Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = amino-acid–amino-acid bond pair

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2004 KiB  
Article
Site-Directed Immobilization of Pseudomonas fluorescens Lipase Based on SnoopCatcher/SnoopTag System for Biodiesel Production
by Baoyuan Zhang, Chenxi Zhao, Liangyu Zhao, Fenghuan Wang and Sai Wen
Int. J. Mol. Sci. 2025, 26(11), 5385; https://doi.org/10.3390/ijms26115385 - 4 Jun 2025
Viewed by 491
Abstract
The site-directed immobilization of enzymes has demonstrated significant potential in industrial applications due to its ability to minimize enzyme heterogeneity and maximize retained activity. However, existing approaches often require the introduction of unnatural amino acids or excessive specific ligase to achieve this goal. [...] Read more.
The site-directed immobilization of enzymes has demonstrated significant potential in industrial applications due to its ability to minimize enzyme heterogeneity and maximize retained activity. However, existing approaches often require the introduction of unnatural amino acids or excessive specific ligase to achieve this goal. In this study, a self-catalyzed protein capture system (i.e., the SnoopCatcher/SnoopTag pair) was utilized for the directed immobilization of lipase on magnetic carriers. By tagging the Pseudomonas fluorescens lipase (PFL) with a SnoopTag at the C-terminal, the fused lipase PFL-SnoopTag (PSNT) readily conjugated with the SnoopCatcher partner via a spontaneously formed isopeptide bond between them. Novel magnetic particles functionalized by SnoopCatcher proteins were prepared using a co-precipitation method, achieving a loading capacity of around 0.8 mg/g carrier for the SnoopCatcher. This functionalized magnetic carrier enabled the site-directed immobilization of lipase PSNT at 81.4% efficiency, while the enzyme loading capacity reached 3.04 mg/g carriers. To further assess the practical performance of site-directed immobilized lipases, they were applied in biodiesel production and achieved a yield of 88.5%. Our results demonstrate a universal platform for the site-directed immobilization of enzymes with high performance, which offers significant advantages, e.g., single-step purification and catalyst-free immobilization of engineered enzymes, as well as easy recovery, highlighting its potential for industrial applications. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

14 pages, 3740 KiB  
Article
Structure of a DNA Glycosylase Bound to a Nicked T:G Mismatch-Containing DNA
by Hala Ouzon-Shubeita, Rebecca Barnes, Lillian F. Schmaltz and Seongmin Lee
Molecules 2025, 30(9), 2083; https://doi.org/10.3390/molecules30092083 - 7 May 2025
Viewed by 479
Abstract
Mismatched T:G base pairs can arise during de novo replication as well as base excision repair (BER). In particular, the action of the gap-filling polymerase β (Polβ) can generate a T:G pair as well as a nick in the DNA backbone. The processing [...] Read more.
Mismatched T:G base pairs can arise during de novo replication as well as base excision repair (BER). In particular, the action of the gap-filling polymerase β (Polβ) can generate a T:G pair as well as a nick in the DNA backbone. The processing of a nicked T:G mispair is poorly understood. We are interested in understanding whether the T:G-specific DNA glycosylase MBD4 can recognize and process nicked T:G mismatches. We have discovered that MBD4 binds a nicked T:G-containing DNA, but does not cleave thymine opposite guanine. To gain insight into this, we have determined a crystal structure of human MBD4 bound to a nicked T:G-containing DNA. This structure displayed the full insertion of thymine into the catalytic site and the recognition of thymine based on the catalytic site’s amino acid residues. However, thymine excision did not occur, presumably due to the inactivation of the catalytic D560 carboxylate nucleophile via a polar interaction with the 5′-hydrogen phosphate of the nicked DNA. The nicked complex was greatly stabilized by an ordered water molecule that formed four hydrogen bonds with the nicked DNA and MBD4. Interestingly, the arginine finger R468 did not engage in the phosphate pinching that is commonly observed in T:G mismatch recognition complex structures. Instead, the guanidinium moiety of R468 made bifurcated hydrogen bonding interactions with O6 of guanine, thereby stabilizing the estranged guanine. These observations suggest that R468 may sense and disrupt T:G pairs within the DNA duplex and stabilize the flipped-out thymine. The structure described here would be a close mimic of an intermediate in the base extrusion pathway induced by DNA glycosylase. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

19 pages, 3647 KiB  
Article
Electronic Interactions Between the Receptor-Binding Domain of Omicron Variants and Angiotensin-Converting Enzyme 2: A Novel Amino Acid–Amino Acid Bond Pair Concept
by Puja Adhikari, Bahaa Jawad and Wai-Yim Ching
Molecules 2025, 30(9), 2061; https://doi.org/10.3390/molecules30092061 - 6 May 2025
Viewed by 511
Abstract
SARS-CoV-2 remains a severe threat to worldwide public health, particularly as the virus continues to evolve and diversify into variants of concern (VOCs). Among these VOCs, Omicron variants exhibit unique phenotypic traits, such as immune evasion, transmissibility, and severity, due to numerous spike [...] Read more.
SARS-CoV-2 remains a severe threat to worldwide public health, particularly as the virus continues to evolve and diversify into variants of concern (VOCs). Among these VOCs, Omicron variants exhibit unique phenotypic traits, such as immune evasion, transmissibility, and severity, due to numerous spike protein mutations and the rapid subvariant evolution. These Omicron subvariants have more than 15 mutations in the receptor-binding domain (RBD), a region of the SARS-CoV-2 spike protein that is important for recognition and binding with the angiotensin-converting enzyme 2 (ACE2) human receptor. To address the impact of these high numbers of Omicron mutations on the binding process, we have developed a novel method to precisely quantify amino acid interactions via the amino acid–amino acid bond pair (AABP). We applied this concept to investigate the interface interactions of the RBD–ACE2 complex in four Omicron Variants (BA.1, BA.2, BA.5, and XBB.1.16) with its Wild Type counterpart. Based on the AABP analysis, we have identified all the sites that are affected by mutation and have provided evidence that unmutated sites are also impacted by mutation. We have calculated that the binding between RBD and ACE2 is strongest in OV BA.1, followed by OV BA.2, WT, OV BA.5, and OV XBB.1.16. We also present the partial charge values for all 311 residues across these five models. Our analysis provides a detailed understanding of changes caused by mutation in each Omicron interface complex. Full article
Show Figures

Figure 1

12 pages, 2821 KiB  
Article
Increasing the Thermostability of Luciferase from Antarctic Krill by Rational Design for Biotechnological Applications
by Yuqi Ma, Yuan Zheng, Xiaofeng Ji and Jun Sheng
Appl. Sci. 2025, 15(7), 3563; https://doi.org/10.3390/app15073563 - 25 Mar 2025
Viewed by 406
Abstract
The first luciferase from Antarctic krill (LAK) was cloned and successfully expressed in Escherichia coli BL21(DE3). LAK exhibits the unique ability to emit bright violet fluorescence at an emission wavelength of 350 nm, which represents the lowest reported bioluminescence wavelength for luciferases. However, [...] Read more.
The first luciferase from Antarctic krill (LAK) was cloned and successfully expressed in Escherichia coli BL21(DE3). LAK exhibits the unique ability to emit bright violet fluorescence at an emission wavelength of 350 nm, which represents the lowest reported bioluminescence wavelength for luciferases. However, its low thermal stability poses a limitation to its broader application. In this study, we employed a rational design approach to introduce three pairs of artificial disulfide bonds into LAK. Circular dichroism (CD) analysis revealed that the introduction of artificial disulfide bonds resulted in a significant increase in the secondary structural content of α-helices and β-sheets compared to the wild-type (WT) enzyme. However, these modifications did not influence the emission spectrum. Among the resultant mutant strains, two exhibited markedly enhanced thermal stability. Notably, Mut2 demonstrated a 6.18-fold increase in half-life at 50 °C. Molecular docking studies indicated that D-fluorescein can form additional hydrogen bonds with surrounding amino acid residues (A323, T347, and K534). The docking energies between the enzyme and substrate for WT and Mut2 were −19.5 kcal/mol and −23.4 kcal/mol, respectively, thereby establishing strong interactions within the catalytic pocket region. These interactions likely contribute to a 2.92-fold improvement in substrate affinity, as evidenced by a reduced Michaelis–Menten constant (Km). Our thermal stability and catalytic activity analyses revealed that the linker region between the N- and C-domains plays a crucial role in the overall stability of the enzyme. Furthermore, the C-terminus of LAK does not participate in substrate-binding and catalysis; its local excessive rigidity was found to restrict the release of the AMP product, thereby negatively impacting catalytic activity. These findings offer new insights into the mutagenesis of luciferases and pave the way for the further optimization of LAK for various biotechnological applications. Full article
Show Figures

Figure 1

19 pages, 4090 KiB  
Article
An Experimental Dynamic Investigation of the Influence of Melatonin, Serotonin and Tryptophan on the Stability of the DNA Structure
by Cristina Manuela Drăgoi, Anca Zanfirescu, Ion-Bogdan Dumitrescu, Anca Ungurianu, Denisa Marilena Margină and Alina-Crenguţa Nicolae
Chemistry 2024, 6(5), 922-940; https://doi.org/10.3390/chemistry6050054 - 8 Sep 2024
Cited by 1 | Viewed by 1738
Abstract
Background: Small molecules play a crucial role in the exploration of physiological pathways and in drug development by targeting deoxyribonucleic acid (DNA). DNA is a central focus for both endogenous and exogenous ligands, which interact directly or indirectly to regulate transcription and replication [...] Read more.
Background: Small molecules play a crucial role in the exploration of physiological pathways and in drug development by targeting deoxyribonucleic acid (DNA). DNA is a central focus for both endogenous and exogenous ligands, which interact directly or indirectly to regulate transcription and replication processes, thus controlling genetic expression in specific cells. Among these molecules, indole derivatives like tryptophan, serotonin, and melatonin are notable for their widespread presence in nature and significant biological effects. Tryptophan, an essential amino acid, serves as a vital structural element in proteins and a precursor for bioactive compounds like serotonin and melatonin, which impact various physiological functions. Methods: Experimental studies have been conducted to reveal the interaction mechanisms of these endogenous indole derivatives with calf thymus DNA (ct-DNA). These investigations involve viscosity measurements and analysis of double-stranded DNA behavior in the presence of indole molecules, using spectrophotometric UV absorption techniques to assess their impact on DNA stability. Additionally, the influence of calcium and magnesium ions on the resulting complexes of these indole derivatives with ct-DNA has been evaluated. Molecular docking validated our findings, offering additional insights into potential DNA–ligand interactions. Utilizing a crystallographic oligomer with an intercalation gap improved docking accuracy, distinguishing intercalation from groove recognition and enhancing assessment precision. Results: Our study offers detailed insights into the interaction patterns of the indole derivatives with DNA and is highly supported by molecular docking analyses: the indole derivatives were predominantly localized between C and G, interacting via π-π interactions and hydrogen bonds and aligning with known data on conventional intercalators. These findings underscore the importance of small compounds’ planar structure and appropriate size, facilitating tight insertion between adjacent base pairs and disrupting regular DNA stacking. Conclusions: Indoles’ physiological roles and potential as drug candidates targeting specific pathways are highlighted, emphasizing their significance as ubiquitous molecules with the ability to modulate biological effects on DNA structure. Full article
(This article belongs to the Special Issue Cutting-Edge Studies of Computational Approaches in Drug Discovery)
Show Figures

Figure 1

20 pages, 3270 KiB  
Article
Chemical Synthesis and Structure–Activity Relationship Studies of the Coagulation Factor Xa Inhibitor Tick Anticoagulant Peptide from the Hematophagous Parasite Ornithodoros moubata
by Vincenzo De Filippis, Laura Acquasaliente, Andrea Pierangelini and Oriano Marin
Biomimetics 2024, 9(8), 485; https://doi.org/10.3390/biomimetics9080485 - 12 Aug 2024
Viewed by 1788
Abstract
Tick Anticoagulant Peptide (TAP), a 60-amino acid protein from the soft tick Ornithodoros moubata, inhibits activated coagulation factor X (fXa) with almost absolute specificity. Despite TAP and Bovine Pancreatic Trypsin Inhibitor (BPTI) (i.e., the prototype of the Kunitz-type protease inhibitors) sharing a [...] Read more.
Tick Anticoagulant Peptide (TAP), a 60-amino acid protein from the soft tick Ornithodoros moubata, inhibits activated coagulation factor X (fXa) with almost absolute specificity. Despite TAP and Bovine Pancreatic Trypsin Inhibitor (BPTI) (i.e., the prototype of the Kunitz-type protease inhibitors) sharing a similar 3D fold and disulphide bond topology, they have remarkably different amino acid sequence (only ~24% sequence identity), thermal stability, folding pathways, protease specificity, and even mechanism of protease inhibition. Here, fully active and correctly folded TAP was produced in reasonably high yields (~20%) by solid-phase peptide chemical synthesis and thoroughly characterised with respect to its chemical identity, disulphide pairing, folding kinetics, conformational dynamics, and fXa inhibition. The versatility of the chemical synthesis was exploited to perform structure–activity relationship studies on TAP by incorporating non-coded amino acids at positions 1 and 3 of the inhibitor. Using Hydrogen–Deuterium Exchange Mass Spectrometry, we found that TAP has a remarkably higher conformational flexibility compared to BPTI, and propose that these different dynamics could impact the different folding pathway and inhibition mechanisms of TAP and BPTI. Hence, the TAP/BPTI pair represents a nice example of divergent evolution, while the relative facility of TAP synthesis could represent a good starting point to design novel synthetic analogues with improved pharmacological profiles. Full article
(This article belongs to the Special Issue Biomimetic Approaches in Healthcare—Innovations Inspired by Nature)
Show Figures

Figure 1

10 pages, 1999 KiB  
Article
GNN Codon Adjacency Tunes Protein Translation
by Joyce Sun, Pete Hwang, Eric D. Sakkas, Yancheng Zhou, Luis Perez, Ishani Dave, Jack B. Kwon, Audrey E. McMahon, Mia Wichman, Mitsu Raval, Kristen Scopino, Daniel Krizanc, Kelly M. Thayer and Michael P. Weir
Int. J. Mol. Sci. 2024, 25(11), 5914; https://doi.org/10.3390/ijms25115914 - 29 May 2024
Viewed by 2046
Abstract
The central dogma treats the ribosome as a molecular machine that reads one mRNA codon at a time as it adds each amino acid to its growing peptide chain. However, this and previous studies suggest that ribosomes actually perceive pairs of adjacent codons [...] Read more.
The central dogma treats the ribosome as a molecular machine that reads one mRNA codon at a time as it adds each amino acid to its growing peptide chain. However, this and previous studies suggest that ribosomes actually perceive pairs of adjacent codons as they take three-nucleotide steps along the mRNA. We examined GNN codons, which we find are surprisingly overrepresented in eukaryote protein-coding open reading frames (ORFs), especially immediately after NNU codons. Ribosome profiling experiments in yeast revealed that ribosomes with NNU at their aminoacyl (A) site have particularly elevated densities when NNU is immediately followed (3′) by a GNN codon, indicating slower mRNA threading of the NNU codon from the ribosome’s A to peptidyl (P) sites. Moreover, if the assessment was limited to ribosomes that have only recently arrived at the next codon, by examining 21-nucleotide ribosome footprints (21-nt RFPs), elevated densities were observed for multiple codon classes when followed by GNN. This striking translation slowdown at adjacent 5′-NNN GNN codon pairs is likely mediated, in part, by the ribosome’s CAR surface, which acts as an extension of the A-site tRNA anticodon during ribosome translocation and interacts through hydrogen bonding and pi stacking with the GNN codon. The functional consequences of 5′-NNN GNN codon adjacency are expected to influence the evolution of protein coding sequences. Full article
(This article belongs to the Special Issue New Advances in Protein Structure, Function and Design)
Show Figures

Figure 1

18 pages, 5077 KiB  
Article
Extended Hydrogen-Bonded Molybdenum Arrays Derived from Carboxylic Acids and Dianilines: ROP Capability of the Complexes and Parent Acids and Dianilines
by William Clegg, Mark R. J. Elsegood and Carl Redshaw
Catalysts 2024, 14(3), 214; https://doi.org/10.3390/catal14030214 - 21 Mar 2024
Cited by 2 | Viewed by 1646
Abstract
From reactions involving sodium molybdate and dianilines [2,2′-(NH2)C6H4]2(CH2)n (n = 0, 1, 2) and amino-functionalized carboxylic acids 1,2-(NH2)(CO2H)C6H4 or 2-H2NC6H3 [...] Read more.
From reactions involving sodium molybdate and dianilines [2,2′-(NH2)C6H4]2(CH2)n (n = 0, 1, 2) and amino-functionalized carboxylic acids 1,2-(NH2)(CO2H)C6H4 or 2-H2NC6H3-1,4-(CO2H)2, in the presence of Et3N and Me3SiCl, products adopting H-bonded networks have been characterized. In particular, the reaction of 2,2′-diaminobiphenyl, [2,2′-NH2(C6H4)]2, and 2-aminoterephthalic acid, H2NC6H3-1,4-(CO2H)2, led to the isolation of [(MoCl3[2,2′-N(C6H4)]2}{HNC6H3-1-(CO2),4-(CO2H)]·2[2,2′-NH2(C6H4)]2·3.5MeCN (1·3.5MeCN), which contains intra-molecular N–H∙∙∙Cl H-bonds and slipped π∙∙∙π interactions. Similar use of 2,2′-methylenedianiline, [2,2′-(NH2)C6H4]2CH2, in combination with 2-aminoterephthalic acid led to the isolation of [MoCl2(O2CC6H3NHCO2SiMe3)(NC6H4CH2C6H4NH2)]·3MeCN (2·3MeCN). Complex 2 contains extensive H-bonds between pairs of centrosymmetrically-related molecules. In the case of 2,2′ethylenedianiline, [2,2′-(NH2)C6H4]2CH2CH2, and anthranilic acid, 1,2-(NH2)(CO2H)C6H4, reaction with Na2MoO4 in the presence of Et3N and Me3SiCl in refluxing 1,2-dimethoxyethane afforded the complex [MoCl3{1,2-(NH)(CO2)C6H4}{NC6H4CH2CH2C6H4NH3}]·MeCN (3·MeCN). In 3, there are intra-molecular bifurcated H-bonds between NH3 H atoms and chlorides, whilst pairs of molecules H-bond further via the NH3 groups to the non-coordinated carboxylate oxygen, resulting in H-bonded chains. Complexes 1 to 3 have been screened for the ring opening polymerization (ROP) of both ε-caprolactone (ε-CL) and δ-valerolactone (δ-VL) using solvent-free conditions under N2 and air. The products were of moderate to high molecular weight, with wide Ð values, and comprised several types of polymer families, including OH-terminated, OBn-terminated (for PCL only), and cyclic polymers. The results of metal-free ROP using the dianilines [2,2′-(NH2)C6H4]2(CH2)n (n = 0, 1, 2) and the amino-functionalized carboxylic acids 1,2-(NH2)(CO2H)C6H4 or 2-H2NC6H3-1,4-(CO2H)2 under similar conditions (no BnOH) are also reported. The dianilines were found to be capable of the ROP of δ-VL (but not ε-CL), whilst anthranilic acid outperformed 2-aminoterephthalic acid for both ε-Cl and δ-VL. Full article
(This article belongs to the Special Issue State of the Art in Molecular Catalysis in Europe)
Show Figures

Figure 1

19 pages, 3256 KiB  
Review
Base Pairing Promoted the Self-Organization of Genetic Coding, Catalysis, and Free-Energy Transduction
by Charles W. Carter
Life 2024, 14(2), 199; https://doi.org/10.3390/life14020199 - 30 Jan 2024
Cited by 2 | Viewed by 2356
Abstract
How Nature discovered genetic coding is a largely ignored question, yet the answer is key to explaining the transition from biochemical building blocks to life. Other, related puzzles also fall inside the aegis enclosing the codes themselves. The peptide bond is unstable with [...] Read more.
How Nature discovered genetic coding is a largely ignored question, yet the answer is key to explaining the transition from biochemical building blocks to life. Other, related puzzles also fall inside the aegis enclosing the codes themselves. The peptide bond is unstable with respect to hydrolysis. So, it requires some form of chemical free energy to drive it. Amino acid activation and acyl transfer are also slow and must be catalyzed. All living things must thus also convert free energy and synchronize cellular chemistry. Most importantly, functional proteins occupy only small, isolated regions of sequence space. Nature evolved heritable symbolic data processing to seek out and use those sequences. That system has three parts: a memory of how amino acids behave in solution and inside proteins, a set of code keys to access that memory, and a scoring function. The code keys themselves are the genes for cognate pairs of tRNA and aminoacyl-tRNA synthetases, AARSs. The scoring function is the enzymatic specificity constant, kcat/kM, which measures both catalysis and specificity. The work described here deepens the evidence for and understanding of an unexpected consequence of ancestral bidirectional coding. Secondary structures occur in approximately the same places within antiparallel alignments of their gene products. However, the polar amino acids that define the molecular surface of one are reflected into core-defining non-polar side chains on the other. Proteins translated from base-paired coding strands fold up inside out. Bidirectional genes thus project an inverted structural duality into the proteome. I review how experimental data root the scoring functions responsible for the origins of coding and catalyzed activation of unfavorable chemical reactions in that duality. Full article
(This article belongs to the Special Issue The Origins and Evolution of the Genetic Code)
Show Figures

Figure 1

14 pages, 3117 KiB  
Article
Improving the Thermostability of Thermomyces lanuginosus Lipase by Restricting the Flexibility of N-Terminus and C-Terminus Simultaneously via the 25-Loop Substitutions
by Xia Xiang, Enheng Zhu, Diao Xiong, Yin Wen, Yu Xing, Lirong Yue, Shuang He, Nanyu Han and Zunxi Huang
Int. J. Mol. Sci. 2023, 24(23), 16562; https://doi.org/10.3390/ijms242316562 - 21 Nov 2023
Cited by 3 | Viewed by 2132
Abstract
(1) Lipases are catalysts widely applied in industrial fields. To sustain the harsh treatments in industries, optimizing lipase activities and thermal stability is necessary to reduce production loss. (2) The thermostability of Thermomyces lanuginosus lipase (TLL) was evaluated via B-factor analysis and consensus-sequence [...] Read more.
(1) Lipases are catalysts widely applied in industrial fields. To sustain the harsh treatments in industries, optimizing lipase activities and thermal stability is necessary to reduce production loss. (2) The thermostability of Thermomyces lanuginosus lipase (TLL) was evaluated via B-factor analysis and consensus-sequence substitutions. Five single-point variants (K24S, D27N, D27R, P29S, and A30P) with improved thermostability were constructed via site-directed mutagenesis. (3) The optimal reaction temperatures of all the five variants displayed 5 °C improvement compared with TLL. Four variants, except D27N, showed enhanced residual activities at 80 °C. The melting temperatures of three variants (D27R, P29S, and A30P) were significantly increased. The molecular dynamics simulations indicated that the 25-loop (residues 24–30) in the N-terminus of the five variants generated more hydrogen bonds with surrounding amino acids; hydrogen bond pair D254-I255 preserved in the C-terminus of the variants also contributes to the improved thermostability. Furthermore, the newly formed salt-bridge interaction (R27…E56) in D27R was identified as a crucial determinant for thermostability. (4) Our study discovered that substituting residues from the 25-loop will enhance the stability of the N-terminus and C-terminus simultaneously, restrict the most flexible regions of TLL, and result in improved thermostability. Full article
(This article belongs to the Special Issue Enzyme Structure Function Stability)
Show Figures

Figure 1

14 pages, 2818 KiB  
Article
Characterization and Functional Evaluation of NK-lysin from Clownfish (Amphiprion ocellaris)
by Dapeng Yu, Haohang Zhao, Yiming Wen, Tao Li, Hongli Xia, Zhiwen Wang, Zhen Gan, Liqun Xia, Jianlin Chen and Yishan Lu
Fishes 2023, 8(11), 533; https://doi.org/10.3390/fishes8110533 - 25 Oct 2023
Cited by 1 | Viewed by 2086
Abstract
In previous studies, natural killer lysin (NK-lysin) emerged as a crucial antimicrobial peptide (AMP) discharged by NK cells and CTLs. The sequence of NK-lysin was cloned and discovered in some fishes, but its function remains unclear. In our study, we obtained a copy [...] Read more.
In previous studies, natural killer lysin (NK-lysin) emerged as a crucial antimicrobial peptide (AMP) discharged by NK cells and CTLs. The sequence of NK-lysin was cloned and discovered in some fishes, but its function remains unclear. In our study, we obtained a copy of NK-lysin from the spleen of the healthy clownfish (Amphiprion ocellaris; AoNK-lysin) through cloning and proceeded to investigate its potential functions and activities. The findings showed that the AoNK-lysin gene’s open reading frame (ORF) had a length of 465 base pairs (bp) and encoded 154 amino acids (aa), which included a saposin B domain and six cysteine residues that are highly conserved, forming three intrachain disulfide bonds to carry out antimicrobial activity. The AoNK-lysin gene was widely present in different tissues, with the skin showing the highest expression, followed by the eye, intestine, and muscle. Additionally, the expression of AoNK-lysin was significantly upregulated in the immune organs (spleen, gill, intestine, and head kidney) of A. ocellaris after being challenged by Singapore group iridovirus (SGIV). Furthermore, a 399 base pair cDNA sequence that encodes the fully developed peptide of AoNK-lysin was successfully inserted into a secretion plasmid called pPIC9K. Subsequently, a significant amount of the recombinant AoNK-lysin protein was efficiently manufactured using the Pichia pastoris expression system. The antibacterial test demonstrated that the AoNK-lysin protein significantly suppressed the growth of various pathogens, particularly Streptococcus agalactiae, Streptococcus iniae, Salmonella typhi, Shigella sonnei, Pseudomonas aeruginosa, and Aeromonas caviae. The minimal inhibitory concentration (MIC) was found to be 7.81 μg/mL. Further analysis of antiviral assays showed all the viral mRNA of SGIV to be significantly reduced after AoNK-lysin protein stimuli in FHM cells. Collectively, these discoveries indicate that AoNK-lysin exhibits features of both direct pathogen-killing abilities and inhibited virus replication. Full article
(This article belongs to the Special Issue Relationship between Nutrition and the Immune Response of Fish)
Show Figures

Figure 1

10 pages, 2578 KiB  
Communication
Aminocyclopropenium as a New Class of Hydrogen Bonding Catalyst in Friedel–Crafts Alkylation
by Xuesuo Ma, Jiaxi Xu, Jingjing Liu, Jun He, Tong Chang, Qingbiao Yang, Ning Li, Dong Qian and Zhenjiang Li
Catalysts 2023, 13(10), 1370; https://doi.org/10.3390/catal13101370 - 16 Oct 2023
Cited by 1 | Viewed by 2109
Abstract
H-bonding has achieved massive advancements by utilizing an H-bond donor (HBD) to interact with the electron-rich site of the substrate, and an H-bond acceptor (HBA) to coordinate with the electron-deficient site. Rapid transformation is often correlated with the acidity of HBD, namely the [...] Read more.
H-bonding has achieved massive advancements by utilizing an H-bond donor (HBD) to interact with the electron-rich site of the substrate, and an H-bond acceptor (HBA) to coordinate with the electron-deficient site. Rapid transformation is often correlated with the acidity of HBD, namely the degree of charge deficiency of the hydrogen proton. In addition, the positive cations were employed to enhance the HBD; the electron-withdrawing groups were also a dissimilar approach for increasing the capability of the H-bond donor. We first introduced the H-bonding organic ion pair tris(phenylamino)cyclopropenium (TPAC·Cl) into the Friedel–Crafts alkylation of indoles with nitroalkenes, which was implemented via vicinal positive charges on the cyclopropenium core. The counter ion chloride anion became a potential HBA to activate the electron-deficient part of the substrate. X-ray analyses of a single crystal of TPAC·Cl described the 3D architecture and the delocalized cationic charge in the solid state. The aromatic cyclopropenium endowed the N–H moieties with the ability of the H-bond donor to activate the nitroalkene; meanwhile, the chloride anion acted as the H-bond acceptor to activate the indole. The amino-cyclopropenium-offered HBD and HBA displayed cooperative organocatalysis in the Friedel–Crafts alkylation of indole with nitroalkene. A new class of hydrogen bonding catalysis and a working mechanism were proposed. Full article
(This article belongs to the Special Issue Organocatalysis in the Chemical Transformations, 2nd Edition)
Show Figures

Figure 1

12 pages, 1889 KiB  
Perspective
Unnatural Amino Acid Crosslinking for Increased Spatiotemporal Resolution of Chromatin Dynamics
by Pamela Moleri and Bryan J. Wilkins
Int. J. Mol. Sci. 2023, 24(16), 12879; https://doi.org/10.3390/ijms241612879 - 17 Aug 2023
Viewed by 1745
Abstract
The utilization of an expanded genetic code and in vivo unnatural amino acid crosslinking has grown significantly in the past decade, proving to be a reliable system for the examination of protein–protein interactions. Perhaps the most utilized amino acid crosslinker, p-benzoyl-(l [...] Read more.
The utilization of an expanded genetic code and in vivo unnatural amino acid crosslinking has grown significantly in the past decade, proving to be a reliable system for the examination of protein–protein interactions. Perhaps the most utilized amino acid crosslinker, p-benzoyl-(l)-phenylalanine (pBPA), has delivered a vast compendium of structural and mechanistic data, placing it firmly in the upper echelons of protein analytical techniques. pBPA contains a benzophenone group that is activated with low energy radiation (~365 nm), initiating a diradical state that can lead to hydrogen abstraction and radical recombination in the form of a covalent bond to a neighboring protein. Importantly, the expanded genetic code system provides for site-specific encoding of the crosslinker, yielding spatial control for protein surface mapping capabilities. Paired with UV-activation, this process offers a practical means for spatiotemporal understanding of protein–protein dynamics in the living cell. The chromatin field has benefitted particularly well from this technique, providing detailed mapping and mechanistic insight for numerous chromatin-related pathways. We provide here a brief history of unnatural amino acid crosslinking in chromatin studies and outlooks into future applications of the system for increased spatiotemporal resolution in chromatin related research. Full article
(This article belongs to the Special Issue Chromatin Architecture: A Flexible Foundation for Gene Expression)
Show Figures

Figure 1

21 pages, 3612 KiB  
Review
Towards Quantum-Chemical Level Calculations of SARS-CoV-2 Spike Protein Variants of Concern by First Principles Density Functional Theory
by Wai-Yim Ching, Puja Adhikari, Bahaa Jawad and Rudolf Podgornik
Biomedicines 2023, 11(2), 517; https://doi.org/10.3390/biomedicines11020517 - 10 Feb 2023
Cited by 6 | Viewed by 2791
Abstract
The spike protein (S-protein) is a crucial part of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with its many domains responsible for binding, fusion, and host cell entry. In this review we use the density functional theory (DFT) calculations to analyze the [...] Read more.
The spike protein (S-protein) is a crucial part of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with its many domains responsible for binding, fusion, and host cell entry. In this review we use the density functional theory (DFT) calculations to analyze the atomic-scale interactions and investigate the consequences of mutations in S-protein domains. We specifically describe the key amino acids and functions of each domain, which are essential for structural stability as well as recognition and fusion processes with the host cell; in addition, we speculate on how mutations affect these properties. Such unprecedented large-scale ab initio calculations, with up to 5000 atoms in the system, are based on the novel concept of amino acid–amino acid-bond pair unit (AABPU) that allows for an alternative description of proteins, providing valuable information on partial charge, interatomic bonding and hydrogen bond (HB) formation. In general, our results show that the S-protein mutations for different variants foster an increased positive partial charge, alter the interatomic interactions, and disrupt the HB networks. We conclude by outlining a roadmap for future computational research of biomolecular virus-related systems. Full article
(This article belongs to the Special Issue Conformational Dynamics of Viral Proteins)
Show Figures

Figure 1

15 pages, 3495 KiB  
Article
SARS-CoV-2 Antibody Effectiveness Is Influenced by Non-Epitope Mutation/Binding-Induced Denaturation of the Epitope 3D Architecture
by Moffat M. Malisheni, Matthew Bates, Albert A. Rizvanov and Paul A. MacAry
Pathogens 2022, 11(12), 1437; https://doi.org/10.3390/pathogens11121437 - 29 Nov 2022
Cited by 5 | Viewed by 2443
Abstract
The public health threat from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to intensify with emerging variants of concern (VOC) aiming to render COVID-19 vaccines/infection-induced antibodies redundant. The SARS-CoV-2 spike protein is responsible for receptor binding and infection of host cells making [...] Read more.
The public health threat from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to intensify with emerging variants of concern (VOC) aiming to render COVID-19 vaccines/infection-induced antibodies redundant. The SARS-CoV-2 spike protein is responsible for receptor binding and infection of host cells making it a legitimate antibody target. Antibodies mostly target epitopes in the receptor binding domain (RBD). Mutations occurring within epitopes influence antibody specificity and function by altering their 3D architecture. However, the mechanisms by which non-epitope mutations in the RBD influence antibody specificity and function remain a mystery. We used Protein Data Bank (PDB) deposited 3D structures for the original, Beta, Delta, BA.1, and BA.2 RBD proteins in complex with either neutralizing antibodies or Angiotensin-Converting Enzyme 2 (ACE2) to elucidate the structural and mechanistic basis for neutralizing antibody evasion driven by non-epitope amino acid substitutions in the RBD. Since the mechanism behind the extensively reported functional discrepancies between the same antibody when used individually and when used in an antibody cocktail is lacking, we explored the structural basis for this inconsistency. Finally, since SARS-CoV-2 antibodies are viral mutagens, we deciphered determinants for antibody-pressured amino acid substitutions. On the one hand, we show that non-epitope mutations in the RBD domain of SARS-CoV-2 VOC influence the formation of hydrogen bonds in the paratope-epitope interface by repositioning RBD amino-acid sidechains (AASCs). This increases the distance between complementary donor/acceptor atoms on paratope and epitope AASCs leading to weaker or the complete prevention of the formation of hydrogen bonds in the paratope-epitope interface. On the other hand, we show that SARS-CoV-2 VOC employ the same strategy to simultaneously search for complementary donor/acceptor atoms on ACE2 AASCs to form new interactions, potentially favoring increased viral transmission. Additionally, we illustrate that converting the spike protein to an RBD, a deletion mutation, also repositions epitope AASCs and that AASC interactions in the paratope-epitope interface vary when an antibody is used individually versus when utilized as a cocktail with other antibodies. Finally, we show that the process of substituting immunogenic RBD amino acids begins with the repositioning of their AASCs induced by immune/antibody pressure. We show that donor/acceptor atoms from any amino acid can determine cross-reactivity instead, provided they possess and present spatially pairing donor/acceptor atoms. By studying structural alignments for PDB deposited antibody-RBD 3D structures and relating them to published binding and neutralization profiles of the same antibodies, we demonstrate that minor structural alterations such as epitope AASC repositioning have a major impact on antibody effectiveness and, hence, should receive adequate attention given that protein structure dictates protein function. Full article
Show Figures

Figure 1

Back to TopTop