Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = alpha amylase and glucosidase inhibitory activities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3084 KiB  
Article
Rhoifolin Improves Glycometabolic Control in Streptozotocin-Induced Diabetic Rats by Up-Regulating the Expression of Insulin Signaling Proteins and Down-Regulating the MAPK/JNK Pathway
by Maryam Ehsan, Sibtain Ahmed, Wafa Majeed, Asra Iftikhar, Maryam Iftikhar, Mateen Abbas and Tahir Mehmood
Pharmaceuticals 2025, 18(3), 361; https://doi.org/10.3390/ph18030361 - 2 Mar 2025
Cited by 1 | Viewed by 1134
Abstract
Background and Aim: Rhoifolin is a bioactive flavonoid that possesses strong antioxidant and anti-inflammatory activities. The current investigation aimed to examine the anti-diabetic potential of rhoifolin in streptozotocin-induced diabetic rats. Dose-dependent (10 and 20 mg/kg) anti-hyperglycemic, anti-hyperlipidemic, anti-inflammatory, and antioxidant effects of [...] Read more.
Background and Aim: Rhoifolin is a bioactive flavonoid that possesses strong antioxidant and anti-inflammatory activities. The current investigation aimed to examine the anti-diabetic potential of rhoifolin in streptozotocin-induced diabetic rats. Dose-dependent (10 and 20 mg/kg) anti-hyperglycemic, anti-hyperlipidemic, anti-inflammatory, and antioxidant effects of rhoifolin were evaluated by measuring fasting blood glucose, serum glucose, serum insulin, HOMA-IR, lipidemic status, inflammatory cytokines, and hepatic antioxidant markers. To identify the underlying mechanism behind the anti-diabetic activity of rhoifolin, qRT-PCR was carried out using rat pancreatic and hepatic tissues. Results: The results have shown that rhoifolin produced antioxidant effects, as exhibited by DPPH and ABTS+ assays, respectively. Rhoifolin showed potent alpha-amylase and alpha-glucosidase inhibitory activities. Rhoifolin enhanced the serum insulin level, significantly decreased the serum glucose, HOMA-IR, and cytokine levels, and improved the lipid profile. Rhoifolin also showed a substantial decline in insulin resistance in the treated rats. Rhoifolin significantly raised catalase and superoxide dismutase levels in hepatic tissues while potentially decreasing the malondialdehyde levels. Moreover, rhoifolin significantly down-regulated the MAPK-8, TRAF-6, and TRAF-4 expressions and up-regulated the PDX-1, SIRT-1, INS-1, and GLUT-4 expressions in treated groups. Conclusions: Our results indicate that rhoifolin exhibits a hypoglycemic effect, which appears to be associated with its regulatory impact on metabolic inflammation and oxidative stress markers. This was accompanied by a lower HOMA-IR index, highlighting its potential role in promoting glucose homeostasis and mitigating insulin resistance. According to preliminary results, rhoifolin could further be tested to introduce it as another viable treatment option for diabetes. Full article
(This article belongs to the Special Issue The Mode of Action of Herbal Medicines and Natural Products)
Show Figures

Figure 1

15 pages, 3926 KiB  
Article
Insights into Catechin–Copper Complex Structure and Biologic Activity Modulation
by Ionut I. Lungu, Oana Cioanca, Cornelia Mircea, Cristina Tuchilus, Alina Stefanache, Riana Huzum and Monica Hancianu
Molecules 2024, 29(20), 4969; https://doi.org/10.3390/molecules29204969 - 21 Oct 2024
Cited by 5 | Viewed by 1605
Abstract
Compounds of natural origin found in varying quantities in plant-based products constitute a highly significant category, possessing structural significance as well as the capacity to regulate oxidative processes. The activity of these compounds may be modulated by the composition of the biological environment [...] Read more.
Compounds of natural origin found in varying quantities in plant-based products constitute a highly significant category, possessing structural significance as well as the capacity to regulate oxidative processes. The activity of these compounds may be modulated by the composition of the biological environment in which they operate, the pH of the environment, or the presence of metal cations in plants or plant extracts. A successful complexation reaction was mainly confirmed by FT-IR, observing the shift from the original transmittance of catechin bonds, especially O-H ones. This work shows the synthetic methodology and the optimization process that took place to synthesize a catechin–copper complex, which demonstrated antioxidant activity. It was tested for iron chelation ability, hydroxyl radicals, and the inhibition of lipoxygenase (15-LOX). An antidiabetic assay was performed by determining the inhibition of alpha-amylase and alpha-glucosidase, finding that the synthesized complex had similar inhibitory potential as pure catechin. The antibacterial tests showed results against Staphylococcus aureus and the antifungal properties of the complex against Candida albicans. Full article
Show Figures

Figure 1

12 pages, 2314 KiB  
Article
Wild-Edible Allium Species from Highlands of Eastern Anatolia: Phytochemical Composition and In Vitro Biological Activities
by Muzaffer Mukemre
Plants 2024, 13(14), 1949; https://doi.org/10.3390/plants13141949 - 16 Jul 2024
Cited by 1 | Viewed by 1590
Abstract
This study presents the phytochemical composition, antioxidant (hydrogen atom and single-atom transfer mechanisms), and digestive enzyme inhibitory (alpha-amylase, alpha-glucosidase, and pancreatic lipase) activities of ethanol-based extractions and traditional preparations (infusion) of the leaves of wild-edible Allium species (A. kharputense, A. affine [...] Read more.
This study presents the phytochemical composition, antioxidant (hydrogen atom and single-atom transfer mechanisms), and digestive enzyme inhibitory (alpha-amylase, alpha-glucosidase, and pancreatic lipase) activities of ethanol-based extractions and traditional preparations (infusion) of the leaves of wild-edible Allium species (A. kharputense, A. affine, A. shirnakiense, and A. akaka) from the highlands of Eastern Anatolia. Among the eight extracts analyzed, ethanol extractions of the A. kharputense and A. akaka leaves exhibited better biotherapeutic activities and had the highest bioactive content. The dominant bioactive profile was composed of mainly allicin and phenolic compounds (chlorogenic acid, hesperidin, rutin, isoquercitrin, and quercetin) with small amounts of fatty acids. These data were similar to the biological activities and chemical composition of common Allium species and suggest the utilization of the extracts of wild-edible Allium species in the development of Allium-based biotherapeutics or nutraceuticals. Full article
(This article belongs to the Special Issue Species from the Allium Genus: Cultivation and Food Chemistry)
Show Figures

Figure 1

17 pages, 3339 KiB  
Article
New Insights into the Potential Inhibitory Effects of Native Plants from Cyprus on Pathogenic Bacteria and Diabetes-Related Enzymes
by Atalanti Christou, Constantina Stavrou, Christodoulos Michael, George Botsaris and Vlasios Goulas
Microbiol. Res. 2024, 15(2), 926-942; https://doi.org/10.3390/microbiolres15020061 - 29 May 2024
Cited by 3 | Viewed by 1648
Abstract
Plants possess endless structural and chemical diversity, which is peerless with any synthetic library of small biomolecules, inspiring novel drug discovery. Plants are widely applied to encounter global health challenges such as antimicrobial resistance and diabetes. The objective of this work was to [...] Read more.
Plants possess endless structural and chemical diversity, which is peerless with any synthetic library of small biomolecules, inspiring novel drug discovery. Plants are widely applied to encounter global health challenges such as antimicrobial resistance and diabetes. The objective of this work was to evaluate the antibacterial and antidiabetic potency of native plants grown in Cyprus. All plants were sequentially extracted with solvents of increasing polarity, namely hexane, acetone, methanol, and water. First, the phenolic and flavonoid contents of the extracts were assessed. Afterwards, the bacteriostatic and bactericidal potency of plant extracts were tested against a panel of six bacteria using the broth microdilution method, whereas the inhibitory effects on alpha-glucosidase and alpha-amylase enzymes were also determined with the employment of microplate assays. The results highlighted the superiority of Sarcopoterium spinosum as a potential enzyme inhibitor, while a knowledge base was also acquired for the inhibitory potential of all plants. Daucus carota, Ferula communis, and Tordylium.aegyptiacum displayed additionally outstanding bacteriostatic and bactericidal effects on Gram-positive bacteria at concentrations of 250 µg mL−1 and 500 µg mL−1. Overall, the present study describes the antibacterial and inhibitory activity against carbohydrate digestive enzymes of native plants grown in Cyprus delivering the first reports for many plant species. Full article
Show Figures

Figure 1

10 pages, 1859 KiB  
Article
Fomentariol, a Fomes fomentarius Compound, Exhibits Anti-Diabetic Effects in Fungal Material: An In Vitro Analysis
by Matjaž Ravnikar, Borut Štrukelj, Biljana Otašević and Mateja Sirše
Nutraceuticals 2024, 4(2), 273-282; https://doi.org/10.3390/nutraceuticals4020017 - 21 May 2024
Cited by 2 | Viewed by 2300
Abstract
The present study screened various fungal species for inhibitors of alpha-glucosidase, alpha-amylase, and DPP-4, enzymes that are crucial in carbohydrate metabolism. Ethanolic extracts exhibited superior inhibitory activity compared to water extracts, suggesting their potential as sources of anti-diabetic agents. Further fractionation revealed fomentariol [...] Read more.
The present study screened various fungal species for inhibitors of alpha-glucosidase, alpha-amylase, and DPP-4, enzymes that are crucial in carbohydrate metabolism. Ethanolic extracts exhibited superior inhibitory activity compared to water extracts, suggesting their potential as sources of anti-diabetic agents. Further fractionation revealed fomentariol from Fomes fomentarius as a potent inhibitor of alpha-glucosidase and DPP-4, with higher activity against alpha-glucosidase than acarbose. Fomentariol presents a novel avenue for diabetes management, demonstrating the simultaneous inhibition of key enzymes in glucose metabolism. However, comprehensive clinical studies are needed to evaluate its safety and efficacy in humans. Full article
Show Figures

Figure 1

16 pages, 2510 KiB  
Article
Validating the Nutraceutical Significance of Minor Millets by Employing Nutritional–Antinutritional Profiling
by Shivani Singh Rana, Sushma Tiwari, Neha Gupta, Manoj Kumar Tripathi, Niraj Tripathi, Sangeeta Singh and Sameer S. Bhagyawant
Life 2023, 13(9), 1918; https://doi.org/10.3390/life13091918 - 15 Sep 2023
Cited by 9 | Viewed by 2464
Abstract
Millets are group of underutilized cereal crops with higher nutritional values. The present investigation used different classes of minor millets, including barnyard (sava), little (kutki), finger (ragi), kodo and foxtail millets, for evaluation of their nutritional parameters, i.e., the content of proteins, total [...] Read more.
Millets are group of underutilized cereal crops with higher nutritional values. The present investigation used different classes of minor millets, including barnyard (sava), little (kutki), finger (ragi), kodo and foxtail millets, for evaluation of their nutritional parameters, i.e., the content of proteins, total amino acids, total sugars, insoluble fibers, soluble fibers, total dietary fibers, iron (Fe) and zinc (Zn), along with antinutritional and antioxidant parameters, viz., tannic acid, phytic acid, phenol, flavonoid, proline and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Alpha amylase and alpha glucosidase activity were also thought to elevate millets as a viable staple meal. Foxtail millet showed the maximum inhibition, with an IC50 value of 20.46 ± 1.80 µg mL−1 with respect to α-amylase. The coefficient of correlation between nutritional and antinutritional compositions showed that the starch content was significantly and positively correlated with insoluble fiber (r = 0.465) and dietary fiber (r = 0.487). Moreover, sugar was positively correlated with the phytic acid (r = 0.707), Fe and Zn (r = 0.681) contents. To determine the peptides responsible for anticancer activity, the foxtail protein was subjected to ultrafiltration; it was found that the 3 kDa fraction retained the greatest anticancer activity. Selected millet germplasm line(s) that have the best nutraceutical properties could be used in millet improvement programs. Full article
(This article belongs to the Special Issue Cereal Grain Quality – Micronutrients and Phytochemicals)
Show Figures

Figure 1

21 pages, 3285 KiB  
Article
Green Synthesis and Characterization of Novel Silver Nanoparticles Using Achillea maritima subsp. maritima Aqueous Extract: Antioxidant and Antidiabetic Potential and Effect on Virulence Mechanisms of Bacterial and Fungal Pathogens
by Badiaa Essghaier, Hédia Hannachi, Rihem Nouir, Filomena Mottola and Lucia Rocco
Nanomaterials 2023, 13(13), 1964; https://doi.org/10.3390/nano13131964 - 28 Jun 2023
Cited by 16 | Viewed by 2969
Abstract
Novel silver nanoparticles were synthesized based on a simple and non-toxic method by applying the green synthesis technique, using, for the first time, the aqueous extract of an extremophile plant belonging to the Achillea maritima subsp. maritima species. AgNP characterization was performed via [...] Read more.
Novel silver nanoparticles were synthesized based on a simple and non-toxic method by applying the green synthesis technique, using, for the first time, the aqueous extract of an extremophile plant belonging to the Achillea maritima subsp. maritima species. AgNP characterization was performed via UV-Visible, front-face fluorescence spectroscopy, and FTIR and XRD analyses. AgNP formation was immediately confirmed by a color change from yellow to brown and by a surface plasmon resonance peak using UV-Vis spectroscopy at 420 nm. The biosynthesized AgNPs were spherical in shape with a size ranging from approximatively 14.13 to 21.26 nm. The presented silver nanoparticles exhibited strong antioxidant activity following a DPPH assay compared to ascorbic acid, with IC50 values of about 0.089 µg/mL and 22.54 µg/mL, respectively. The AgNPs showed higher antidiabetic capacities than acarbose, by inhibiting both alpha amylase and alpha glucosidase. The silver nanoparticles could affect various bacterial mechanisms of virulence, such as EPS production, biofilm formation and DNA damage. The silver nanoparticles showed no lysozyme activity on the cell walls of Gram-positive bacteria. The AgNPs also had a strong inhibitory effect on the Candida albicans virulence factor (extracellular enzymes, biofilm formation). The microscopic observation showed abnormal morphogenesis and agglomeration of Candida albicans exposed to AgNPs. The AgNPs showed no cytotoxic effect on human cells in an MTT assay. The use of novel silver nanoparticles is encouraged in the formulation of natural antimicrobial and antidiabetic agents. Full article
(This article belongs to the Special Issue Nanostructured Materials for Environmental and Healthy Applications)
Show Figures

Figure 1

24 pages, 4673 KiB  
Article
Production and Characterization of ACE Inhibitory and Anti-Diabetic Peptides from Buffalo and Camel Milk Fermented with Lactobacillus and Yeast: A Comparative Analysis with In Vitro, In Silico, and Molecular Interaction Study
by Ruchita Khakhariya, Bethsheba Basaiawmoit, Amar A. Sakure, Ruchika Maurya, Mahendra Bishnoi, Kanthi Kiran Kondepudi, Srichandan Padhi, Amit Kumar Rai, Zhenbin Liu and Subrota Hati
Foods 2023, 12(10), 2006; https://doi.org/10.3390/foods12102006 - 15 May 2023
Cited by 22 | Viewed by 3816
Abstract
The investigation aimed at assessing a comparative study on the production and characterization of ACE inhibitory, anti-diabetic, and anti-inflammatory activities, along with the production of ACE inhibitory and anti-diabetic peptides through the fermentation of buffalo and camel milk by Limosilactobacillus fermentum (KGL4) and [...] Read more.
The investigation aimed at assessing a comparative study on the production and characterization of ACE inhibitory, anti-diabetic, and anti-inflammatory activities, along with the production of ACE inhibitory and anti-diabetic peptides through the fermentation of buffalo and camel milk by Limosilactobacillus fermentum (KGL4) and Saccharomyces cerevisiae (WBS2A). The angiotensin-converting enzyme (ACE) inhibitory and anti-diabetic properties were evaluated at particular time intervals (12, 24, 36, and 48 h) at 37 °C, and we discovered maximum activity at 37 °C after 48 h of incubation. The maximum ACE inhibitory, lipase inhibitory activities, alpha-glucosidase inhibitory, and alpha-amylase inhibitory activities were found in the fermented camel milk (77.96 ± 2.61, 73.85 ± 1.19, 85.37 ± 2.15, and 70.86 ± 1.02), as compared to the fermented buffalo milk (FBM) (75.25 ± 1.72, 61.79 ± 2.14, 80.09 ± 0.51, and 67.29 ± 1.75). Proteolytic activity was measured with different inoculation rates (1.5%, 2.0%, and 2.5%) and incubation times (12, 24, 36, and 48 h) to optimize the growth conditions. Maximum proteolysis was found at a 2.5% inoculation rate and at a 48 h incubation period in both fermented buffalo (9.14 ± 0.06) and camel milk (9.10 ± 0.17). SDS-PAGE and 2D gel electrophoresis were conducted for protein purification. The camel and buffalo milk that had not been fermented revealed protein bands ranging from 10 to 100 kDa and 10 to 75 kDa, respectively, whereas all the fermented samples showed bands ranging from 10 to 75 kDa. There were no visible protein bands in the permeates on SDS-PAGE. When fermented buffalo and camel milk were electrophoresed in 2D gel, 15 and 20 protein spots were detected, respectively. The protein spots in the 2D gel electrophoresis ranged in size from 20 to 75 kDa. To distinguish between different peptide fractions, water-soluble extract (WSE) fractions of ultrafiltration (3 and 10 kDa retentate and permeate) of fermented camel and buffalo milk were employed in RP-HPLC (reversed-phase high-performance liquid chromatography). The impact of fermented buffalo and camel milk on inflammation induced by LPS (lipopolysaccharide) was also investigated in the RAW 264.7 cell line. Novel peptide sequences with ACE inhibitory and anti-diabetic properties were also analyzed on the anti-hypertensive database (AHTDB) and bioactive peptide (BIOPEP) database. We found the sequences SCQAQPTTMTR, EMPFPK, TTMPLW, HPHPHLSFMAIPPK, FFNDKIAK, ALPMHIR, IPAVFK, LDQWLCEK, and AVPYPQR from the fermented buffalo milk and the sequences TDVMPQWW, EKTFLLYSCPHR, SSHPYLEQLY, IDSGLYLGSNYITAIR, and FDEFLSQSCAPGSDPR from the fermented camel milk. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

15 pages, 1385 KiB  
Article
Glutamate, Humic Acids and Their Combination Modulate the Phenolic Profile, Antioxidant Traits, and Enzyme-Inhibition Properties in Lettuce
by Marco Armando De Gregorio, Gökhan Zengin, Fatma Nur Alp-Turgut, Fevzi Elbasan, Ceyda Ozfidan-Konakci, Busra Arikan, Evren Yildiztugay, Leilei Zhang and Luigi Lucini
Plants 2023, 12(9), 1822; https://doi.org/10.3390/plants12091822 - 28 Apr 2023
Cited by 6 | Viewed by 2535
Abstract
Lettuce (Lactuca sativa L., Asteraceae) is a popular vegetable leafy crop playing a relevant role in human nutrition. Nowadays, novel strategies are required to sustainably support plant growth and elicit the biosynthesis of bioactive molecules with functional roles in crops including lettuce. [...] Read more.
Lettuce (Lactuca sativa L., Asteraceae) is a popular vegetable leafy crop playing a relevant role in human nutrition. Nowadays, novel strategies are required to sustainably support plant growth and elicit the biosynthesis of bioactive molecules with functional roles in crops including lettuce. In this work, the polyphenolic profile of lettuce treated with glutamic acid (GA), humic acid (HA), and their combination (GA + HA) was investigated using an untargeted metabolomics phenolic profiling approach based on high-resolution mass spectrometry. Both aerial and root organ parts were considered, and a broad and diverse phenolic profile could be highlighted. The phenolic profile included flavonoids (anthocyanins, flavones, flavanols, and flavonols), phenolic acids (both hydroxycinnamics and hydroxybenzoics), low molecular weight phenolics (tyrosol equivalents), lignans and stilbenes. Overall, GA and HA treatments significantly modulated the biosynthesis of flavanols, lignans, low molecular weight phenolics, phenolic acids, and stilbene. Thereafter, antioxidant capacity was evaluated in vitro with 2,2-diphenyln-1-picrylhydrazyl (DPPH), 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and cupric ion reducing antioxidant capacity (CUPRAC) assays. In addition, this study examined the inhibitory properties of enzymes, including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), tyrosinase, alpha-amylase, and alpha-glucosidase. Compared to individual treatments, the combination of GA + HA showed stronger antioxidant abilities in free radical scavenging and reducing power assays in root samples. Moreover, this combination positively influenced the inhibitory effects of root samples on AChE and BChE and the tyrosinase inhibitory effect of leaf samples. Concerning Pearson’s correlations, antioxidant and enzyme inhibition activities were related to phenolic compounds, and lignans in particular correlated with radical scavenging activities. Overall, the tested elicitors could offer promising insights for enhancing the functional properties of lettuce in agricultural treatments. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants)
Show Figures

Figure 1

22 pages, 3758 KiB  
Article
Comparative Analysis of the Antioxidant, Antidiabetic, Antibacterial, Cytoprotective Potential and Metabolite Profile of Two Endophytic Penicillium spp.
by Kumar Vishven Naveen, Kandasamy Saravanakumar, Anbazhagan Sathiyaseelan and Myeong-Hyeon Wang
Antioxidants 2023, 12(2), 248; https://doi.org/10.3390/antiox12020248 - 22 Jan 2023
Cited by 17 | Viewed by 3197
Abstract
The current study assessed the metabolite abundance, alpha (α)-amylase and α-glucosidase inhibitory, antioxidant, and antibacterial activity of the ethyl acetate extract (EAE) of endophytic Penicillium lanosum (PL) and Penicillium radiatolobatum (PR). A higher extract yield was found in EAE-PR with a total phenolic [...] Read more.
The current study assessed the metabolite abundance, alpha (α)-amylase and α-glucosidase inhibitory, antioxidant, and antibacterial activity of the ethyl acetate extract (EAE) of endophytic Penicillium lanosum (PL) and Penicillium radiatolobatum (PR). A higher extract yield was found in EAE-PR with a total phenolic content of 119.87 ± 3.74 mg of GAE/g DW and a total flavonoid content of 16.26 ± 1.95 mg of QE/g DW. The EAE-PR inhibited α-amylase and scavenged ABTS+ radicals with a half-maximal inhibitory concentration (IC50) of 362.5 and 37.5 µg/mL, respectively. Compared with EAE-PL, EAE-PR exhibited higher antibacterial activity against Gram-positive and Gram-negative pathogens. Treatment with EAE-PR (1000 µg/mL) did not cause significant toxicity in the HEK-293 cell line compared to the control cells (p < 0.05). EAE-PR treatments (250–1000 µg/mL) showed higher cytoprotective effects toward H2O2-stressed HEK-293 cells compared with ascorbic acid (AA). The UHPLC-Q-TOF-MS/MS analysis revealed the presence of thiophene A (C13H8S), limonene (C10H16), and phenylacetic acid (C8H8O2) in EAE-PR. Furthermore, these compounds demonstrated substantial interactions with diabetes (α-amylase and α-glucosidase), oxidative stress (NADPH-oxidase), and bacteria (D-alanine D-alanine ligase)-related enzymes/proteins evidenced in silico molecular docking analysis. Full article
Show Figures

Graphical abstract

16 pages, 2800 KiB  
Article
In Vitro α-Amylase and α-Glucosidase Inhibitory Activity of Green Seaweed Halimeda tuna Extract from the Coast of Lhok Bubon, Aceh
by Mohamad Gazali, Odi Jolanda, Amir Husni, Nurjanah, Fadzilah Adibah Abd Majid, Zuriat and Rina Syafitri
Plants 2023, 12(2), 393; https://doi.org/10.3390/plants12020393 - 14 Jan 2023
Cited by 25 | Viewed by 4952
Abstract
Seaweed belongs to marine biota and contains nutrients and secondary metabolites beneficial for health. This study aimed to determine the antidiabetic activity of extracts and fractions of green seaweed Halimeda tuna. The H. tuna sample was extracted with the maceration method using [...] Read more.
Seaweed belongs to marine biota and contains nutrients and secondary metabolites beneficial for health. This study aimed to determine the antidiabetic activity of extracts and fractions of green seaweed Halimeda tuna. The H. tuna sample was extracted with the maceration method using methanol and then partitioned using ethyl acetate and water to obtain ethyl acetate and water fractions. The methanol extract, ethyl acetate fraction, and water fraction of H. tuna were tested for their inhibitory activity against α-amilase and α-glucosidase. The methanol extract and the fractions with the highest inhibitory activity were phytochemically tested and analyzed using gas chromatography–mass spectrometry (GC-MS). The results showed that the ethyl acetate fraction (IC50 = 0.88 ± 0.20 mg/mL) inhibited α-amylase relatively similar to acarbose (IC50 = 0.76 ± 0.04 mg/mL). The methanol extract (IC50 = 0.05 ± 0.01 mg/mL) and the ethyl acetate fraction (IC50 = 0.01 ± 0.00 mg/mL) demonstrated stronger inhibitory activity against α-glucosidase than acarbose (IC50 = 0.27 ± 0.13 mg/mL). Phytochemical testing showed that the methanol extract and the ethyl acetate fraction contained secondary metabolites: alkaloids, flavonoids, steroids, and phenol hydroquinone. The compounds in methanol extract predicted to have inhibitory activity against α-amylase and α-glucosidase were Docosanol, Neophytadiene, Stigmasta-7,22-dien-3-ol,acetate,(3.beta.,5.alpha.,22E), Octadecanoic acid,2-oxo-,methyl ester, and phytol, while those in the ethyl acetate fraction were n-Nonadecane, Phytol, Butyl ester, 14-.Beta.-H-pregna, Octadecenoic acid, and Oleic acid. Full article
(This article belongs to the Topic Biological Activity of Plant Extracts)
Show Figures

Figure 1

16 pages, 2042 KiB  
Article
In Vitro Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities and Antioxidant Capacity of Helichrysum cymosum and Helichrysum pandurifolium Schrank Constituents
by Baraa M. I. S. Jadalla, Justin J. Moser, Rajan Sharma, Ninon G. E. R. Etsassala, Samuel Ayodele Egieyeh, Jelili A. Badmus, Jeanine L. Marnewick, Denzil Beukes, Christopher N. Cupido and Ahmed A. Hussein
Separations 2022, 9(8), 190; https://doi.org/10.3390/separations9080190 - 26 Jul 2022
Cited by 19 | Viewed by 4743
Abstract
Diabetes mellitus (DM) is a group of systemic metabolic disorders with a high rate of morbidity and mortality worldwide. Due to the detrimental side effects of the current treatment, there is a great need to develop more effective antidiabetic drugs with fewer side [...] Read more.
Diabetes mellitus (DM) is a group of systemic metabolic disorders with a high rate of morbidity and mortality worldwide. Due to the detrimental side effects of the current treatment, there is a great need to develop more effective antidiabetic drugs with fewer side effects. Natural products are a well-known source for the discovery of new scaffolds for drug discovery, including new antidiabetic drugs. The genus Helichrysum has been shown to produce antidiabetic natural products. In this investigation, the methanolic extract of H. cymosum and H. pandurifolium resulted in the isolation and identification of eleven known compounds viz 5,8-dihydroxy-7-methoxy-2-phenyl flavanone (1), pinostrobin (2), dihydrobaicalein (3), glabranin (4), allopatuletin (5), pinostrobin chalcone (6), helichrysetin (7), 5-hydroxy-3,7-dimethoxyflavone (8), 3,5-dihydroxy-6,7,8-trimethoxyflavone (9), 3-O-methylquercetin (10), and 3-methylethergalangin (11). The in vitro bio-evaluation of isolated compounds against alpha-glucosidase showed that 10, 5, and 11 demonstrated the highest alpha-glucosidase inhibitory activity with IC50 values of 9.24 ± 0.4, 12.94 ± 0.2, and 16.00 ± 2.4 μM respectively, followed by 7 and 3 with IC50 values of 18.16 ± 1.2 and 44.44 ± 0.2 μM respectively. However, none of these compounds showed a measurable inhibitory effect on alpha-amylase under the experimental conditions used except compound 10 which showed a poor alpha-amylase inhibitory activity with an IC50 value of 230.66 ± 15.8 μM. Additionally, strong total antioxidant capacities were demonstrated by 10, 5 and 7 in ferric-ion reducing antioxidant power assay (374.34 ± 69.7; 334.37 ± 1.7; 279.93 ± 0.8) µmol AAE/mmol. This is the first scientific report to be carried out on alpha-glucosidase inhibitory activities and antioxidant capacities of H. cymosum constituents and a first report on the isolation and identification of methoxyflavanoids from H. pandurifolium. Our findings suggest that these compounds are promising candidates to inhibit alpha-glucosidase as well as oxidative stress related to diabetes. Results from molecular docking provided insight into the observed in vitro alpha-glucosidase inhibitory activities for 5, 7, 10, and 11. It is envisaged that the isolated phytochemicals from these plants may contribute to the development of hypoglycemic lead compounds with anti-diabetic potential. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Figure 1

19 pages, 3817 KiB  
Article
Anti-Diabetic Activity of Bioactive Compound Extracted from Spondias mangifera Fruit: In-Vitro and Molecular Docking Approaches
by Mohammad Khalid, Mohammed H. Alqarni, Abdulrhman Alsayari, Ahmed I. Foudah, Tariq M. Aljarba, Mohammad Mukim, Mubarak A. Alamri, Shahabe Saquib Abullais and Shadma Wahab
Plants 2022, 11(4), 562; https://doi.org/10.3390/plants11040562 - 21 Feb 2022
Cited by 22 | Viewed by 4516
Abstract
Spondias mangifera is a drupaceous fruit popular for its flavour and health advantages. There is little scientific knowledge about S. mangifera, despite its widespread usage in traditional medicine, in the North-Eastern region of India. Inhibiting the key carbohydrate hydrolysing enzymes is one [...] Read more.
Spondias mangifera is a drupaceous fruit popular for its flavour and health advantages. There is little scientific knowledge about S. mangifera, despite its widespread usage in traditional medicine, in the North-Eastern region of India. Inhibiting the key carbohydrate hydrolysing enzymes is one of the strategies for managing diabetes. Therefore, this study studied the antioxidant and anti-diabetic properties of different fraction S. mangifera fruit extract (SMFFs) from Indian geographical origin by in vitro experimental assays and silico docking simulation studies. The ADMET prediction for active substances was also investigated using the AdmetSAR database. Based on the binding affinity/molecular interactions between phytocompounds and target enzymes, in silico investigations were done to confirm the in vitro enzymatic inhibitory capability. β-sitosterol in EtOH-F was analysed using RP-HPLC with RP-C18 column as stationary phase and photo diode array detector. The percentage of β-sitosterol was found to be 1.21% ± 0.17% of total weight of extract (w/w). S. mangifera fruit ethanolic extract had a significant inhibitory concentration of 50% against free radicals produced by ABTS (89.71 ± 2.73%) and lipid peroxidation assay (88.26 ± 2.17%) tests. Similarly, the in vitro antidiabetic test findings indicated that S. mangifera inhibited alpha-amylase (73.42 ± 2.01%) and alpha-glucosidase (79.23 ± 1.98%) enzymes dose-dependently. The maximum glycosylated Hb percentage inhibitory activity shown in the ethanolic fraction was (83.97 ± 2.88%) at 500 µg/mL. The glucose uptake of the ethanolic fraction by the yeast cell showed significant (p < 0.05) at 500 µg/mL when compared with metformin (91.37 ± 1.59%), whereas the other fraction did not show the uptake of glucose by the yeast cell at the same concentration. In the docking study, the main phytoconstituents of S. mangifera fruit, such as oleanolic acid, beta-sitosterol, and beta amyrin, show strong affinity for pancreatic α-amylase. These results imply that S. mangifera has α-amylase and α-glucosidase inhibitory properties and may be used as antidiabetic with antioxidant characteristics. Full article
Show Figures

Graphical abstract

12 pages, 30429 KiB  
Article
Alpha-Glucosidase and Alpha-Amylase Inhibitory Activities, Molecular Docking, and Antioxidant Capacities of Plectranthus ecklonii Constituents
by Ninon G. E. R. Etsassala, Jelili A. Badmus, Jeanine L. Marnewick, Samuel Egieyeh, Emmanuel. I. Iwuoha, Felix Nchu and Ahmed A. Hussein
Antioxidants 2022, 11(2), 378; https://doi.org/10.3390/antiox11020378 - 14 Feb 2022
Cited by 26 | Viewed by 5593
Abstract
Shortage in insulin secretion or degradation of produced insulin is the principal characteristic of the metabolic disorder of diabetes mellitus (DM). However, because the current medications for the treatment of DM have many detrimental side effects, it is necessary to develop more effective [...] Read more.
Shortage in insulin secretion or degradation of produced insulin is the principal characteristic of the metabolic disorder of diabetes mellitus (DM). However, because the current medications for the treatment of DM have many detrimental side effects, it is necessary to develop more effective antidiabetic drugs with minimal side effects. Alpha-glucosidase and alpha-amylase inhibitors are directly implicated in the delay of carbohydrate digestion. Pharmacologically, these inhibitors could be targeted for the reduction in glucose absorption rate and, subsequently, decreasing the postprandial rise in plasma glucose and the risk for long-term diabetes complications. The main objectives of this research study were to isolate different phytochemical constituents present in the methanolic extract of Plectranthusecklonii and evaluate their alpha-glucosidase and alpha-amylase inhibitory activities and antioxidant capacity. The phytochemical investigation of the methanolic extract of P. ecklonii yielded three known compounds, viz. parvifloron D, F, and G (13, respectively). Parvifloron G was isolated for the first time from P. ecklonii. The in vitro bio-evaluation of the methanolic extract of P. ecklonii and its isolated compounds against alpha-glucosidase showed that 3 exhibited moderate inhibitory activity with IC50 values of 41.3 ± 1.2 μg/mL. Molecular docking analysis confirmed the alpha-glucosidase inhibitory activity demonstrated by 3. Additionally, strong antioxidant capacities were demonstrated by 3 and 1 on ORAC (28726.1 ± 8.1; 3942.9.6.6 ± 0.1 µM TE/g), respectively, which were comparable with the reference antioxidant epigallocatechingallate (EGCG). Furthermore, 3 also showed strong activity on TEAC (3526.1 ± 0.6 µM TE/g), followed by 2 (1069.3 ± 2.4 µM TE/g), as well as on FRAP (1455.4 ± 2.0 µM AAE/g). The methanolic extract of P. ecklonii is a rich source of abietane diterpenes with strong antioxidant activities. This is the first scientific report on alpha-glucosidase and alpha-amylase inhibitory activities, molecular docking, and antioxidant capacities of P. ecklonii constituents. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

15 pages, 2548 KiB  
Article
Citrus Flavanone Narirutin, In Vitro and In Silico Mechanistic Antidiabetic Potential
by Ashraf Ahmed Qurtam, Hamza Mechchate, Imane Es-safi, Mohammed Al-zharani, Fahd A. Nasr, Omar M. Noman, Mohammed Aleissa, Hamada Imtara, Abdulmalik M. Aleissa, Mohamed Bouhrim and Ali S. Alqahtani
Pharmaceutics 2021, 13(11), 1818; https://doi.org/10.3390/pharmaceutics13111818 - 31 Oct 2021
Cited by 29 | Viewed by 4252
Abstract
Citrus fruits and juices have been studied extensively for their potential involvement in the prevention of various diseases. Flavanones, the characteristic polyphenols of citrus species, are the primarily compounds responsible for these studied health benefits. Using in silico and in vitro methods, we [...] Read more.
Citrus fruits and juices have been studied extensively for their potential involvement in the prevention of various diseases. Flavanones, the characteristic polyphenols of citrus species, are the primarily compounds responsible for these studied health benefits. Using in silico and in vitro methods, we are exploring the possible antidiabetic action of narirutin, a flavanone family member. The goal of the in silico research was to anticipate how narirutin would interact with eight distinct receptors implicated in diabetes control and complications, namely, dipeptidyl-peptidase 4 (DPP4), protein tyrosine phosphatase 1B (PTP1B), free fatty acid receptor 1 (FFAR1), aldose reductase (AldR), glycogen phosphorylase (GP), alpha-amylase (AAM), peroxisome proliferator-activated receptor gamma (PPAR-γ), alpha-glucosidase (AGL), while the in vitro study looked into narirutin’s possible inhibitory impact on alpha-amylase and alpha-glucosidase. The results indicate that the studied citrus flavanone interacted remarkably with most of the receptors and had an excellent inhibitory activity during the in vitro tests suggesting its potent role among the different constituent of the citrus compounds in the management of diabetes and also its complications. Full article
(This article belongs to the Special Issue The Role of Natural Products on Diabetes Mellitus Treatment)
Show Figures

Graphical abstract

Back to TopTop