Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = aminoacidemia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1491 KiB  
Article
Expanded Newborn Screening in Italy: The First Report of Lombardy Region
by Clarissa Berardo, Alessandra Vasco, Alessia Mauri, Simona Lucchi, Laura Cappelletti, Laura Saielli, Manuela Rizzetto, Davide Biganzoli, Cristina Montrasio, Diana Postorivo, Michela Perrone Donnorso, Elisa Pratiffi, Andrea Meta, Stephana Carelli, Alessandro Amorosi, Sabrina Paci, Graziella Cefalo, Francesca Furlan, Francesca Menni, Serena Gasperini, Viola Crescitelli, Giuseppe Banderali, Gianvincenzo Zuccotti, Luisella Alberti and Cristina Ceredaadd Show full author list remove Hide full author list
Int. J. Neonatal Screen. 2025, 11(2), 31; https://doi.org/10.3390/ijns11020031 - 25 Apr 2025
Cited by 1 | Viewed by 1173 | Correction
Abstract
Background: Newborn screening (NBS) is a preventive healthcare program aiming at identifying the inborn errors of metabolism (IEMs) in asymptomatic infants to reduce the risk of severe complications. The aim of this study was to report the first years (2016–2020) of the expanded [...] Read more.
Background: Newborn screening (NBS) is a preventive healthcare program aiming at identifying the inborn errors of metabolism (IEMs) in asymptomatic infants to reduce the risk of severe complications. The aim of this study was to report the first years (2016–2020) of the expanded NBS program in the Lombardy region, Italy. Methods: Dried blood spots were collected from newborns’ heels at 48–72 h after birth. FIA-MS/MS was performed to evaluate specific biochemical markers. Genetic confirmation was achieved via Sanger or NGS on newborns and reported to a clinical reference center (CRC). Results: A total of 343,507 newborns were tested; 1414/343,507 resulted as positive to NBS and were reported to the CRC. A total of 209 newborns were diagnosed with IEMs: 206 infants received a diagnosis of IEM through NBS, confirmed by genetic analysis; three neonates were not positive to NBS but were subsequentially diagnosed with IEMs. A total of 1208/343,507 were false positive cases. Twenty-seven types of IEMs were diagnosed in 209 patients: 111 newborns were affected by aminoacidemias, 11 by urea cycle disorders, 27 by organic acidemias, 34 by fatty acid oxidation disorders, and 26 by secondary conditions. Conclusions: We report here for the first time the IEM incidence and distribution in the Lombardy region in the first five years of NBS. Full article
Show Figures

Graphical abstract

18 pages, 1276 KiB  
Review
Postprandial Aminoacidemia Following the Ingestion of Alternative and Sustainable Proteins in Humans: A Narrative Review
by Mohammed Ahmed Yimam, Martina Andreini, Sara Carnevale and Maurizio Muscaritoli
Nutrients 2025, 17(2), 211; https://doi.org/10.3390/nu17020211 - 8 Jan 2025
Cited by 1 | Viewed by 2816
Abstract
There is a pressing need to expand the production and consumption of alternative protein sources from plants, fungi, insects, and algae from both nutritional and sustainability perspectives. It is well known that the postprandial rise in plasma amino acid concentrations and subsequent muscle [...] Read more.
There is a pressing need to expand the production and consumption of alternative protein sources from plants, fungi, insects, and algae from both nutritional and sustainability perspectives. It is well known that the postprandial rise in plasma amino acid concentrations and subsequent muscle anabolic response is greater after the ingestion of animal-derived protein sources, such as dairy, meat, and eggs, than plant-based proteins. However, emerging evidence shows that a similar muscle anabolic response is observed—despite a lower and slower postprandial aminoacidemia—after the ingestion of alternative protein sources compared with animal-derived protein sources. Therefore, a comprehensive analysis of plasma amino acid kinetics after the ingestion of alternative protein sources would play a significant role in recognizing and identifying the anabolic properties of these protein sources, allowing for the implementation of the best nutritional intervention strategies, contributing to more sustainable food production, and developing new medical nutritional products with optimal impacts on muscle mass, strength, and function, both in terms of health and disease. Therefore, this narrative review is focused on postprandial amino acid kinetics (the area under the curve, peak, and time to reach the peak concentration of amino acids) based on experimental randomized controlled trials performed in young and older adults following the ingestion of different novel, sustainable, and alternative protein sources. Full article
(This article belongs to the Special Issue Protein and Skeletal Muscle Metabolism)
Show Figures

Figure 1

8 pages, 1386 KiB  
Brief Report
An Investigation of the Protein Quality and Temporal Pattern of Peripheral Blood Aminoacidemia following Ingestion of 0.33 g·kg−1 Body Mass Protein Isolates of Whey, Pea, and Fava Bean in Healthy, Young Adult Men
by Marta Kozior, Robert W. Davies, Miryam Amigo-Benavent, Ciaran Fealy and Philip M. Jakeman
Nutrients 2023, 15(19), 4211; https://doi.org/10.3390/nu15194211 - 29 Sep 2023
Cited by 2 | Viewed by 2186
Abstract
An increase in the intake of legumes is recommended in the promotion of plant-sourced (PSP) rather than animal-sourced (ASP) protein intake to produce a more sustainable diet. This study evaluated the quality of novel PSP isolates from pea (PEA) and fava bean (FAVA) [...] Read more.
An increase in the intake of legumes is recommended in the promotion of plant-sourced (PSP) rather than animal-sourced (ASP) protein intake to produce a more sustainable diet. This study evaluated the quality of novel PSP isolates from pea (PEA) and fava bean (FAVA) and an ASP isolate of whey (WHEY) and compared the magnitude and temporal pattern of peripheral arterial aminoacidemia following ingestion of 0.33 g·kg−1 body mass of protein isolate in healthy young adult men (n = 9). Total indispensable amino acids (IAA) comprised 58% (WHEY), 46% (PEA), and 42% (FAVA) of the total amino acid (AA) composition, with the ingested protein providing 108% (WHEY), 77% (PEA), and 67% (FAVA) of the recommended per diem requirement of IAA. Reflecting the AA composition, the area under the curve (∆AUC0-180), post-ingestion increase in total IAA for WHEY was 41% (p < 0.001) and 57% (p < 0.001) greater than PEA and FAVA, respectively, with PEA exceeding FAVA by 28% (p = 0.003). As a sole-source, single-dose meal-size serving, the lower total IAA for PEA and FAVA would likely evoke a reduced post-prandial anabolic capacity compared to WHEY. Incorporated into a food matrix, the promotion of PSP isolates contributes to a more sustainable diet. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

18 pages, 1693 KiB  
Article
Peripheral Amino Acid Appearance Is Lower Following Plant Protein Fibre Products, Compared to Whey Protein and Fibre Ingestion, in Healthy Older Adults despite Optimised Amino Acid Profile
by Elena de Marco Castro, Giacomo Valli, Caroline Buffière, Christelle Guillet, Brian Mullen, Jedd Pratt, Katy Horner, Susanne Naumann-Gola, Stephanie Bader-Mittermaier, Matteo Paganini, Giuseppe De Vito, Helen M. Roche and Dominique Dardevet
Nutrients 2023, 15(1), 35; https://doi.org/10.3390/nu15010035 - 21 Dec 2022
Cited by 7 | Viewed by 5815
Abstract
Plant-based proteins are generally characterised by lower Indispensable Amino Acid (IAA) content, digestibility, and anabolic properties, compared to animal-based proteins. However, they are environmentally friendlier, and wider consumption is advocated. Older adults have higher dietary protein needs to prevent sarcopenia, a disease marked [...] Read more.
Plant-based proteins are generally characterised by lower Indispensable Amino Acid (IAA) content, digestibility, and anabolic properties, compared to animal-based proteins. However, they are environmentally friendlier, and wider consumption is advocated. Older adults have higher dietary protein needs to prevent sarcopenia, a disease marked by an accelerated loss of muscle mass and function. Given the lower environmental footprint of plant-based proteins and the importance of optimising dietary protein quality among older adults, this paper aims to assess the net peripheral Amino Acid (AA) appearance after ingestion of three different plant protein and fibre (PPF) products, compared to whey protein with added fibre (WPF), in healthy older adults. In a randomised, single-blind, crossover design, nine healthy men and women aged ≥65 years consumed four test meals balanced in AA according to the FAO reference protein for humans, matched for leucine, to optimally stimulate muscle protein synthesis in older adults. A fasted blood sample was drawn at each visit before consuming the test meal, followed by postprandial arterialise blood sampling every 30 min for 3 h. The test meal was composed of a soup containing either WPF or PPF 1–3. The PPF blends comprised pea proteins with varying additional rice, pumpkin, soy, oat, and/or almond protein. PPF product ingestion resulted in a lower maximal increase of postprandial leucine concentration and the sum of branched-chain AA (BCAA) and IAA concentrations, compared to WPF, with no effect on their incremental area under the curve. Plasma methionine and cysteine, and to a lesser extent threonine, appearance were limited after consuming the PPF products, but not WPF. Despite equal leucine doses, the WPF induced greater postprandial insulin concentrations than the PPF products. In conclusion, the postprandial appearance of AA is highly dependent on the protein source in older adults, despite providing equivalent IAA levels and dietary fibre. Coupled with lower insulin concentrations, this could imply less anabolic potential. Further investigation is required to understand the applicability of plant-based proteins in healthy older adults. Full article
(This article belongs to the Special Issue Effect of Lifestyle and Diet for Older Persons' Health)
Show Figures

Figure 1

14 pages, 1416 KiB  
Article
Expanded Newborn Screening in Italy Using Tandem Mass Spectrometry: Two Years of National Experience
by Margherita Ruoppolo, Sabrina Malvagia, Sara Boenzi, Carla Carducci, Carlo Dionisi-Vici, Francesca Teofoli, Alberto Burlina, Antonio Angeloni, Tommaso Aronica, Andrea Bordugo, Ines Bucci, Marta Camilot, Maria Teresa Carbone, Roberta Cardinali, Claudia Carducci, Michela Cassanello, Cinzia Castana, Chiara Cazzorla, Renzo Ciatti, Simona Ferrari, Giulia Frisso, Silvia Funghini, Francesca Furlan, Serena Gasperini, Vincenza Gragnaniello, Chiara Guzzetti, Giancarlo La Marca, Luisa La Spina, Tania Lorè, Concetta Meli, MariaAnna Messina, Amelia Morrone, Francesca Nardecchia, Rita Ortolano, Giancarlo Parenti, Enza Pavanello, Damiana Pieragostino, Sara Pillai, Francesco Porta, Francesca Righetti, Claudia Rossi, Valentina Rovelli, Alessandro Salina, Laura Santoro, Pina Sauro, Maria Cristina Schiaffino, Simonetta Simonetti, Monica Vincenzi, Elisabetta Tarsi and Anna Paola Ucchedduadd Show full author list remove Hide full author list
Int. J. Neonatal Screen. 2022, 8(3), 47; https://doi.org/10.3390/ijns8030047 - 9 Aug 2022
Cited by 35 | Viewed by 6958
Abstract
Newborn screening (NBS) for inborn errors of metabolism is one of the most advanced tools for secondary prevention in medicine, as it allows early diagnosis and prompt treatment initiation. The expanded newborn screening was introduced in Italy between 2016 and 2017 (Law 167/2016; [...] Read more.
Newborn screening (NBS) for inborn errors of metabolism is one of the most advanced tools for secondary prevention in medicine, as it allows early diagnosis and prompt treatment initiation. The expanded newborn screening was introduced in Italy between 2016 and 2017 (Law 167/2016; DM 13 October 2016; DPCM 12-1-2017). A total of 1,586,578 infants born in Italy were screened between January 2017 and December 2020. For this survey, we collected data from 15 Italian screening laboratories, focusing on the metabolic disorders identified by tandem mass spectrometry (MS/MS) based analysis between January 2019 and December 2020. Aminoacidemias were the most common inborn errors in Italy, and an equal percentage was observed in detecting organic acidemias and mitochondrial fatty acids beta-oxidation defects. Second-tier tests are widely used in most laboratories to reduce false positives. For example, second-tier tests for methylmalonic acid and homocysteine considerably improved the screening of CblC without increasing unnecessary recalls. Finally, the newborn screening allowed us to identify conditions that are mainly secondary to a maternal deficiency. We describe the goals reached since the introduction of the screening in Italy by exchanging knowledge and experiences among the laboratories. Full article
(This article belongs to the Special Issue Tandem Mass Spectrometry in Newborn Screening)
Show Figures

Figure 1

11 pages, 1303 KiB  
Article
Dampened Muscle mTORC1 Response Following Ingestion of High-Quality Plant-Based Protein and Insect Protein Compared to Whey
by Gommaar D’Hulst, Evi Masschelein and Katrien De Bock
Nutrients 2021, 13(5), 1396; https://doi.org/10.3390/nu13051396 - 21 Apr 2021
Cited by 11 | Viewed by 8417
Abstract
Increased amino acid availability acutely stimulates protein synthesis partially via activation of mechanistic target of rapamycin complex 1 (mTORC1). Plant-and insect-based protein sources matched for total protein and/or leucine to animal proteins induce a lower postprandial rise in amino acids, but their effects [...] Read more.
Increased amino acid availability acutely stimulates protein synthesis partially via activation of mechanistic target of rapamycin complex 1 (mTORC1). Plant-and insect-based protein sources matched for total protein and/or leucine to animal proteins induce a lower postprandial rise in amino acids, but their effects on mTOR activation in muscle are unknown. C57BL/6J mice were gavaged with different protein solutions: whey, a pea–rice protein mix matched for total protein or leucine content to whey, worm protein matched for total protein, or saline. Blood was drawn 30, 60, 105 and 150 min after gavage and muscle samples were harvested 60 min and 150 min after gavage to measure key components of the mTORC1 pathway. Ingestion of plant-based proteins induced a lower rise in blood leucine compared to whey, which coincided with a dampened mTORC1 activation, both acutely and 150 min after administration. Matching total leucine content to whey did not rescue the reduced rise in plasma amino acids, nor the lower increase in mTORC1 compared to whey. Insect protein elicits a similar activation of downstream mTORC1 kinases as plant-based proteins, despite lower postprandial aminoacidemia. The mTORC1 response following ingestion of high-quality plant-based and insect proteins is dampened compared to whey in mouse skeletal muscle. Full article
Show Figures

Figure 1

12 pages, 1557 KiB  
Article
Casein Protein Processing Strongly Modulates Post-Prandial Plasma Amino Acid Responses In Vivo in Humans
by Jorn Trommelen, Michelle E. G. Weijzen, Janneau van Kranenburg, Renate A. Ganzevles, Milou Beelen, Lex B. Verdijk and Luc J. C. van Loon
Nutrients 2020, 12(8), 2299; https://doi.org/10.3390/nu12082299 - 31 Jul 2020
Cited by 24 | Viewed by 10756
Abstract
Micellar casein is characterized as a slowly digestible protein source, and its structure can be modulated by various food processing techniques to modify its functional properties. However, little is known about the impact of such modifications on casein protein digestion and amino acid [...] Read more.
Micellar casein is characterized as a slowly digestible protein source, and its structure can be modulated by various food processing techniques to modify its functional properties. However, little is known about the impact of such modifications on casein protein digestion and amino acid absorption kinetics and the subsequent post-prandial plasma amino acid responses. In the present study, we determined post-prandial aminoacidemia following ingestion of isonitrogenous amounts of casein protein (40 g) provided as micellar casein (Mi-CAS), calcium caseinate (Ca-CAS), or cross-linked sodium caseinate (XL-CAS). Fifteen healthy, young men (age: 26 ± 4 years, BMI: 23 ± 1 kg·m−2) participated in this randomized cross-over study and ingested 40 g Mi-Cas, Ca-CAS, and XL-CAS protein, with a ~1 week washout between treatments. On each trial day, arterialized blood samples were collected at regular intervals during a 6 h post-prandial period to assess plasma amino acid concentrations using ultra-performance liquid chromatography. Plasma amino acid concentrations were higher following the ingestion of XL-CAS when compared to Mi-CAS and Ca-CAS from t = 15 to 90 min (all p < 0.05). Plasma amino acid concentrations were higher following ingestion of Mi-CAS compared to Ca-CAS from t = 30 to 45 min (both p < 0.05). Plasma total amino acids iAUC were higher following the ingestion of XL-CAS when compared to Ca-CAS (294 ± 63 vs. 260 ± 75 mmol·L−1, p = 0.006), with intermediate values following Mi-CAS ingestion (270 ± 63 mmol·L−1, p > 0.05). In conclusion, cross-linked sodium caseinate is more rapidly digested when compared to micellar casein and calcium caseinate. Protein processing can strongly modulate the post-prandial rise in plasma amino acid bioavailability in vivo in humans. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

21 pages, 2042 KiB  
Article
Novel Essential Amino Acid Supplements Following Resistance Exercise Induce Aminoacidemia and Enhance Anabolic Signaling Irrespective of Age: A Proof-of-Concept Trial
by Matthew J. Lees, Oliver J. Wilson, Erin K. Webb, Daniel A. Traylor, Todd Prior, Antonis Elia, Paul S. Harlow, Alistair D. Black, Paul J. Parker, Nick Harris, Michael Cooke, Christopher Balchin, Mathew Butterworth, Stuart M. Phillips and Theocharis Ispoglou
Nutrients 2020, 12(7), 2067; https://doi.org/10.3390/nu12072067 - 12 Jul 2020
Cited by 6 | Viewed by 6998
Abstract
We investigated the effects of ingesting a leucine-enriched essential amino acid (EAA) gel alone or combined with resistance exercise (RE) versus RE alone (control) on plasma aminoacidemia and intramyocellular anabolic signaling in healthy younger (28 ± 4 years) and older (71 ± 3 [...] Read more.
We investigated the effects of ingesting a leucine-enriched essential amino acid (EAA) gel alone or combined with resistance exercise (RE) versus RE alone (control) on plasma aminoacidemia and intramyocellular anabolic signaling in healthy younger (28 ± 4 years) and older (71 ± 3 years) adults. Blood samples were obtained throughout the three trials, while muscle biopsies were collected in the postabsorptive state and 2 h following RE, following the consumption of two 50 mL EAA gels (40% leucine, 15 g total EAA), and following RE with EAA (combination (COM)). Protein content and the phosphorylation status of key anabolic signaling proteins were determined via immunoblotting. Irrespective of age, during EAA and COM peak leucinemia (younger: 454 ± 32 µM and 537 ± 111 µM; older: 417 ± 99 µM and 553 ± 136 µM) occurred ~60–120 min post-ingestion (younger: 66 ± 6 min and 120 ± 60 min; older: 90 ± 13 min and 78 ± 12 min). In the pooled sample, the area under the curve for plasma leucine and the sum of branched-chain amino acids was significantly greater in EAA and COM compared with RE. For intramyocellular signaling, significant main effects were found for condition (mTOR (Ser2481), rpS6 (Ser235/236)) and age (S6K1 (Thr421/Ser424), 4E-BP1 (Thr37/46)) in age group analyses. The phosphorylation of rpS6 was of similar magnitude (~8-fold) in pooled and age group data 2 h following COM. Our findings suggest that a gel-based, leucine-enriched EAA supplement is associated with aminoacidemia and a muscle anabolic signaling response, thus representing an effective means of stimulating muscle protein anabolism in younger and older adults following EAA and COM. Full article
Show Figures

Figure 1

19 pages, 924 KiB  
Article
The Effect of ProHydrolase® on the Amino Acid and Intramuscular Anabolic Signaling Response to Resistance Exercise in Trained Males
by Jeremy R. Townsend, Jaclyn E. Morimune, Megan D. Jones, Cheryle N. Beuning, Allison A. Haase, Claudia M. Boot, Stephen H. Heffington, Laurel A. Littlefield, Ruth N. Henry, Autumn C. Marshall, Trisha A. VanDusseldorp, Yuri Feito and Gerald T. Mangine
Sports 2020, 8(2), 13; https://doi.org/10.3390/sports8020013 - 22 Jan 2020
Cited by 7 | Viewed by 6169
Abstract
This double-blind study examined effects of a protease enzyme blend (Prohydrolase®) added to whey protein on post-resistance exercise aminoacidemia and intramuscular anabolic signaling were investigated in ten resistance-trained males. Participants completed 4 sets of 8–10 repetitions in the leg press and [...] Read more.
This double-blind study examined effects of a protease enzyme blend (Prohydrolase®) added to whey protein on post-resistance exercise aminoacidemia and intramuscular anabolic signaling were investigated in ten resistance-trained males. Participants completed 4 sets of 8–10 repetitions in the leg press and leg extension exercises at 75% of 1-repetition maximum. Participants then consumed either 250 mg of Prohydrolase® + 26 g of whey protein (PW), 26 g whey alone (W), or non-nutritive control (CON) in counterbalanced order. Blood samples were obtained prior to exercise (baseline) and then immediately-post (IP), 30-, 60-, 90-, 120-, and 180-min post-exercise. Muscle biopsies were taken at baseline, 1-h (1H), and 3-h (3H) post-exercise. Phosphorylation of AKTSer437 was decreased (3H only: p < 0.001), mTORSer2448 was increased (1H: p = 0.025; 3H: p = 0.009), and p70S6KThr412 remained unchanged similarly for each condition. Plasma leucine, branch-chained amino acids, and essential amino acid concentrations for PW were significantly higher than CON (p < 0.05) at 30 min and similar to W. Compared to IP, PW was the only treatment with elevated plasma leucine levels at 30 min (p = 0.007; ∆ = 57.8 mmol/L, 95% Confidence Interval (CI): 20.0, 95.6) and EAA levels at 180 min (p = 0.003; ∆ = 179.1 mmol/L, 95% CI: 77.5, 280.7). Area under the curve amino acid analysis revealed no differences between PW and W. While no different than W, these data indicate that PW was the only group to produce elevated amino acid concentrations 30-min and 180-min post-ingestion. Full article
(This article belongs to the Special Issue Nutrition Intervention in Exercise)
Show Figures

Figure 1

26 pages, 2108 KiB  
Review
Inborn Errors of Metabolism in the Era of Untargeted Metabolomics and Lipidomics
by Israa T Ismail, Megan R Showalter and Oliver Fiehn
Metabolites 2019, 9(10), 242; https://doi.org/10.3390/metabo9100242 - 21 Oct 2019
Cited by 69 | Viewed by 15616
Abstract
Inborn errors of metabolism (IEMs) are a group of inherited diseases with variable incidences. IEMs are caused by disrupting enzyme activities in specific metabolic pathways by genetic mutations, either directly or indirectly by cofactor deficiencies, causing altered levels of compounds associated with these [...] Read more.
Inborn errors of metabolism (IEMs) are a group of inherited diseases with variable incidences. IEMs are caused by disrupting enzyme activities in specific metabolic pathways by genetic mutations, either directly or indirectly by cofactor deficiencies, causing altered levels of compounds associated with these pathways. While IEMs may present with multiple overlapping symptoms and metabolites, early and accurate diagnosis of IEMs is critical for the long-term health of affected subjects. The prevalence of IEMs differs between countries, likely because different IEM classifications and IEM screening methods are used. Currently, newborn screening programs exclusively use targeted metabolic assays that focus on limited panels of compounds for selected IEM diseases. Such targeted approaches face the problem of false negative and false positive diagnoses that could be overcome if metabolic screening adopted analyses of a broader range of analytes. Hence, we here review the prospects of using untargeted metabolomics for IEM screening. Untargeted metabolomics and lipidomics do not rely on predefined target lists and can detect as many metabolites as possible in a sample, allowing to screen for many metabolic pathways simultaneously. Examples are given for nontargeted analyses of IEMs, and prospects and limitations of different metabolomics methods are discussed. We conclude that dedicated studies are needed to compare accuracy and robustness of targeted and untargeted methods with respect to widening the scope of IEM diagnostics. Full article
(This article belongs to the Special Issue Metabolomics in the Study of Disease)
Show Figures

Figure 1

11 pages, 1204 KiB  
Article
Effects of Whey Protein Hydrolysate Ingestion on Postprandial Aminoacidemia Compared with a Free Amino Acid Mixture in Young Men
by Kyosuke Nakayama, Chiaki Sanbongi and Shuji Ikegami
Nutrients 2018, 10(4), 507; https://doi.org/10.3390/nu10040507 - 19 Apr 2018
Cited by 15 | Viewed by 10918
Abstract
To stimulate muscle protein synthesis, it is important to increase the plasma levels of essential amino acids (EAA), especially leucine, by ingesting proteins. Protein hydrolysate ingestion can induce postprandial hyperaminoacidemia; however, it is unclear whether protein hydrolysate is associated with higher levels of [...] Read more.
To stimulate muscle protein synthesis, it is important to increase the plasma levels of essential amino acids (EAA), especially leucine, by ingesting proteins. Protein hydrolysate ingestion can induce postprandial hyperaminoacidemia; however, it is unclear whether protein hydrolysate is associated with higher levels of aminoacidemia compared with a free amino acid mixture when both are ingested orally. We assessed the effects of whey protein hydrolysate (WPH) ingestion on postprandial aminoacidemia, especially plasma leucine levels, compared to ingestion of a free amino acid mixture. This study was an open-label, randomized, 4 × 4 Latin square design. After 12–15 h of fasting, 11 healthy young men ingested the WPH (3.3, 5.0, or 7.5 g of protein) or the EAA mixture (2.5 g). Blood samples were collected before ingestion and at time points from 10 to 120 min after ingestion, and amino acids, insulin, glucose and insulin-like growth factor-1 (IGF-1) concentrations in plasma were measured. Even though the EAA mixture and 5.0 g of the WPH contained similar amounts of EAA and leucine, the WPH was associated with significantly higher plasma EAA and leucine levels. These results suggest that the WPH can induce a higher level of aminoacidemia compared with a free amino acid mixture when both are ingested orally. Full article
(This article belongs to the Special Issue Advances in Sport and Performance Nutrition)
Show Figures

Figure 1

18 pages, 813 KiB  
Review
Recent Perspectives Regarding the Role of Dietary Protein for the Promotion of Muscle Hypertrophy with Resistance Exercise Training
by Tanner Stokes, Amy J. Hector, Robert W. Morton, Chris McGlory and Stuart M. Phillips
Nutrients 2018, 10(2), 180; https://doi.org/10.3390/nu10020180 - 7 Feb 2018
Cited by 202 | Viewed by 181435
Abstract
Skeletal muscle supports locomotion and serves as the largest site of postprandial glucose disposal; thus it is a critical organ for physical and metabolic health. Skeletal muscle mass is regulated by the processes of muscle protein synthesis (MPS) and muscle protein breakdown (MPB), [...] Read more.
Skeletal muscle supports locomotion and serves as the largest site of postprandial glucose disposal; thus it is a critical organ for physical and metabolic health. Skeletal muscle mass is regulated by the processes of muscle protein synthesis (MPS) and muscle protein breakdown (MPB), both of which are sensitive to external loading and aminoacidemia. Hyperaminoacidemia results in a robust but transient increase in rates of MPS and a mild suppression of MPB. Resistance exercise potentiates the aminoacidemia-induced rise in MPS that, when repeated over time, results in gradual radial growth of skeletal muscle (i.e., hypertrophy). Factors that affect MPS include both quantity and composition of the amino acid source. Specifically, MPS is stimulated in a dose-responsive manner and the primary amino acid agonist of this process is leucine. MPB also appears to be regulated in part by protein intake, which can exert a suppressive effect on MPB. At high protein doses the suppression of MPB may interfere with skeletal muscle adaptation following resistance exercise. In this review, we examine recent advancements in our understanding of how protein ingestion impacts skeletal muscle growth following resistance exercise in young adults during energy balance and energy restriction. We also provide practical recommendations for exercisers who wish to maximize the hypertrophic response of skeletal muscle during resistance exercise training. Full article
Show Figures

Figure 1

11 pages, 296 KiB  
Article
A Comparison of the Effects of Oral Glutamine Dipeptide, Glutamine, and Alanine on Blood Amino Acid Availability in Rats Submitted to Insulin-Induced Hypoglycemia
by Vania C. Minguetti-Câmara, Any De C. R. Marques, Fabiana P. M. Schiavon, Vanessa R. Vilela, Marcos L. Bruschi and Roberto Barbosa Bazotte
Nutrients 2014, 6(10), 4520-4530; https://doi.org/10.3390/nu6104520 - 21 Oct 2014
Cited by 11 | Viewed by 6172
Abstract
We compared the effects of oral administration of high-dose or low-dose glutamine dipeptide (GDP), alanine (ALA), glutamine (GLN), and ALA + GLN on the blood availability of amino acids in rats submitted to insulin-induced hypoglycemia (IIH). Insulin detemir (1 U/kg) was intraperitoneally injected [...] Read more.
We compared the effects of oral administration of high-dose or low-dose glutamine dipeptide (GDP), alanine (ALA), glutamine (GLN), and ALA + GLN on the blood availability of amino acids in rats submitted to insulin-induced hypoglycemia (IIH). Insulin detemir (1 U/kg) was intraperitoneally injected to produce IIH; this was followed by oral administration of GDP, GLN + ALA, GLN, or ALA. We observed higher blood levels of GLN, 30 min after oral administration of high-dose GDP (1000 mg/kg) than after administration of ALA (381 mg/kg) + GLN (619 mg/kg), GLN (619 mg/kg), or ALA (381 mg/kg). However, we did not observe the same differences after oral administration of low-dose GDP (100 mg/kg) compared with ALA (38.1 mg/kg) + GLN (61.9 mg/kg), GLN (61.9 mg/kg), or ALA (38.1 mg/kg). We also observed less liver catabolism of GDP compared to ALA and GLN. In conclusion, high-dose GDP promoted higher blood levels of GLN than oral ALA + GLN, GLN, or ALA. Moreover, the lower levels of liver catabolism of GDP, compared to ALA or GLN, contributed to the superior performance of high-dose GDP in terms of blood availability of GLN. Full article
Show Figures

Figure 1

Back to TopTop