Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = alum mine tailings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2718 KiB  
Article
Leaching Characteristics of Potentially Toxic Metals from Tailings at Lujiang Alum Mine, China
by Hongyan Zhu, Jinbo Xu, Beibei Zhou, Jia Ren, Qiang Yang, Zhe Wang and Weibo Nie
Int. J. Environ. Res. Public Health 2022, 19(24), 17063; https://doi.org/10.3390/ijerph192417063 - 19 Dec 2022
Cited by 4 | Viewed by 2288
Abstract
To investigate the leaching characteristics and potential environmental effects of potentially toxic metals (PTMs) from alum mine tailings in Lujiang, Anhui Province, soaking tests and simulated rainfall leaching experiments were conducted for two types of slag. PTMs comprising Cd, Cr, Cu, Mn, and [...] Read more.
To investigate the leaching characteristics and potential environmental effects of potentially toxic metals (PTMs) from alum mine tailings in Lujiang, Anhui Province, soaking tests and simulated rainfall leaching experiments were conducted for two types of slag. PTMs comprising Cd, Cr, Cu, Mn, and Ni were detected in the slag. Cu and Cd contents exceeded the national soil risk screening values (GB 15618-2018). pH values of the two slag soaking solutions were negatively correlated with the solid:liquid ratio. pH values of the sintered slag soaking solutions with different solid:liquid ratios finally stabilized between 4.4 and 4.59, and those of the waste slag soaking solutions finally stabilized between 2.7 and 3.4. The concentrations of Cd, Cr, Cu, Mn, and Ni leached from waste slag were higher than those from sintered slag, and the dissolved concentrations of these PTMs in sintered slag were higher under rainfall leaching conditions than soaking conditions (the difference in Cr concentration was the smallest, 5.6%). The cumulative release of Cd, Cr, Cu, Mn, and Ni increased as the leaching liquid volume increased. The kinetic characteristics of the cumulative release of the five PTMs were best fitted by a double constant equation (R2 > 0.98 for all fits). Single factor index evaluations showed that Mn and Ni were the PTMs with high pollution degrees (Pi for Mn and Ni exceed 1) in the leaching solutions. However, considering the biotoxicity of PTMs, the water quality index evaluations showed that the water quality of the sintered slag soaking solution, the waste slag soaking solution, and the sintered slag leachate was good, poor, and undrinkable, respectively. The health risk assessment showed that the total non-carcinogenic risk (HI) values in adults for both the sintered slag leachate and waste slag soaking solution exceeded the safe level of 1, with HI values of 3.965 and 2.342, respectively. The hazard quotient (HQ) for Cd was 1.994 for the sintered slag leachate, and Cd and Cr make up 50.29% and 15.93% of the total risk, respectively. Cr makes up 28.38% of the total risk for the waste slag soaking solution. These results indicate a high non-carcinogenic risk of exposure to Cd and Cr in the leaching solution used for drinking purposes. These findings may provide a reference for the evaluation and ecological control of PTM pollution in alum mining areas. Full article
Show Figures

Figure 1

16 pages, 2475 KiB  
Article
Alum Addition Triggers Hypoxia in an Engineered Pit Lake
by Gerdhard L. Jessen, Lin-Xing Chen, Jiro F. Mori, Tara E. Colenbrander Nelson, Gregory F. Slater, Matthew B. J. Lindsay, Jillian F. Banfield and Lesley A. Warren
Microorganisms 2022, 10(3), 510; https://doi.org/10.3390/microorganisms10030510 - 26 Feb 2022
Cited by 7 | Viewed by 3951
Abstract
Here, we examine the geobiological response to a whole-lake alum (aluminum sulfate) treatment (2016) of Base Mine Lake (BML), the first pilot-scale pit lake established in the Alberta oil sands region. The rationale for trialing this management amendment was based on its successful [...] Read more.
Here, we examine the geobiological response to a whole-lake alum (aluminum sulfate) treatment (2016) of Base Mine Lake (BML), the first pilot-scale pit lake established in the Alberta oil sands region. The rationale for trialing this management amendment was based on its successful use to reduce internal phosphorus loading to eutrophying lakes. Modest increases in water cap epilimnetic oxygen concentrations, associated with increased Secchi depths and chlorophyll-a concentrations, were co-incident with anoxic waters immediately above the fluid fine tailings (FFT) layer post alum. Decreased water cap nitrate and detectable sulfide concentrations, as well as increased hypolimnetic phospholipid fatty acid abundances, signaled greater anaerobic heterotrophic activity. Shifts in microbial community to groups associated with greater organic carbon degradation (i.e., SAR11-LD12 subclade) and the SRB group Desulfuromonodales emerged post alum and the loss of specialist groups associated with carbon-limited, ammonia-rich restricted niches (i.e., MBAE14) also occurred. Alum treatment resulted in additional oxygen consumption associated with increased autochthonous carbon production, watercap anoxia and sulfide generation, which further exacerbate oxygen consumption associated with on-going FFT mobilized reductants. The results illustrate the importance of understanding the broader biogeochemical implications of adaptive management interventions to avoid unanticipated outcomes that pose greater risks and improve tailings reclamation for oil sands operations and, more broadly, the global mining sector. Full article
(This article belongs to the Special Issue The Microbiology of Oil Sands Tailings)
Show Figures

Figure 1

22 pages, 2872 KiB  
Article
Isotopic and Chemical Assessment of the Dynamics of Methane Sources and Microbial Cycling during Early Development of an Oil Sands Pit Lake
by Greg F. Slater, Corey A. Goad, Matthew B. J. Lindsay, Kevin G. Mumford, Tara E. Colenbrander Nelson, Allyson L. Brady, Gerdhard L. Jessen and Lesley A. Warren
Microorganisms 2021, 9(12), 2509; https://doi.org/10.3390/microorganisms9122509 - 3 Dec 2021
Cited by 7 | Viewed by 3204
Abstract
Water-capped tailings technology (WCTT) is a key component of the reclamation strategies in the Athabasca oil sands region (AOSR) of northeastern Alberta, Canada. The release of microbial methane from tailings emplaced within oil sands pit lakes, and its subsequent microbial oxidation, could inhibit [...] Read more.
Water-capped tailings technology (WCTT) is a key component of the reclamation strategies in the Athabasca oil sands region (AOSR) of northeastern Alberta, Canada. The release of microbial methane from tailings emplaced within oil sands pit lakes, and its subsequent microbial oxidation, could inhibit the development of persistent oxygen concentrations within the water column, which are critical to the success of this reclamation approach. Here, we describe the results of a four-year (2015–2018) chemical and isotopic (δ13C) investigation into the dynamics of microbial methane cycling within Base Mine Lake (BML), the first full-scale pit lake commissioned in the AOSR. Overall, the water-column methane concentrations decreased over the course of the study, though this was dynamic both seasonally and annually. Phospholipid fatty acid (PLFA) distributions and δ13C demonstrated that dissolved methane, primarily input via fluid fine tailings (FFT) porewater advection, was oxidized by the water column microbial community at all sampling times. Modeling and under-ice observations indicated that the dissolution of methane from bubbles during ebullition, or when trapped beneath ice, was also an important source of dissolved methane. The addition of alum to BML in the fall of 2016 impacted the microbial cycling in BML, leading to decreased methane oxidation rates, the short-term dominance of a phototrophic community, and longer-term shifts in the microbial community metabolism. Overall, our results highlight a need to understand the dynamic nature of these microbial communities and the impact of perturbations on the associated biogeochemical cycling within oil sands pit lakes. Full article
(This article belongs to the Special Issue The Microbiology of Oil Sands Tailings)
Show Figures

Figure 1

17 pages, 6076 KiB  
Article
Study on the Preparation and Hydration Properties of a New Cementitious Material for Tailings Discharge
by Yunbing Hou, Pengchu Ding, Dong Han, Xing Zhang and Shuxiong Cao
Processes 2019, 7(1), 47; https://doi.org/10.3390/pr7010047 - 17 Jan 2019
Cited by 6 | Viewed by 4276
Abstract
Blast furnace slag (BFS) is often used as a cement-based raw material for underground filling and surface cemented paste discharge of tailings during mining processes. This paper studied a new cement-based material (NCM) with BFS to replace ordinary Portland cement (OPC). A uniaxial [...] Read more.
Blast furnace slag (BFS) is often used as a cement-based raw material for underground filling and surface cemented paste discharge of tailings during mining processes. This paper studied a new cement-based material (NCM) with BFS to replace ordinary Portland cement (OPC). A uniaxial compressive strength (UCS) experiment was used to test the mechanical strength of samples; X-ray diffraction and thermal gravity experiments were used to test the crystalline phases and amount of hydration products by samples; a scanning electron microscope experiment was used to observe the influence of the hydration products morphology by samples; mercury intrusion porosimetry experiment was used to analyze the pore size distribution of samples. The samples with NCM had an optimum UCS; the crystalline phases of the hydration products were similar in OPC and NCM. However, the amount of product formed in OPC was less than that in NCM at the same curing time; more ettringite and calcium silicate hydrate were produced in samples with NCM, which filled the pores and enhanced the UCS of the samples. The final mercury intrusion volume of the samples with NCM were lower than the samples with OPC at the same curing time, which showed that samples with NCM had lower porosities. For the samples with NCM and OPC cured from 7 days to 28 days, the mercury intrusion volume was reduced by 18% and 13%, and the most common pore size of the samples reduced by 53% and 29%, respectively. This showed after 21 days curing time, the pores of all the samples getting smaller; however, the samples with NCM were more compact. The main ingredients of the NCM were clinker, lime, gypsum and BFS, and its ratio was 14:6:10:70. The content of additives to NCM was 0.4%, and the ratio of sodium sulfate: alum: sodium fluorosilicate was 2:1:1. Full article
(This article belongs to the Special Issue Fluid Flow in Fractured Porous Media)
Show Figures

Figure 1

Back to TopTop