Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = amazonian ecosystems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8029 KiB  
Article
Fire-Induced Floristic and Structural Degradation Across a Vegetation Gradient in the Southern Amazon
by Loriene Gomes da Rocha, Ben Hur Marimon Junior, Amauri de Castro Barradas, Marco Antônio Camillo de Carvalho, Célia Regina Araújo Soares, Beatriz Schwantes Marimon, Gabriel H. P. de Mello Ribeiro, Edmar A. de Oliveira, Fernando Elias, Carmino Emidio Júnior, Dennis Rodrigues da Silva, Marcos Leandro Garcia, Jesulino Alves da Rocha Filho, Marcelo Zortea, Edmar Santos Moreira, Samiele Camargo de Oliveira Domingues, Eraldo A. T. Matricardi, David Galbraith, Ted R. Feldpausch, Imma Oliveras and Oliver L. Phillipsadd Show full author list remove Hide full author list
Forests 2025, 16(8), 1218; https://doi.org/10.3390/f16081218 - 24 Jul 2025
Viewed by 317
Abstract
Climate change and landscape fragmentation have made fires the primary drivers of forest degradation in Southern Amazonia. Understanding their impacts is crucial for informing public conservation policies. In this study, we assessed the effects of repeated fires on trees with a diameter ≥10 [...] Read more.
Climate change and landscape fragmentation have made fires the primary drivers of forest degradation in Southern Amazonia. Understanding their impacts is crucial for informing public conservation policies. In this study, we assessed the effects of repeated fires on trees with a diameter ≥10 cm across three distinct vegetation types in this threatened region: Amazonian successional forest (SF), transitional forest (TF), and ombrophilous forest (OF). Two anthropogenic fires affected all three vegetation types in consecutive years. We hypothesized that SF would be the least impacted due to its more open structure and the presence of fire-adapted savanna (Cerrado) species. As expected, SF experienced the lowest tree mortality rate (9.1%). However, both TF and OF were heavily affected, with mortality rates of 28.0% and 29.7%, respectively. Despite SF’s apparent fire resilience, all vegetation types experienced a significant net loss of species and individuals. These results indicate a fire-induced degradation stage in both TF and OF, characterized by reduced species diversity and structural integrity. Our findings suggest that recurrent fires may trigger irreversible vegetation shifts and broader ecosystem tipping points across the Amazonian frontier. Full article
Show Figures

Figure 1

14 pages, 1089 KiB  
Article
Modeling Plant Diversity Responses to Fire Recurrence in Disjunct Amazonian Savannas
by Mariana Martins Medeiros de Santana, Rodrigo Nogueira de Vasconcelos, Salustiano Vilar da Costa Neto, Eduardo Mariano Neto and Washington de Jesus Sant’Anna da Franca Rocha
Land 2025, 14(7), 1455; https://doi.org/10.3390/land14071455 - 13 Jul 2025
Viewed by 387
Abstract
Fire is a key ecological driver in tropical savannas, yet its effects on plant biodiversity remain understudied in Amazonian savannas. This study investigates how fire recurrence influences taxonomic and functional diversity in savanna ecosystems in northeastern Amazonia. We conducted vegetation surveys across five [...] Read more.
Fire is a key ecological driver in tropical savannas, yet its effects on plant biodiversity remain understudied in Amazonian savannas. This study investigates how fire recurrence influences taxonomic and functional diversity in savanna ecosystems in northeastern Amazonia. We conducted vegetation surveys across five phytophysiognomies in Amapá State, Brazil, and compiled trait data for 226 plant species. Generalized Additive Mixed Models (GAMMs) were used to evaluate the relationships between fire frequency and diversity metrics across five landscape scales. The results showed that taxonomic diversity—particularly Shannon diversity—exhibited a unimodal response to fire recurrence, with peak diversity occurring at intermediate fire frequencies. Abundance increased with fire frequency, indicating potential dominance by fire-tolerant species. Functional diversity responded more subtly: functional richness and dispersion showed weak, non-linear associations with fire, while functional evenness remained stable. These findings suggest that recurrent fire can reduce taxonomic diversity without strongly altering functional structure, possibly due to functional redundancy among species. The use of multiscale models revealed that biodiversity–fire relationships vary with spatial context. In conclusion, this study highlights the moderate resilience of Amazonian savannas to fire recurrence and emphasizes the need to incorporate these ecosystems into fire management plans in climate change scenarios. Full article
Show Figures

Figure 1

33 pages, 7004 KiB  
Review
Scientific Research for Amazonia: A Review on Key Trends and Gaps
by Carolina Cristina Fernandes, Lira Luz Benites Lazaro, Nádia Matioli Yazbek Bitar, Marco A. Franco and Paulo Artaxo
Conservation 2025, 5(3), 35; https://doi.org/10.3390/conservation5030035 - 9 Jul 2025
Viewed by 620
Abstract
Scientific research in Amazonia plays a fundamental role in identifying pathways to sustainable development for the region, addressing the challenges posed by climate change, preserving its unique ecosystems, and aligning with societal challenges and rights advocated by its diverse populations. This paper encompasses [...] Read more.
Scientific research in Amazonia plays a fundamental role in identifying pathways to sustainable development for the region, addressing the challenges posed by climate change, preserving its unique ecosystems, and aligning with societal challenges and rights advocated by its diverse populations. This paper encompasses a broad range of scientific publications, spanning from 1977 to 2024, and highlights key research areas, analyzing their results and trends to inform future developments. It also identifies areas that require deeper investigation. The results emphasize a focus on agricultural, biological, and environmental sciences. On the other hand, there is a need for more extensive research within the social sciences. As shown, research on indigenous land rights, cultural heritage, and the socio-economic impacts of environmental disruptions is essential for developing comprehensive conservation strategies. Furthermore, research on governance, policy, and socio-political dynamics in Amazonia can provide innovative approaches to addressing the challenges and opportunities for its people, biodiversity, and role in climate regulation, as demonstrated by the findings. The strategic research fields identified in this paper provide a guide for future studies and policy development aimed at protecting the forest and its inhabitants. This study emphasizes the need for approaches that integrate both natural and social sciences as essential for addressing the complex ecological and socio-economic challenges that continue to shape the contemporary research landscape. Furthermore, this paper highlights the importance of unity and cooperation among Amazonian countries and research institutions in achieving these goals. In this context, reinforcing long-term, large-scale research programs such as the LBA (Large-Scale Biosphere–Atmosphere Experiment in Amazonia) and the Scientific Panel for the Amazon (SPA) are crucial to advancing integrated, policy-relevant science for the sustainable future of the region. Full article
Show Figures

Figure 1

23 pages, 9082 KiB  
Article
Assessment of Vulnerability to Erosion in Amazonian Beaches
by Remo Luan Marinho Costa Pereira, Cesar Mösso and Luci Cajueiro Carneiro Pereira
Geographies 2025, 5(3), 29; https://doi.org/10.3390/geographies5030029 - 28 Jun 2025
Viewed by 252
Abstract
Erosion represents a significant global threat to coastal zones, especially beaches, which are among the most valuable coastal landforms. This study evaluates the vulnerability to coastal erosion along the Brazilian Amazon coast, focusing on eight recreational beaches. The research is based on an [...] Read more.
Erosion represents a significant global threat to coastal zones, especially beaches, which are among the most valuable coastal landforms. This study evaluates the vulnerability to coastal erosion along the Brazilian Amazon coast, focusing on eight recreational beaches. The research is based on an assessment of geological, physical, ecological, and anthropogenic indicators. Some of these indicators were proposed in this study to enhance the evaluation of vulnerability in Amazonian beaches. The analysis reveals that most of the beaches studied are highly vulnerable to erosion due to a combination of natural factors and human activities. The barrier–beach ridge, composed of unconsolidated sediments, exhibits the highest vulnerability, while low cliffs present a moderate level of risk. The study highlights that semi-urban beaches with significant infrastructure development are particularly susceptible to erosion, a problem exacerbated by unplanned land use. Conversely, rural beaches, especially those located in protected areas, show lower vulnerability due to reduced human impact and better conservation of natural ecosystems. Furthermore, the study underscores the effects of extreme climatic events, such as prolonged rainfall and high-energy waves, which can intensify erosion risks. The findings suggest that anthropogenic changes, combined with extreme climate events, significantly influence the dynamics of coastal erosion. This research emphasizes the importance of targeted management strategies that address both natural and human-induced vulnerabilities, aiming to enhance coastal resilience and sustainability for Amazonian beaches. Full article
Show Figures

Graphical abstract

12 pages, 4674 KiB  
Article
Linking Riparian Forest to the Functional Diversity of Ephemeroptera, Plecoptera, and Trichoptera in First-Order Tropical Streams
by Diego Simeone and Marcus E. B. Fernandes
Diversity 2025, 17(7), 438; https://doi.org/10.3390/d17070438 - 20 Jun 2025
Viewed by 312
Abstract
Riparian forests are important for maintaining aquatic biodiversity, yet they face increasing pressure from logging activities. This study assessed the functional diversity of Ephemeroptera, Plecoptera, and Trichoptera (EPT) in 30 Amazonian first-order streams across three riparian forests: pristine, selectively logged, and conventionally logged. [...] Read more.
Riparian forests are important for maintaining aquatic biodiversity, yet they face increasing pressure from logging activities. This study assessed the functional diversity of Ephemeroptera, Plecoptera, and Trichoptera (EPT) in 30 Amazonian first-order streams across three riparian forests: pristine, selectively logged, and conventionally logged. We evaluated four habitat attributes linked to ecosystem functioning (canopy cover, water temperature, sediment organic matter, and small woody debris) and calculated two indices of functional diversity: richness and divergence. Functional diversity was highest in pristine streams, intermediate in selectively logged streams, and lowest in conventionally logged streams. Functional richness and divergence declined significantly in conventionally logged forests, indicating a loss of ecological traits and potential reductions in ecosystem functions. We also observed that canopy cover, sediment organic matter, and woody debris were positively associated with EPT functional diversity, while water temperature had a negative association. These findings highlight that conventional logging leads to the functional homogenization of aquatic insect assemblages, compromising key ecological processes. Selective logging that maintains riparian buffers may preserve functional diversity, even though these differences may be influenced by site-specific environmental conditions. Our results underscore the importance of conserving riparian integrity to sustain the resilience and functioning of tropical stream ecosystems in logged landscapes. Full article
Show Figures

Figure 1

24 pages, 16617 KiB  
Article
Spatiotemporal Land Cover Change and Future Hydrological Impacts Under Climate Scenarios in the Amazonian Andes: A Case Study of the Utcubamba River Basin
by Abner S. Rivera-Fernandez, Alexander Cotrina-Sanchez, Rolando Salas López, Jhon A. Zabaleta-Santisteban, Ney Rios, Angel J. Medina-Medina, Katerin M. Tuesta-Trauco, José A. Sánchez-Vega, Teodoro B. Silva-Melendez, Manuel Oliva-Cruz, Cecibel Portocarrero and Elgar Barboza
Land 2025, 14(6), 1234; https://doi.org/10.3390/land14061234 - 7 Jun 2025
Viewed by 1679
Abstract
Understanding how land use and climate change jointly affect water availability is essential for sustainable planning in tropical Andean–Amazonian basins. This study focuses on the Utcubamba River Basin in northeastern Peru, a data-scarce and socioecologically strategic watershed where land transformation and climate variability [...] Read more.
Understanding how land use and climate change jointly affect water availability is essential for sustainable planning in tropical Andean–Amazonian basins. This study focuses on the Utcubamba River Basin in northeastern Peru, a data-scarce and socioecologically strategic watershed where land transformation and climate variability converge. A multi-temporal land use/land cover (LULC) analysis (1990–2024) was conducted, coupled with hydrological modeling using the SWAT model under historical and future climate scenarios (SSP2–4.5 and SSP5–8.5), including the spatial overlay of the LULC change concentration with key hydrological indicators. LULC classifications revealed forest loss and the expansion of pasture, agriculture, and shrubland areas, particularly in the upper basin. Hydrological projections showed significant changes in water flow, including reductions in minimum monthly flows by up to 73.9% and increases in peak flows by 14.8% under the SSP5–8.5 scenario. The water balance is expected to shift, with increased percolation and reduced lateral flow, suggesting decreased storage capacity. By identifying critical sub-basins where land degradation and water insecurity converge, the study supports adaptive strategies for land restoration, aquifer recharge planning, and ecosystem conservation. Despite limited hydrological infrastructure, the SWAT model effectively simulated water dynamics, aiding climate resilience and water security efforts in the Amazonian Andes. Full article
(This article belongs to the Special Issue Integrating Climate, Land, and Water Systems)
Show Figures

Figure 1

17 pages, 1105 KiB  
Review
Heavy Metal Poisoning and Its Impacts on the Conservation of Amazonian Parrots: An Interdisciplinary Review
by Marina Sette Camara Benarrós, Ketelen Ayumi Corrêa Sakata, Brenda Juliane Silva dos Santos and Felipe Masiero Salvarani
Biology 2025, 14(6), 660; https://doi.org/10.3390/biology14060660 - 6 Jun 2025
Viewed by 658
Abstract
Amazonian parrots (Psittacidae) are essential to ecosystem balance. Already vulnerable to habitat fragmentation and weak environmental regulations, they are now increasingly threatened by heavy metal contamination. This review synthesizes evidence on the sources, transgenerational bioaccumulation, and physiological impacts of metals such as mercury [...] Read more.
Amazonian parrots (Psittacidae) are essential to ecosystem balance. Already vulnerable to habitat fragmentation and weak environmental regulations, they are now increasingly threatened by heavy metal contamination. This review synthesizes evidence on the sources, transgenerational bioaccumulation, and physiological impacts of metals such as mercury (Hg), lead (Pb), cadmium (Cd), zinc (Zn), and arsenic (As) in these birds. Anthropogenic activities, including illegal gold mining, agricultural intensification, and urban expansion, release metals that biomagnify along food webs. Parrots, as long-lived, high-trophic consumers, accumulate metals in vital tissues, leading to severe neurotoxic effects, immunosuppression, reproductive failure, and reduced survival. Furthermore, maternal transfer of contaminants to eggs exacerbates genetic erosion and threatens population viability. While biomonitoring tools and habitat restoration have been proposed, current strategies are insufficient against the synergistic pressures of pollution and climate change. Addressing heavy metal exposure is critical to conserving Amazonian biodiversity and safe-guarding ecosystem services. Future efforts should prioritize multidisciplinary predictive models, bioremediation actions, and the strengthening of international environmental governance to ensure the survival of these sentinel species. Full article
(This article belongs to the Special Issue Progress in Wildlife Conservation, Management and Biological Research)
Show Figures

Figure 1

21 pages, 5924 KiB  
Review
Integrating Strategies Aimed at Biodiversity and Water Resource Sustainability in the Amazonian Region
by Samuel Carvalho De Benedicto, Regina Márcia Longo, Denise Helena Lombardo Ferreira, Cibele Roberta Sugahara, Admilson Írio Ribeiro, Juan Arturo Castañeda-Ayarza and Luiz Henrique Vieira da Silva
Sustainability 2025, 17(9), 4010; https://doi.org/10.3390/su17094010 - 29 Apr 2025
Viewed by 1002
Abstract
The Amazonian region comprises a set of ecosystems that play an essential role in stabilizing global climate and regulating carbon and water cycles. However, several environmental issues of anthropogenic origin threaten climate stability in this region: agribusiness, illegal mining, illegal timber exports, pesticide [...] Read more.
The Amazonian region comprises a set of ecosystems that play an essential role in stabilizing global climate and regulating carbon and water cycles. However, several environmental issues of anthropogenic origin threaten climate stability in this region: agribusiness, illegal mining, illegal timber exports, pesticide use, and biopiracy, among others. These actions lead to deforestation, soil erosion, fauna biodiversity loss, water resource contamination, land conflicts, violence against indigenous peoples, and epidemics. The present study aims to feature the current degradation process faced by the Amazonian biome and identify strategic alternatives based on science to inhibit and minimize the degradation of its biodiversity and water resources. This applied research, based on a systematic review, highlighted the complexity, fragility, and importance of the functioning of the Amazonian ecosystem. Although activities such as mining and agriculture notoriously cause soil degradation, this research focused on the scenarios of biodiversity and water resource degradation. The dynamics of the current Amazon degradation process associated with human activity and climate change advancement were also described. Ultimately, the study emphasizes that, given the invaluable importance of the Amazon’s biodiversity and natural resources for global climate balance and food and water security, anthropogenic threats endanger its sustainability. Beyond the well-known human-induced impacts on the forest and life, the findings highlight the need for strategies that integrate forest conservation, sustainable land management, and public policies focused on the region’s sustainable development. These strategies, supported by partnerships, include reducing deforestation and burning, promoting environmental education, engaging local communities, enforcing public policies, and conducting continuous monitoring using satellite remote sensing technology. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

23 pages, 1032 KiB  
Article
The Role of Forest Conversion and Agroecological Practices in Enhancing Ecosystem Services in Tropical Oxisols of the Amazon Basin
by Tancredo Souza, Gislaine dos Santos Nascimento, Diego Silva Batista, Agnne Mayara Oliveira Silva and Milton Cesar Costa Campos
Forests 2025, 16(5), 740; https://doi.org/10.3390/f16050740 - 25 Apr 2025
Viewed by 462
Abstract
This study evaluates the effectiveness of agroecological practices—organic fertilization and biofertilization—in enhancing ecosystem services in agroforestry and pasture systems. A field experiment was conducted over three years, comparing these practices to a control treatment and a natural ecosystem as a reference. Soil chemical, [...] Read more.
This study evaluates the effectiveness of agroecological practices—organic fertilization and biofertilization—in enhancing ecosystem services in agroforestry and pasture systems. A field experiment was conducted over three years, comparing these practices to a control treatment and a natural ecosystem as a reference. Soil chemical, physical, and biological parameters were assessed, including soil organic carbon (SOC), microbial respiration, root density, and gene abundances of key microbial groups (Archaea, Bacteria, and Fungi). Organic fertilization resulted in a significant increase in SOC, phosphorus, microbial biomass, and root density, indicating improved soil structure and fertility. Biofertilization showed selective effects, promoting archaeal abundance but reducing bacterial and fungal diversity. Seasonal variation influenced nutrient cycling, with organic fertilization buffering against dry-season declines in microbial activity and nutrient availability. Aboveground dry biomass and litter deposition were highest in the natural ecosystem, followed by organic fertilization treatments in agroforestry and pasture systems. Despite improvements under agroecological management, the natural ecosystem consistently maintained superior soil quality and biological resilience. The findings highlight that organic inputs and diversified cropping systems enhance soil health but do not fully replicate the ecological benefits of undisturbed forests. In conclusion, agroecological practices provide viable alternatives to mitigate soil degradation and sustain ecosystem services in tropical Oxisols. Organic fertilization emerges as the most effective strategy, fostering long-term improvements in soil fertility and microbial dynamics. However, continued research is needed to optimize these practices for greater resilience and sustainability in Amazonian agroecosystems. Full article
(This article belongs to the Special Issue Fungal Metagenome of Tropical Soils)
Show Figures

Figure 1

24 pages, 10528 KiB  
Article
Functional Diversity and Ecosystem Services of Birds in Productive Landscapes of the Colombian Amazon
by Jenniffer Tatiana Díaz-Cháux, Alexander Velasquez-Valencia, Alejandra Martínez-Salinas and Fernando Casanoves
Diversity 2025, 17(5), 305; https://doi.org/10.3390/d17050305 - 23 Apr 2025
Viewed by 1198
Abstract
The expansion of anthropogenic activities drives changes in the composition, structure, and spatial configuration of natural landscapes, influencing both the taxonomic and functional diversity of bird communities. This pattern is evident in the Colombian Amazon, where agricultural and livestock expansion has altered ecological [...] Read more.
The expansion of anthropogenic activities drives changes in the composition, structure, and spatial configuration of natural landscapes, influencing both the taxonomic and functional diversity of bird communities. This pattern is evident in the Colombian Amazon, where agricultural and livestock expansion has altered ecological dynamics, avifaunal assemblages, and the provision of regulating ecosystem services. This study analyzed the influence of agroforestry (cocoa-based agroforestry systems—SAFc) and silvopastoral systems (SSP) on the functional diversity of birds and their potential impact on ecosystem services in eight productive landscape mosaics within the Colombian Amazon. Each mosaic consisted of a 1 km2 grid, within which seven types of vegetation cover were classified, and seven landscape metrics were calculated. Bird communities were surveyed through visual observations and mist-net captures, during which functional traits were measured. Additionally, functional guilds were assigned to each species based on a literature review. Five multidimensional indices of functional diversity were computed, along with community-weighted means per guild. A total of 218 bird species were recorded across both land-use systems. Bird richness, abundance, and functional diversity—as well as the composition of functional guilds—varied according to vegetation cover. Functional diversity increased in mosaics containing closed vegetation patches with symmetrical configurations. Variations in functional guilds were linked to low functional redundancy, which may also lead to differences in the provision of regulating ecosystem services such as biological pest control and seed dispersal—both of which are critical for the regeneration and connectivity of productive rural landscapes. In conclusion, functional diversity contributes to the resilience of bird communities in landscapes with Amazonian agroforestry and silvopastoral systems, highlighting the need for landscape management that promotes structural heterogeneity to sustain regulating ecosystem services and ecological connectivity. Full article
Show Figures

Graphical abstract

21 pages, 2716 KiB  
Article
Comparative Analysis of Soil Biological Activity and Macroinvertebrate Diversity in Amazonian Chakra Agroforestry and Tropical Rainforests in Ecuador
by Thony Huera-Lucero, Bolier Torres, Carlos Bravo-Medina, Beatriz García-Nogales, Luis Vicente and Antonio López-Piñeiro
Agriculture 2025, 15(8), 830; https://doi.org/10.3390/agriculture15080830 - 11 Apr 2025
Viewed by 661
Abstract
Soil biological activity and macroinvertebrate diversity are key indicators of ecosystem function in tropical landscapes. This study evaluates the effects of different land-use systems—Amazonian Chakra agroforestry (timber-based and fruit-based), cocoa monoculture, and tropical rainforest—on soil microbial respiration, enzymatic activity, and macroinvertebrate diversity in [...] Read more.
Soil biological activity and macroinvertebrate diversity are key indicators of ecosystem function in tropical landscapes. This study evaluates the effects of different land-use systems—Amazonian Chakra agroforestry (timber-based and fruit-based), cocoa monoculture, and tropical rainforest—on soil microbial respiration, enzymatic activity, and macroinvertebrate diversity in the Ecuadorian Amazon. Forest soils exhibited the highest edaphic respiration (240 ± 64.3 mg CO2 m2 ha−1, p = 0.034), while agroforestry systems maintained intermediate biological activity, surpassing monocultures in microbial diversity and enzymatic function. The soil organic matter (SOM) content at a 10 cm depth was significantly higher in monocultures (19.8 ± 3.88%) than in agroforestry and forest soils (p = 0.006); however, the enzymatic activity showed greater functional responses in agroforestry and forest systems. The relationship between recorded CO2 respiration (REC_CO2) and basal respiration (RBC_CO2) exhibited a non-linear trend, as revealed by LOWESS smoothing, suggesting that microbial respiration dynamics are influenced by substrate availability and enzymatic thresholds beyond simple linear predictions. These findings underscore the potential of agroforestry as a sustainable land-use strategy that enhances soil biodiversity, carbon sequestration and nutrient cycling. Implementing optimized agroforestry practices can contribute to long-term soil conservation and ecosystem resilience in tropical agroecosystems. Full article
Show Figures

Figure 1

17 pages, 2985 KiB  
Article
Distribution Patterns of Wood-Decay Macrofungi (Agaricomycetes) in Floodplain Forest Islands of the Eastern Amazon
by Vitória Pinto Farias, Maria do Perpétuo Socorro Progene Vilhena, Antonio Walison Gondim-Vieira, Richard Bruno Mendes-Freire, Renan Domingues Pacheco, Braian Saimon Frota da Silva and Adriene Mayra da Silva Soares
J. Fungi 2025, 11(4), 288; https://doi.org/10.3390/jof11040288 - 7 Apr 2025
Viewed by 734
Abstract
Macrofungi are key decomposers of organic matter and play an active role in biogeochemical cycles, thereby contributing to carbon sequestration in forest ecosystems. Floodplain forests (várzeas) are characterized by the dynamics of rising and receding waters, which are rich in suspended material and [...] Read more.
Macrofungi are key decomposers of organic matter and play an active role in biogeochemical cycles, thereby contributing to carbon sequestration in forest ecosystems. Floodplain forests (várzeas) are characterized by the dynamics of rising and receding waters, which are rich in suspended material and influence species variation and adaptation. The knowledge about the distribution of macrofungi in várzea environments in the Brazilian Amazon is limited. This study aims to evaluate the diversity and composition of macrofungi on three várzea forest islands, while also examining differences in species richness and abundance between seasonal periods. A total of 88 macrofungal species that belong to the phylum Basidiomycota were identified. The findings revealed significant variations in species composition, yet no notable differences in species richness or abundance were observed between the seasonal periods. The environmental conditions and resources available to macrofungi appear to be consistent among the islands, which leads to a balanced diversity. However, additional research is essential to uncover the true distribution patterns of macrofungi in the várzeas of the Brazilian Amazon, an area under significant threat to its biodiversity. Full article
(This article belongs to the Special Issue Fungal Communities in Various Environments)
Show Figures

Figure 1

15 pages, 8576 KiB  
Article
How Do Emission Factors Contribute to the Uncertainty in Biomass Burning Emissions in the Amazon and Cerrado?
by Guilherme Mataveli, Matthew W. Jones, Gabriel Pereira, Saulo R. Freitas, Valter Oliveira, Bruno Silva Oliveira and Luiz E. O. C. Aragão
Atmosphere 2025, 16(4), 423; https://doi.org/10.3390/atmos16040423 - 4 Apr 2025
Viewed by 830
Abstract
Fires drive global ecosystem change, impacting carbon dynamics, atmospheric composition, biodiversity, and human well-being. Biomass burning, a major outcome of fires, significantly contributes to greenhouse gas and aerosol emissions. Among these, fine particulate matter (PM2.5) is particularly concerning due to its [...] Read more.
Fires drive global ecosystem change, impacting carbon dynamics, atmospheric composition, biodiversity, and human well-being. Biomass burning, a major outcome of fires, significantly contributes to greenhouse gas and aerosol emissions. Among these, fine particulate matter (PM2.5) is particularly concerning due to its adverse effects on air quality and health, and its substantial yet uncertain role in Earth’s energy balance. Variability in emission factors (EFs) remains a key source of uncertainty in emission estimates. This study evaluates PM2.5 emission sensitivity to EFs variability in Brazil’s Amazon and Cerrado biomes over 2002–2023 using the 3BEM_FRP model implemented in the PREP-CHEM-SRC tool. We updated the EFs with values and uncertainty ranges from Andreae (2019), which reflect a more comprehensive literature review than earlier datasets. The results reveal that the annual average PM2.5 emissions varied by up to 162% in the Amazon (1213 Gg yr−1 to 3172 Gg yr−1) and 184% in the Cerrado (601 Gg yr−1 to 1709 Gg yr−1). The Average peak emissions at the grid-cell level reached 5688 Mg yr−1 in the “Arc of Deforestation” region under the High-end EF scenario. Notably, the PM2.5 emissions from Amazon forest areas increased over time despite shrinking forest cover, indicating that Amazonian forests are becoming more vulnerable to fire. In the Cerrado, savannas are the primary land cover contributing to the total PM2.5 emissions, accounting for 64% to 80%. These findings underscore the importance of accurate, region-specific EFs for improving emission models and reducing uncertainties. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

23 pages, 8439 KiB  
Article
Modeling the Nexus of Climate Change and Deforestation: Implications for the Blue Water Resources of the Jari River, Amazonia
by Paulo Ricardo Rufino, Björn Gücker, Martin Volk, Michael Strauch, Francielle da Silva Cardozo, Iola Gonçalves Boëchat, Monireh Faramarzi and Gabriel Pereira
Water 2025, 17(5), 660; https://doi.org/10.3390/w17050660 - 24 Feb 2025
Viewed by 1489
Abstract
Deforestation and agricultural practices, such as livestock farming, disrupt biogeochemical cycles, contribute to climate change, and can lead to serious environmental problems. Understanding the water cycle and changes in discharge patterns at the watershed scale is essential to tracking how deforestation affects the [...] Read more.
Deforestation and agricultural practices, such as livestock farming, disrupt biogeochemical cycles, contribute to climate change, and can lead to serious environmental problems. Understanding the water cycle and changes in discharge patterns at the watershed scale is essential to tracking how deforestation affects the flow to downstream water bodies and the ocean. The Amazon basin, which provides about 15–20% of the freshwater flowing into the oceans, is one of the most important river systems in the world. Despite this, it is increasingly suffering from anthropogenic pressure, mainly from converting rainforests to agricultural and livestock areas, which can drive global warming and ecosystem instability. In this study, we applied a calibrated Soil and Water Assessment Tool (SWAT) model to the Jari River Watershed, a part of the Brazilian Amazon, to assess the combined effects of deforestation and climate change on water resources between 2020 and 2050. The model was calibrated and validated using observed streamflow. The results show an NS of 0.85 and 0.89, PBIAS of −9.5 and −0.6, p-factor of 0.84 and 0.93, and r-factor of 0.84 and 0.78, for periods of calibration and validation, respectively, indicating a strong model performance. We analyzed four scenarios that examined different levels of deforestation and climate change. Our results suggest that deforestation and climate change could increase surface runoff by 18 mm, while groundwater recharge could vary between declines of −20 mm and increases of 120 mm. These changes could amplify streamflow variability, affect its dynamics, intensify flood risks, and reduce water availability during dry periods, leading to significant risks for the hydrology of Amazonian watersheds and human water supply. This, in turn, could profoundly impact the region’s megadiverse flora and fauna, which directly depend on balanced streamflow in the watersheds. Full article
Show Figures

Figure 1

22 pages, 8609 KiB  
Article
Revealing the Impact of Understory Fires on Stem Survival in Palms (Arecaceae): An Experimental Approach Using Predictive Models
by Marcus Vinicius de Athaydes Liesenfeld
Fire 2025, 8(1), 2; https://doi.org/10.3390/fire8010002 - 24 Dec 2024
Cited by 1 | Viewed by 932
Abstract
Amid increasing deforestation, surface fires reaching the forest understory are one of the primary threats to Amazonian ecosystems. Despite extensive research on post-fire mortality in woody species, the literature on palm resilience to fire is scant. This study investigates post-fire mortality in four [...] Read more.
Amid increasing deforestation, surface fires reaching the forest understory are one of the primary threats to Amazonian ecosystems. Despite extensive research on post-fire mortality in woody species, the literature on palm resilience to fire is scant. This study investigates post-fire mortality in four understory palms, namely Bactris maraja Mart., Chamaedorea pauciflora Mart., Geonoma deversa (Poit.) Kunth, Hyospathe elegans Mart., and juvenile individuals of Euterpe precatoria Mart. (açaí palm). The objectives included (a) comparing post-fire responses; (b) developing mortality models based on severity variables; and (c) evaluating if diameter protects bud stems from heat flux. Conducted at the edge of an Ombrophylous Forest in Alto Juruá Acre, Brazil (7°45′ S, 72°22′ W), the experiment subjected 85 individuals to controlled burning in a 1 m2 area near the palm stem, with temperature sampling using K thermocouples. The results showed varying mortality rates among species, with a larger palm stem diameter correlating to reduced mortality. Crown burning patterns significantly influenced mortality, especially for Euterpe precatoria. The species exhibited diverse regrowth capacities, with B. maraja showing the highest number and tallest basal resprouts. The variation in morphology among species appeared to be more important than the amount of heat flux applied to each individual involved in the experiment, as no significant difference was observed in the time–temperature history measured. This study underscores post-fire plant mortality as a critical indicator of fire severity, essential for understanding its ecological impacts. Full article
Show Figures

Figure 1

Back to TopTop