEPAS utilizes a non-piezoelectric metal or dielectric tuning fork to transduce the photoacoustic excitation [...] Read more.
Starting from Quartz-Enhanced Photo-Acoustic Spectroscopy (QEPAS), we have explored the potential of a tightly linked method of gas/vapor sensing, from now on referred to as Tuning-Fork-Enhanced Photo-Acoustic Spectroscopy (TFEPAS). TFEPAS utilizes a non-piezoelectric metal or dielectric tuning fork to transduce the photoacoustic excitation and an optical interferometric readout to measure the amplitude of the tuning fork vibration. In particular, we have devised a solution based on Additive Manufacturing (AM) for the Absorption Detection Module (ADM). The novelty of our solution is that the ADM is entirely built monolithically by Micro-Metal Laser Sintering (MMLS) or other AM techniques to achieve easier and more cost-effective customization, extreme miniaturization of internal volumes, automatic alignment of the tuning fork with the acoustic micro-resonators, and operation at high temperature. This paper reports on preliminary experimental results achieved with ammonia at parts-per-million concentration in nitrogen to demonstrate the feasibility of the proposed solution. Prospectively, the proposed TFEPAS solution appears particularly suited for hyphenation to micro-Gas Chromatography and for the analysis of complex solid and liquid traces samples, including compounds with low volatility such as illicit drugs, explosives, and persistent chemical warfare agents. Full article
(This article belongs to the Collection Optical Chemical Sensors: Design and Applications)
Show Figures

Graphical abstract

16 pages, 4370 KiB  
Article
Characterization of Natural Anthocyanin Indicator Based on Cellulose Bio-Composite Film for Monitoring the Freshness of Chicken Tenderloin
by Athip Boonsiriwit, Pontree Itkor, Chanutwat Sirieawphikul and Youn Suk Lee
Molecules 2022, 27(9), 2752; https://doi.org/10.3390/molecules27092752 - 25 Apr 2022
Cited by 25 | Viewed by 3862
Abstract
Intelligent packaging with indicators that provide information about the quality of food products can inform the consumer regarding food safety and reduce food waste. A solid material for a pH-responsive indicator was developed from hydroxypropyl methylcellulose (HPMC) composited with microcrystalline cellulose (MCC). MCC [...] Read more.
Intelligent packaging with indicators that provide information about the quality of food products can inform the consumer regarding food safety and reduce food waste. A solid material for a pH-responsive indicator was developed from hydroxypropyl methylcellulose (HPMC) composited with microcrystalline cellulose (MCC). MCC at 5%, 10%, 20%, and 30% w/w was introduced into the HPMC matrix and the physical, barrier, thermal, and optical properties of the HPMC/MCC bio-composite (HMB) films were analyzed. At 5, 10, and 20% MCC, improved mechanical, transparency, and barrier properties were observed, where HMB with 20% of MCC (H20MB) showed the best performance. Therefore, H20MB was selected as the biodegradable solid material for fabricating Roselle anthocyanins (RA) pH sensing indicators. The performance of the RA-H20MB indicator was evaluated by monitoring its response to ammonia vapor and tracking freshness status of chicken tenderloin. The RA-H20MB showed a clear color change with respect to ammonia exposure and quality change of chicken tenderloin; the color changed from red to magenta, purple and green, respectively. These results indicated that RA-H20MB can be used as a biodegradable pH sensing indicator to determine food quality and freshness. Full article
(This article belongs to the Special Issue Stabilization of Active Principles in Food Packaging Materials)
Show Figures

Figure 1

12 pages, 15825 KiB  
Article
Ratiometric Monitoring of Biogenic Amines by a Simple Ammonia-Response Aiegen
by Xujing Guo, Xirui Chen, Rui Chen, Yujie Tu, Tianying Lu, Yuqian Guo, Liang Guo, Yonghua Xiong, Xiaolin Huang and Ben Zhong Tang
Foods 2022, 11(7), 932; https://doi.org/10.3390/foods11070932 - 24 Mar 2022
Cited by 12 | Viewed by 3778
Abstract
Herein, we developed a paper-based smart sensing chip for the real-time, visual, and non-destructive monitoring of food freshness using a ratiometric aggregation-induced emission (AIE) luminogen (i.e., H+MQ, protonated 4-(triphenylamine)styryl)quinoxalin-2(1H)-one) as pH sensitive indicators. Upon exposure to amine vapors, the [...] Read more.
Herein, we developed a paper-based smart sensing chip for the real-time, visual, and non-destructive monitoring of food freshness using a ratiometric aggregation-induced emission (AIE) luminogen (i.e., H+MQ, protonated 4-(triphenylamine)styryl)quinoxalin-2(1H)-one) as pH sensitive indicators. Upon exposure to amine vapors, the deprotonation of H+MQ occurs and triggers its color change from blue to yellow, with the fluorescence redshift from blue to amaranth. Consequently, we successfully achieved the sensitive detection of ammonia vapors by recording the bimodal color and fluorescence changes. Given the high sensitivity of H+MQ to ammonia vapor, a paper-based smart sensor chip was prepared by depositing H+MQ on the commercial qualitative filter paper through a physical deposition strategy. After being placed inside the sealed containers, the developed H+MQ-loaded paper chip was applied to the real-time monitoring of biogenic amine contents according to its color difference and ratio fluorescence change. The detection results were further compared with those obtained by the high-performance liquid chromatography method, which verified the feasibility of the designed paper chip for the food spoilage degree evaluation. Briefly, this work indicates that the designed H+MQ-loaded paper chip could be a promising approach for improving food freshness monitoring. Full article
(This article belongs to the Special Issue Emerging Detection Techniques for Contaminants in Food Science)
Show Figures

Graphical abstract

12 pages, 4894 KiB  
Article
Screen-Printing of Functionalized MWCNT-PEDOT:PSS Based Solutions on Bendable Substrate for Ammonia Gas Sensing
by Direk Boonthum, Chutima Oopathump, Supasil Fuengfung, Patipak Phunudom, Ananya Thaibunnak, Nachapan Juntong, Suvanna Rungruang and Udomdej Pakdee
Micromachines 2022, 13(3), 462; https://doi.org/10.3390/mi13030462 - 18 Mar 2022
Cited by 10 | Viewed by 3317
Abstract
Multi-walled carbon nanotubes (MWCNTs) were grown on a stainless-steel foil by thermal chemical vapor deposition (CVD) process. The MWCNTs were functionalized with carboxylic groups (COOH) on their surfaces by using oxidation and acid (3:1 H2SO4/HNO3) treatments for [...] Read more.
Multi-walled carbon nanotubes (MWCNTs) were grown on a stainless-steel foil by thermal chemical vapor deposition (CVD) process. The MWCNTs were functionalized with carboxylic groups (COOH) on their surfaces by using oxidation and acid (3:1 H2SO4/HNO3) treatments for improving the solubility property of them in the solvent. The functionalized MWCNTs (f-MWCNTs) were conducted to prepare the solution by continuous stir in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), dimethyl sulfoxide (DMSO), ethylene glycol (EG) and Triton X-100. The solution was deposited onto a bendable substrate such as polyethylene terephthalate (PET) with a fabricated silver interdigitated electrode for application in a room-temperature gas sensor. A homemade-doctor blade coater, an UNO R3 Arduino board and a L298N motor driver are presented as a suitable system for screen printing the solution onto the gas-sensing substrates. The different contents of f-MWCNTs embedded in PEDOT:PSS were compared in the gas response to ammonia (NH3), ethanol (C2H5OH), benzene (C6H6), and acetone (C3H6O) vapors. The results demonstrate that the 3.0% v/v of f-MWCNT solution dissolved in 87.8% v/v of PEDOT:PSS, 5.4% v/v of DMSO, 3.6% v/v of EG and 0.2% v/v of Triton X-100 shows the highest response to 80 ppm NH3. Finally, the reduction in the NH3 response under heavy substrate-bending is also discussed. Full article
Show Figures

Figure 1

25 pages, 5686 KiB  
Review
Recent Trends in Graphene/Polymer Nanocomposites for Sensing Devices: Synthesis and Applications in Environmental and Human Health Monitoring
by Elisa Toto, Susanna Laurenzi and Maria Gabriella Santonicola
Polymers 2022, 14(5), 1030; https://doi.org/10.3390/polym14051030 - 4 Mar 2022
Cited by 35 | Viewed by 5510
Abstract
Graphene-based nanocomposites are largely explored for the development of sensing devices due to the excellent electrical and mechanical properties of graphene. These properties, in addition to its large specific surface area, make graphene attractive for a wide range of chemical functionalization and immobilization [...] Read more.
Graphene-based nanocomposites are largely explored for the development of sensing devices due to the excellent electrical and mechanical properties of graphene. These properties, in addition to its large specific surface area, make graphene attractive for a wide range of chemical functionalization and immobilization of (bio)molecules. Several techniques based on both top-down and bottom-up approaches are available for the fabrication of graphene fillers in pristine and functionalized forms. These fillers can be further modified to enhance their integration with polymeric matrices and substrates and to tailor the sensing efficiency of the overall nanocomposite material. In this review article, we summarize recent trends in the design and fabrication of graphene/polymer nanocomposites (GPNs) with sensing properties that can be successfully applied in environmental and human health monitoring. Functional GPNs with sensing ability towards gas molecules, humidity, and ultraviolet radiation can be generated using graphene nanosheets decorated with metallic or metal oxide nanoparticles. These nanocomposites were shown to be effective in the detection of ammonia, benzene/toluene gases, and water vapor in the environment. In addition, biological analytes with broad implications for human health, such as nucleic bases or viral genes, can also be detected using sensitive, graphene-based polymer nanocomposites. Here, the role of the biomolecules that are immobilized on the graphene nanomaterial as target for sensing is reviewed. Full article
(This article belongs to the Special Issue Graphene-Based Polymers: From Synthesis to Applications)
Show Figures

Graphical abstract

14 pages, 4572 KiB  
Article
Sensitivity Enhancement in Plasma Polymer Films for Surface Acoustic Wave Based Sensor Applications
by Ivan Avramov, Ekatherina Radeva, Yuliyan Lazarov, Teodor Grakov and Lazar Vergov
Coatings 2021, 11(10), 1193; https://doi.org/10.3390/coatings11101193 - 30 Sep 2021
Cited by 3 | Viewed by 2226
Abstract
Plasma polymer films (PPF), widely used as sensing layers in surface acoustic wave (SAW) based gas and liquid phase sensors, have a major drawback: high concentrations of the sensed analytes easily drive these films into saturation, where accurate measurements are no longer possible. [...] Read more.
Plasma polymer films (PPF), widely used as sensing layers in surface acoustic wave (SAW) based gas and liquid phase sensors, have a major drawback: high concentrations of the sensed analytes easily drive these films into saturation, where accurate measurements are no longer possible. This work suggests a solution to this problem by modifying the PPF with the sensed chemical compound to improve the overall sorption properties and sensor dynamic range. Thin polymer films were synthesized from hexamethyldisiloxane (HMDSO) and triethylsilane (TES) monomers in a plasma-enhanced chemical vapor deposition (PECVD) process using a RF plasma reactor. We used these Si-containing compounds because they are known for their excellent sensing properties. In this work, the layers were deposited onto the active surface of high-Q 438 MHz Rayleigh SAW two-port resonators, used as mass sensitive sensor elements. We call these devices quartz surface microbalances (QSM). In a second step, ammonia plasma modification was applied to the HMDSO and TES films, in order to achieve a higher sensitivity to NH3. The sensors were probed at different NH3 gas concentrations in a computer controlled gas probing setup. A comparison with unmodified films revealed a 74% to 85% improvement in both the sensitivity and sorption ability of the HMDSO sensing layers, and of about 8% for the TES films. Full article
(This article belongs to the Special Issue Surface Modification of Polymers by Low Temperature Plasma Treatment)
Show Figures

Figure 1

13 pages, 5888 KiB  
Article
Hierarchical Nanoflowers of Colloidal WS2 and Their Potential Gas Sensing Properties for Room Temperature Detection of Ammonia
by Siziwe S. Gqoba, Rafael Rodrigues, Sharon Lerato Mphahlele, Zakhele Ndala, Mildred Airo, Paul Olawale Fadojutimi, Ivo A. Hümmelgen, Ella C. Linganiso, Makwena J. Moloto and Nosipho Moloto
Processes 2021, 9(9), 1491; https://doi.org/10.3390/pr9091491 - 25 Aug 2021
Cited by 5 | Viewed by 2781
Abstract
A one-step colloidal synthesis of hierarchical nanoflowers of WS2 is reported. The nanoflowers were used to fabricate a chemical sensor for the detection of ammonia vapors at room temperature. The gas sensing performance of the WS2 nanoflowers was measured using an [...] Read more.
A one-step colloidal synthesis of hierarchical nanoflowers of WS2 is reported. The nanoflowers were used to fabricate a chemical sensor for the detection of ammonia vapors at room temperature. The gas sensing performance of the WS2 nanoflowers was measured using an in-house custom-made gas chamber. SEM analysis revealed that the nanoflowers were made up of petals and that the nanoflowers self-assembled to form hierarchical structures. Meanwhile, TEM showed the exposed edges of the petals that make up the nanoflower. A band gap of 1.98 eV confirmed a transition from indirect-to-direct band gap as well as a reduction in the number of layers of the WS2 nanoflowers. The formation of WS2 was confirmed by XPS and XRD with traces of the oxide phase, WO3. XPS analysis also confirmed the successful capping of the nanoflowers. The WS2 nanoflowers exhibited a good response and selectivity for ammonia. Full article
Show Figures

Figure 1

16 pages, 8439 KiB  
Article
Comparison of Optical Ammonia-Sensing Properties of Conducting Polymer Complexes with Polysulfonic Acids
by Oxana Gribkova, Varvara Kabanova, Vladimir Tverskoy and Alexander Nekrasov
Chemosensors 2021, 9(8), 206; https://doi.org/10.3390/chemosensors9080206 - 4 Aug 2021
Cited by 6 | Viewed by 2089
Abstract
Thin films of conducting polymer complexes with polysulfonic acids of various structures were electrochemically deposited onto transparent FTO electrodes. The behavior of the polymer-based optical ammonia vapor sensors in response to various concentrations of ammonia vapors, ranging from 5 to 135 ppm, was [...] Read more.
Thin films of conducting polymer complexes with polysulfonic acids of various structures were electrochemically deposited onto transparent FTO electrodes. The behavior of the polymer-based optical ammonia vapor sensors in response to various concentrations of ammonia vapors, ranging from 5 to 135 ppm, was investigated, including the response time and response amplitude. It was found that the nature of the conducting polymers (poly (3,4-ethylenedioxythiophene), polypyrrole, polyaniline), as well as the structure of the polyacids, affected the sensing performance of the obtained complexes. Full article
(This article belongs to the Special Issue Polymer Based Chemosensors)
Show Figures

Figure 1

17 pages, 35205 KiB  
Article
Fabrication of Reproducible and Selective Ammonia Vapor Sensor-Pellet of Polypyrrole/Cerium Oxide Nanocomposite for Prompt Detection at Room Temperature
by Ahmad Husain, Salma Ahmed Al-Zahrani, Ahmed Al Otaibi, Imran Khan, Mohammad Mujahid Ali Khan, Abeer Mohamed Alosaimi, Anish Khan, Mahmoud Ali Hussein, Abdullah M. Asiri and Mohammad Jawaid
Polymers 2021, 13(11), 1829; https://doi.org/10.3390/polym13111829 - 31 May 2021
Cited by 24 | Viewed by 3498
Abstract
Polypyrrole (PPy) and polypyrrole/cerium oxide nanocomposite (PPy/CeO2) were prepared by the chemical oxidative method in an aqueous medium using anhydrous ferric chloride (FeCl3) as an oxidant. The successful formulation of materials was confirmed by Fourier transform infrared spectroscopy (FT-IR), [...] Read more.
Polypyrrole (PPy) and polypyrrole/cerium oxide nanocomposite (PPy/CeO2) were prepared by the chemical oxidative method in an aqueous medium using anhydrous ferric chloride (FeCl3) as an oxidant. The successful formulation of materials was confirmed by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmittance electron microscopy (TEM). A four-in-line probe device was used for studying DC electrical conductivity and ammonia vapor sensing properties of PPy and PPy/CeO2. The significant improvement in both the conductivity and sensing parameters of PPy/CeO2 compared to pristine PPy reveals some synergistic/electronic interaction between PPy and cerium oxide nanoparticles (CeO2 NPs) working at molecular levels. The initial conductivity (i.e., conductivity at room temperature) was found to be 0.152 Scm−1 and 1.295 Scm−1 for PPy and PPy/CeO2, respectively. Also, PPy/CeO2 showed much better conductivity retention than pristine PPy under both the isothermal and cyclic ageing conditions. Ammonia vapor sensing was carried out at different concentration (0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 vol %). The sensing response of PPy/CeO2 varied with varying concentrations. At 0.5 vol % ammonia concentration, the % sensing response of PPy and PPy/CeO2 sensor was found to be 39.1% and 93.4%, respectively. The sensing efficiency of the PPy/CeO2 sensor was also evaluated at 0.4. 0.3, 0.2, 0.1, 0.05, 0.03, and 0.01 vol % ammonia concentration in terms of % sensing response, response/recovery time, reversibility, selectivity as well as stability at room temperature. Full article
Show Figures

Figure 1

Back to TopTop