Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = allosteric trigger

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4121 KB  
Article
The Allosteric Communication Network in the Activation of Antithrombin by Heparin
by Gonzalo Izaguirre
Int. J. Mol. Sci. 2025, 26(18), 8984; https://doi.org/10.3390/ijms26188984 - 15 Sep 2025
Viewed by 759
Abstract
The allosteric activation of antithrombin (AT) involves a conformational shift from a native, repressed (R) to a heparin-bound, activated (AH) state. Using computational structural analysis, we identified an evolutionarily conserved allosteric communication network (ACN) comprising the residues H120, Y131, and Y166, which undergo [...] Read more.
The allosteric activation of antithrombin (AT) involves a conformational shift from a native, repressed (R) to a heparin-bound, activated (AH) state. Using computational structural analysis, we identified an evolutionarily conserved allosteric communication network (ACN) comprising the residues H120, Y131, and Y166, which undergo key structural displacements during this transition. Site-directed mutagenesis of these residues markedly enhanced AT native reactivity toward FXa and reduced thermal stability, indicating their role in stabilizing the R state. These findings support a three-step “slingshot” model in which the ACN functions as a molecular lock that restrains stored conformational energy, preventing premature activation. Heparin binding disengages this lock, triggering a cascade of structural changes that propagate from the heparin-binding site (HBS) to the reactive center loop (RCL). Additional mutational analyses of residues bridging the β-sheet A (βsA) and the RCL/exosite domains revealed a delicate energetic balance involving the S380 insertion and E381–R197 salt bridge, which collectively tune the activation threshold. Molecular dynamics simulations of ACN mutants further revealed increased flexibility at both HBS and RCL domains, consistent with concerted allosteric coupling. Together, these results provide new mechanistic insights into the structural basis of AT activation and suggest avenues for engineering heparin-independent AT variants. Full article
(This article belongs to the Special Issue Proteases and Their Inhibitors: From Biochemistry to Applications)
Show Figures

Figure 1

20 pages, 12217 KB  
Article
Fc-Binding Cyclopeptide Induces Allostery from Fc to Fab: Revealed Through in Silico Structural Analysis to Anti-Phenobarbital Antibody
by Tao Zhou, Huiling Zhang, Xiaoting Yu, Kangliang Pan, Xiaojun Yao, Xing Shen and Hongtao Lei
Foods 2025, 14(8), 1360; https://doi.org/10.3390/foods14081360 - 15 Apr 2025
Cited by 2 | Viewed by 1376
Abstract
Allostery is a fundamental biological phenomenon that occurs when a molecule binds to a protein’s allosteric site, triggering conformational changes that regulate the protein’s activity. However, allostery in antibodies remains largely unexplored, and only a few reports have focused on allostery from antigen-binding [...] Read more.
Allostery is a fundamental biological phenomenon that occurs when a molecule binds to a protein’s allosteric site, triggering conformational changes that regulate the protein’s activity. However, allostery in antibodies remains largely unexplored, and only a few reports have focused on allostery from antigen-binding fragments (Fab) to crystallizable fragments (Fc). But this study, using anti-phenobarbital antibodies—which are widely applied for detecting the potential health food adulterant phenobarbital—as a model and employing multiple computational methods, is the first to identify a cyclopeptide (cyclo[Link-M-WFRHY-K]) that induces allostery from Fc to Fab in antibody and elucidates the underlying antibody allostery mechanism. The combination of molecular docking and multiple allosteric site prediction algorithms in these methods identified that the cyclopeptide binds to the interface of heavy chain region-1 (CH1) in antibody Fab and heavy chain region-2 (CH2) in antibody Fc. Meanwhile, molecular dynamics simulations combined with other analytical methods demonstrated that cyclopeptide induces global conformational shifts in the antibody, which ultimately alter the Fab domain and enhance its antigen-binding activity from Fc to Fab. This result will enable cyclopeptides as a potential Fab-targeted allosteric modulator to provide a new strategy for the regulation of antigen-binding activity and contribute to the construction of novel immunoassays for food safety and other applications using allosteric antibodies as the core technology. Furthermore, graph theory analysis further revealed a common allosteric signaling pathway within the antibody, involving residues Q123, S207, S326, C455, A558, Q778, D838, R975, R1102, P1146, V1200, and K1286, which will be very important for the engineering design of the anti-phenobarbital antibodies and other highly homologous antibodies. Finally, the non-covalent interaction analysis showed that allostery from Fc to Fab primarily involves residue signal transduction driven by hydrogen bonds and hydrophobic interactions. Full article
Show Figures

Figure 1

12 pages, 3912 KB  
Article
Molecular Bases and Specificity behind the Activation of the Immune System OAS/RNAse L Pathway by Viral RNA
by Emma Jung-Rodriguez, Florent Barbault, Emmanuelle Bignon and Antonio Monari
Viruses 2024, 16(8), 1246; https://doi.org/10.3390/v16081246 - 2 Aug 2024
Viewed by 1675
Abstract
The first line of defense against invading pathogens usually relies on innate immune systems. In this context, the recognition of exogenous RNA structures is primordial to fight, notably, against RNA viruses. One of the most efficient immune response pathways is based on the [...] Read more.
The first line of defense against invading pathogens usually relies on innate immune systems. In this context, the recognition of exogenous RNA structures is primordial to fight, notably, against RNA viruses. One of the most efficient immune response pathways is based on the sensing of RNA double helical motifs by the oligoadenylate synthase (OAS) proteins, which in turn triggers the activity of RNase L and, thus, cleaves cellular and viral RNA. In this contribution, by using long-range molecular dynamics simulations, complemented with enhanced sampling techniques, we elucidate the structural features leading to the activation of OAS by interaction with a model double-strand RNA oligomer mimicking a viral RNA. We characterize the allosteric regulation induced by the nucleic acid leading to the population of the active form of the protein. Furthermore, we also identify the free energy profile connected to the active vs. inactive conformational transitions in the presence and absence of RNA. Finally, the role of two RNA mutations, identified as able to downregulate OAS activation, in shaping the protein/nucleic acid interface and the conformational landscape of OAS is also analyzed. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

20 pages, 7443 KB  
Article
Interactions between Inhibitors and 5-Lipoxygenase: Insights from Gaussian Accelerated Molecular Dynamics and Markov State Models
by Yuyang Liu, Kaiyu Wang, Fuyan Cao, Nan Gao and Wannan Li
Int. J. Mol. Sci. 2024, 25(15), 8295; https://doi.org/10.3390/ijms25158295 - 30 Jul 2024
Cited by 6 | Viewed by 3540
Abstract
Inflammation is a protective stress response triggered by external stimuli, with 5-lipoxygenase (5LOX) playing a pivotal role as a potent mediator of the leukotriene (Lts) inflammatory pathway. Nordihydroguaiaretic acid (NDGA) functions as a natural orthosteric inhibitor of 5LOX, while 3-acetyl-11-keto-β-boswellic acid (AKBA) acts [...] Read more.
Inflammation is a protective stress response triggered by external stimuli, with 5-lipoxygenase (5LOX) playing a pivotal role as a potent mediator of the leukotriene (Lts) inflammatory pathway. Nordihydroguaiaretic acid (NDGA) functions as a natural orthosteric inhibitor of 5LOX, while 3-acetyl-11-keto-β-boswellic acid (AKBA) acts as a natural allosteric inhibitor targeting 5LOX. However, the precise mechanisms of inhibition have remained unclear. In this study, Gaussian accelerated molecular dynamics (GaMD) simulation was employed to elucidate the inhibitory mechanisms of NDGA and AKBA on 5LOX. It was found that the orthosteric inhibitor NDGA was tightly bound in the protein’s active pocket, occupying the active site and inhibiting the catalytic activity of the 5LOX enzyme through competitive inhibition. The binding of the allosteric inhibitor AKBA induced significant changes at the distal active site, leading to a conformational shift of residues 168–173 from a loop to an α-helix and significant negative correlated motions between residues 285–290 and 375–400, reducing the distance between these segments. In the simulation, the volume of the active cavity in the stable conformation of the protein was reduced, hindering the substrate’s entry into the active cavity and, thereby, inhibiting protein activity through allosteric effects. Ultimately, Markov state models (MSM) were used to identify and classify the metastable states of proteins, revealing the transition times between different conformational states. In summary, this study provides theoretical insights into the inhibition mechanisms of 5LOX by AKBA and NDGA, offering new perspectives for the development of novel inhibitors specifically targeting 5LOX, with potential implications for anti-inflammatory drug development. Full article
Show Figures

Figure 1

15 pages, 1345 KB  
Review
Overcoming Chemoresistance in Cancer: The Promise of Crizotinib
by Sanaa Musa, Noor Amara, Adan Selawi, Junbiao Wang, Cristina Marchini, Abed Agbarya and Jamal Mahajna
Cancers 2024, 16(13), 2479; https://doi.org/10.3390/cancers16132479 - 7 Jul 2024
Cited by 15 | Viewed by 4901
Abstract
Chemoresistance is a major obstacle in cancer treatment, often leading to disease progression and poor outcomes. It arises through various mechanisms such as genetic mutations, drug efflux pumps, enhanced DNA repair, and changes in the tumor microenvironment. These processes allow cancer cells to [...] Read more.
Chemoresistance is a major obstacle in cancer treatment, often leading to disease progression and poor outcomes. It arises through various mechanisms such as genetic mutations, drug efflux pumps, enhanced DNA repair, and changes in the tumor microenvironment. These processes allow cancer cells to survive despite chemotherapy, underscoring the need for new strategies to overcome resistance and improve treatment efficacy. Crizotinib, a first-generation multi-target kinase inhibitor, is approved by the FDA for the treatment of ALK-positive or ROS1-positive non-small cell lung cancer (NSCLC), refractory inflammatory (ALK)-positive myofibroblastic tumors (IMTs) and relapsed/refractory ALK-positive anaplastic large cell lymphoma (ALCL). Crizotinib exists in two enantiomeric forms: (R)-crizotinib and its mirror image, (S)-crizotinib. It is assumed that the R-isomer is responsible for the carrying out various processes reviewed here The S-isomer, on the other hand, shows a strong inhibition of MTH1, an enzyme important for DNA repair mechanisms. Studies have shown that crizotinib is an effective multi-kinase inhibitor targeting various kinases such as c-Met, native/T315I Bcr/Abl, and JAK2. Its mechanism of action involves the competitive inhibition of ATP binding and allosteric inhibition, particularly at Bcr/Abl. Crizotinib showed synergistic effects when combined with the poly ADP ribose polymerase inhibitor (PARP), especially in ovarian cancer harboring BRCA gene mutations. In addition, crizotinib targets a critical vulnerability in many p53-mutated cancers. Unlike its wild-type counterpart, the p53 mutant promotes cancer cell survival. Crizotinib can cause the degradation of the p53 mutant, sensitizing these cancer cells to DNA-damaging substances and triggering apoptosis. Interestingly, other reports demonstrated that crizotinib exhibits anti-bacterial activity, targeting Gram-positive bacteria. Also, it is active against drug-resistant strains. In summary, crizotinib exerts anti-tumor effects through several mechanisms, including the inhibition of kinases and the restoration of drug sensitivity. The potential of crizotinib in combination therapies is emphasized, particularly in cancers with a high prevalence of the p53 mutant, such as triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSOC). Full article
(This article belongs to the Collection Innovations in Cancer Drug Development Research)
Show Figures

Figure 1

15 pages, 3327 KB  
Article
Enzymatic Metabolic Switches of Astrocyte Response to Lipotoxicity as Potential Therapeutic Targets for Nervous System Diseases
by Andrea Angarita-Rodríguez, J. Manuel Matiz-González, Andrés Pinzón, Andrés Felipe Aristizabal, David Ramírez, George E. Barreto and Janneth González
Pharmaceuticals 2024, 17(5), 648; https://doi.org/10.3390/ph17050648 - 16 May 2024
Cited by 3 | Viewed by 2591
Abstract
Astrocytes play a pivotal role in maintaining brain homeostasis. Recent research has highlighted the significance of palmitic acid (PA) in triggering pro-inflammatory pathways contributing to neurotoxicity. Furthermore, Genomic-scale metabolic models and control theory have revealed that metabolic switches (MSs) are metabolic pathway regulators [...] Read more.
Astrocytes play a pivotal role in maintaining brain homeostasis. Recent research has highlighted the significance of palmitic acid (PA) in triggering pro-inflammatory pathways contributing to neurotoxicity. Furthermore, Genomic-scale metabolic models and control theory have revealed that metabolic switches (MSs) are metabolic pathway regulators by potentially exacerbating neurotoxicity, thereby offering promising therapeutic targets. Herein, we characterized these enzymatic MSs in silico as potential therapeutic targets, employing protein–protein and drug–protein interaction networks alongside structural characterization techniques. Our findings indicate that five MSs (P00558, P04406, Q08426, P09110, and O76062) were functionally linked to nervous system drug targets and may be indirectly regulated by specific neurological drugs, some of which exhibit polypharmacological potential (e.g., Trifluperidol, Trifluoperazine, Disulfiram, and Haloperidol). Furthermore, four MSs (P00558, P04406, Q08426, and P09110) feature ligand-binding or allosteric cavities with druggable potential. Our results advocate for a focused exploration of P00558 (phosphoglycerate kinase 1), P04406 (glyceraldehyde-3-phosphate dehydrogenase), Q08426 (peroxisomal bifunctional enzyme, enoyl-CoA hydratase, and 3-hydroxyacyl CoA dehydrogenase), P09110 (peroxisomal 3-ketoacyl-CoA thiolase), and O76062 (Delta(14)-sterol reductase) as promising targets for the development or repurposing of pharmacological compounds, which could have the potential to modulate lipotoxic-altered metabolic pathways, offering new avenues for the treatment of related human diseases such as neurological diseases. Full article
(This article belongs to the Special Issue Multi-target Drug Treatments for Neurodegenerative Disease)
Show Figures

Figure 1

13 pages, 3325 KB  
Article
A Combined Molecular Dynamics and Hydropathic INTeraction (HINT) Approach to Investigate Protein Flexibility: The PPARγ Case Study
by Federica Agosta and Pietro Cozzini
Molecules 2024, 29(10), 2234; https://doi.org/10.3390/molecules29102234 - 10 May 2024
Cited by 2 | Viewed by 2382
Abstract
Molecular Dynamics (MD) is a computational technique widely used to evaluate a molecular system’s thermodynamic properties and conformational behavior over time. In particular, the energy analysis of a protein conformation ensemble produced though MD simulations plays a crucial role in explaining the relationship [...] Read more.
Molecular Dynamics (MD) is a computational technique widely used to evaluate a molecular system’s thermodynamic properties and conformational behavior over time. In particular, the energy analysis of a protein conformation ensemble produced though MD simulations plays a crucial role in explaining the relationship between protein dynamics and its mechanism of action. In this research work, the HINT (Hydropathic INTeractions) LogP-based scoring function was first used to handle MD trajectories and investigate the molecular basis behind the intricate PPARγ mechanism of activation. The Peroxisome Proliferator-Activated Receptor γ (PPARγ) is an emblematic example of a highly flexible protein due to the extended ω-loop delimiting the active site, and it is responsible for the receptor’s ability to bind chemically different compounds. In this work, we focused on the PPARγ complex with Rosiglitazone, a common anti-diabetic compound and analyzed the molecular basis of the flexible ω-loop stabilization effect produced by the Oleic Acid co-binding. The HINT-based analysis of the produced MD trajectories allowed us to account for all of the energetic contributions involved in interconverting between conformational states and describe the intramolecular interactions between the flexible ω-loop and the helix H3 triggered by the allosteric binding mechanism. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 2nd Edition)
Show Figures

Graphical abstract

27 pages, 19904 KB  
Article
Elucidating the Role of Wildtype and Variant FGFR2 Structural Dynamics in (Dys)Function and Disorder
by Yiyang Lian, Dale Bodian and Amarda Shehu
Int. J. Mol. Sci. 2024, 25(8), 4523; https://doi.org/10.3390/ijms25084523 - 20 Apr 2024
Cited by 1 | Viewed by 1731
Abstract
The fibroblast growth factor receptor 2 (FGFR2) gene is one of the most extensively studied genes with many known mutations implicated in several human disorders, including oncogenic ones. Most FGFR2 disease-associated gene mutations are missense mutations that result in constitutive activation [...] Read more.
The fibroblast growth factor receptor 2 (FGFR2) gene is one of the most extensively studied genes with many known mutations implicated in several human disorders, including oncogenic ones. Most FGFR2 disease-associated gene mutations are missense mutations that result in constitutive activation of the FGFR2 protein and downstream molecular pathways. Many tertiary structures of the FGFR2 kinase domain are publicly available in the wildtype and mutated forms and in the inactive and activated state of the receptor. The current literature suggests a molecular brake inhibiting the ATP-binding A loop from adopting the activated state. Mutations relieve this brake, triggering allosteric changes between active and inactive states. However, the existing analysis relies on static structures and fails to account for the intrinsic structural dynamics. In this study, we utilize experimentally resolved structures of the FGFR2 tyrosine kinase domain and machine learning to capture the intrinsic structural dynamics, correlate it with functional regions and disease types, and enrich it with predicted structures of variants with currently no experimentally resolved structures. Our findings demonstrate the value of machine learning-enabled characterizations of structure dynamics in revealing the impact of mutations on (dys)function and disorder in FGFR2. Full article
Show Figures

Figure 1

21 pages, 7464 KB  
Article
MP Allosterically Activates AMPK to Enhance ABCA1 Stability by Retarding the Calpain-Mediated Degradation Pathway
by Hui Li, Mingchao Wang, Kai Qu, Ruiming Xu and Haibo Zhu
Int. J. Mol. Sci. 2023, 24(24), 17280; https://doi.org/10.3390/ijms242417280 - 8 Dec 2023
Cited by 4 | Viewed by 2174
Abstract
It is widely recognized that macrophage cholesterol efflux mediated by the ATP-binding cassette transporter A1 (ABCA1) constitutes the initial and rate-limiting step of reverse cholesterol transport (RCT), displaying a negative correlation with the development of atherosclerosis. Although the transcriptional regulation of ABCA1 has [...] Read more.
It is widely recognized that macrophage cholesterol efflux mediated by the ATP-binding cassette transporter A1 (ABCA1) constitutes the initial and rate-limiting step of reverse cholesterol transport (RCT), displaying a negative correlation with the development of atherosclerosis. Although the transcriptional regulation of ABCA1 has been extensively studied in previous research, the impact of post-translational regulation on its expression remains to be elucidated. In this study, we report an AMP-activated protein kinase (AMPK) agonist called ((2R,3S,4R,5R)-3,4-dihydroxy-5-(6-((3-hydroxyphenyl) amino)-9H-purin-9-yl) tetrahydrofuran-2-yl) methyl dihydrogen phosphate (MP), which enhances ABCA1 expression through post-translational regulation rather than transcriptional regulation. By integrating the findings of multiple experiments, it is confirmed that MP directly binds to AMPK with a moderate binding affinity, subsequently triggering its allosteric activation. Further investigations conducted on macrophages unveil a novel mechanism through which MP modulates ABCA1 expression. Specifically, MP downregulates the Cav1.2 channel to obstruct the influx of extracellular Ca2+, thereby diminishing intracellular Ca2+ levels, suppressing calcium-activated calpain activity, and reducing the interaction strength between calpain and ABCA1. This cascade of events culminates in the deceleration of calpain-mediated degradation of ABCA1. In conclusion, MP emerges as a potentially promising candidate compound for developing agents aimed at enhancing ABCA1 stability and boosting cellular cholesterol efflux and RCT. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 2961 KB  
Article
ATM/ATR Phosphorylation of CtIP on Its Conserved Sae2-like Domain Is Required for Genotoxin-Induced DNA Resection but Dispensable for Animal Development
by Foon Wu-Baer, Madeline Wong, Lydia Tschoe, Chyuan-Sheng Lin, Wenxia Jiang, Shan Zha and Richard Baer
Cells 2023, 12(23), 2762; https://doi.org/10.3390/cells12232762 - 4 Dec 2023
Cited by 1 | Viewed by 2551
Abstract
Homology-directed repair (HDR) of double-strand DNA breaks (DSBs) is dependent on enzymatic resection of DNA ends by the Mre11/Rad50/Nbs1 complex. DNA resection is triggered by the CtIP/Sae2 protein, which allosterically promotes Mre11-mediated endonuclease DNA cleavage at a position internal to the DSB. Although [...] Read more.
Homology-directed repair (HDR) of double-strand DNA breaks (DSBs) is dependent on enzymatic resection of DNA ends by the Mre11/Rad50/Nbs1 complex. DNA resection is triggered by the CtIP/Sae2 protein, which allosterically promotes Mre11-mediated endonuclease DNA cleavage at a position internal to the DSB. Although the mechanics of resection, including the initial endonucleolytic step, are largely conserved in eucaryotes, CtIP and its functional counterpart in Saccharomyces cerevisiae (Sae2) share only a modest stretch of amino acid homology. Nonetheless, this stretch contains two highly conserved phosphorylation sites for cyclin-dependent kinases (T843 in mouse) and the damage-induced ATM/ATR kinases (T855 in mouse), both of which are required for DNA resection. To explore the function of ATM/ATR phosphorylation at Ctip-T855, we generated and analyzed mice expressing the Ctip-T855A mutant. Surprisingly, unlike Ctip-null mice and Ctip-T843A-expressing mice, both of which undergo embryonic lethality, homozygous CtipT855A/T855A mice develop normally. Nonetheless, they are hypersensitive to ionizing radiation, and CtipT855A/T855A mouse embryo fibroblasts from these mice display marked defects in DNA resection, chromosomal stability, and HDR-mediated repair of DSBs. Thus, although ATM/ATR phosphorylation of CtIP-T855 is not required for normal animal development, it enhances CtIP-mediated DNA resection in response to acute stress, such as genotoxin exposure. Full article
Show Figures

Figure 1

14 pages, 3230 KB  
Article
Jasmone Is a Ligand-Selective Allosteric Antagonist of Aryl Hydrocarbon Receptor (AhR)
by Radim Vrzal, Adéla Marcalíková, Kristýna Krasulová, Lenka Zemánková and Zdeněk Dvořák
Int. J. Mol. Sci. 2023, 24(21), 15655; https://doi.org/10.3390/ijms242115655 - 27 Oct 2023
Cited by 4 | Viewed by 2402
Abstract
Herbal extracts represent a wide spectrum of biologically active ingredients with potential medical applications. By screening minor constituents of jasmine essential oil towards aryl hydrocarbon receptor (AhR) activity using a gene reporter assay (GRA), we found the antagonist effects of jasmone (3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-one). It [...] Read more.
Herbal extracts represent a wide spectrum of biologically active ingredients with potential medical applications. By screening minor constituents of jasmine essential oil towards aryl hydrocarbon receptor (AhR) activity using a gene reporter assay (GRA), we found the antagonist effects of jasmone (3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-one). It inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-, benzo[a]pyrene (BaP)-, and 6-formylindolo[3,2-b]carbazole (FICZ)-triggered AhR-dependent luciferase activity in a concentration-dependent manner. However, the inhibition differed markedly between TCDD, BaP, and FICZ, with the latter being significantly less inhibited. The dose-response analysis confirmed an allosteric type of AhR antagonism. Furthermore, jasmone efficiently inhibited AhR activation by AhR agonists and microbial catabolites of tryptophan (MICTs). TCDD- and FICZ-inducible CYP1A1 expression in primary human hepatocytes was inhibited by jasmone, whereas in the human HepG2 and LS180 cells, jasmone antagonized only TCDD-activated AhR. Jasmone only partially displaced radiolabeled TCDD from its binding to mouse Ahr, suggesting it is not a typical orthosteric ligand of AhR. TCDD-elicited AhR nuclear translocation was not affected by jasmone, whereas downstream signaling events, including the formation of the AhR:ARNT complex and enrichment of the CYP1A1 promoter, were inhibited by jasmone. In conclusion, we show that jasmone is a potent allosteric antagonist of AhR. Such discovery may help to find and/or clarify the use of jasmone in pharmaco- and phytotherapy for conditions where AhR plays a key role. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Graphical abstract

21 pages, 1319 KB  
Review
Interaction of Calmodulin with TRPM: An Initiator of Channel Modulation
by Kristyna Vydra Bousova, Monika Zouharova, Katerina Jiraskova and Veronika Vetyskova
Int. J. Mol. Sci. 2023, 24(20), 15162; https://doi.org/10.3390/ijms242015162 - 13 Oct 2023
Cited by 9 | Viewed by 3414
Abstract
Transient receptor potential melastatin (TRPM) channels, a subfamily of the TRP superfamily, constitute a diverse group of ion channels involved in mediating crucial cellular processes like calcium homeostasis. These channels exhibit complex regulation, and one of the key regulatory mechanisms involves their interaction [...] Read more.
Transient receptor potential melastatin (TRPM) channels, a subfamily of the TRP superfamily, constitute a diverse group of ion channels involved in mediating crucial cellular processes like calcium homeostasis. These channels exhibit complex regulation, and one of the key regulatory mechanisms involves their interaction with calmodulin (CaM), a cytosol ubiquitous calcium-binding protein. The association between TRPM channels and CaM relies on the presence of specific CaM-binding domains in the channel structure. Upon CaM binding, the channel undergoes direct and/or allosteric structural changes and triggers down- or up-stream signaling pathways. According to current knowledge, ion channel members TRPM2, TRPM3, TRPM4, and TRPM6 are directly modulated by CaM, resulting in their activation or inhibition. This review specifically focuses on the interplay between TRPM channels and CaM and summarizes the current known effects of CaM interactions and modulations on TRPM channels in cellular physiology. Full article
(This article belongs to the Special Issue TRP Channels in Physiology and Pathophysiology 2.0)
Show Figures

Figure 1

14 pages, 3310 KB  
Article
CD40L Activates Platelet Integrin αIIbβ3 by Binding to the Allosteric Site (Site 2) in a KGD-Independent Manner and HIGM1 Mutations Are Clustered in the Integrin-Binding Sites of CD40L
by Yoko K. Takada, Michiko Shimoda and Yoshikazu Takada
Cells 2023, 12(15), 1977; https://doi.org/10.3390/cells12151977 - 31 Jul 2023
Cited by 6 | Viewed by 1823
Abstract
CD40L is expressed in activated T cells, and it plays a major role in immune response and is a major therapeutic target for inflammation. High IgM syndrome type 1 (HIGM1) is a congenital functional defect in CD40L/CD40 signaling due to defective CD40L. CD40L [...] Read more.
CD40L is expressed in activated T cells, and it plays a major role in immune response and is a major therapeutic target for inflammation. High IgM syndrome type 1 (HIGM1) is a congenital functional defect in CD40L/CD40 signaling due to defective CD40L. CD40L is also stored in platelet granules and transported to the surface upon platelet activation. Platelet integrin αIIbβ3 is known to bind to fibrinogen and activation of αIIbβ3 is a key event that triggers platelet aggregation. Also, the KGD motif is critical for αIIbβ3 binding and the interaction stabilizes thrombus. Previous studies showed that CD40L binds to and activates integrins αvβ3 and α5β1 and that HIGM1 mutations are clustered in the integrin-binding sites. However, the specifics of CD40L binding to αIIbβ3 were unclear. Here, we show that CD40L binds to αIIbβ3 in a KGD-independent manner using CD40L that lacks the KGD motif. Two HIGM1 mutants, S128E/E129G and L155P, reduced the binding of CD40L to the classical ligand-binding site (site 1) of αIIbβ3, indicating that αIIbβ3 binds to the outer surface of CD40L trimer. Also, CD40L bound to the allosteric site (site 2) of αIIbβ3 and allosterically activated αIIbβ3 without inside-out signaling. Two HIMG1 mutants, K143T and G144E, on the surface of trimeric CD40L suppressed CD40L-induced αIIbβ3 activation. These findings suggest that CD40L binds to αIIbβ3 in a manner different from that of αvβ3 and α5β1 and induces αIIbβ3 activation. HIGM1 mutations are clustered in αIIbβ3 binding sites in CD40L and are predicted to suppress thrombus formation and immune responses through αIIbβ3. Full article
(This article belongs to the Special Issue The Role of Integrins in Health and Disease—Series 2)
Show Figures

Figure 1

16 pages, 4607 KB  
Article
Mechanistic Elucidation of Activation/Deactivation Signal Transduction within Neurotensin Receptor 1 Triggered by ‘Driver Chemical Groups’ of Modulators: A Comparative Molecular Dynamics Simulation
by Xun Lu, Xinchao Shi, Jigang Fan, Mingyu Li, Yuxiang Zhang, Shaoyong Lu, Guanghuan Xu and Ziqiang Chen
Pharmaceutics 2023, 15(7), 2000; https://doi.org/10.3390/pharmaceutics15072000 - 21 Jul 2023
Cited by 8 | Viewed by 2721
Abstract
Small-molecule modulators of neurotensin receptor 1 (NTSR1), a class A G-protein-coupled receptor (GPCR), has emerged as promising therapeutic agent for psychiatric disorders and cancer. Interestingly, a chemical group substitution in NTSR1 modulators can launch different types of downstream regulation, highlighting the significance of [...] Read more.
Small-molecule modulators of neurotensin receptor 1 (NTSR1), a class A G-protein-coupled receptor (GPCR), has emerged as promising therapeutic agent for psychiatric disorders and cancer. Interestingly, a chemical group substitution in NTSR1 modulators can launch different types of downstream regulation, highlighting the significance of deciphering the internal fine-tuning mechanism. Here, we conducted a synergistic application of a Gaussian accelerated molecular dynamics simulation, a conventional molecular dynamics simulation, and Markov state models (MSM) to investigate the underlying mechanism of ‘driver chemical groups’ of modulators triggering inverse signaling. The results indicated that the flexibility of the leucine moiety in NTSR1 agonists contributes to the inward displacement of TM7 through a loosely coupled allosteric pathway, while the rigidity of the adamantane moiety in NTSR1 antagonists leads to unfavorable downward transduction of agonistic signaling. Furthermore, we found that R3226.54, Y3196.51, F3537.42, R1483.32, S3567.45, and S3577.46 may play a key role in inducing the activation of NTSR1. Together, our findings not only highlight the ingenious signal transduction within class A GPCRs but also lay a foundation for the development of targeted drugs harboring different regulatory functions of NTSR1. Full article
(This article belongs to the Special Issue Computer Simulation for Drug Design and Medical Bioengineering)
Show Figures

Figure 1

15 pages, 7940 KB  
Article
CXCR2 Is Deregulated in ALS Spinal Cord and Its Activation Triggers Apoptosis in Motor Neuron-Like Cells Overexpressing hSOD1-G93A
by Valentina La Cognata, Agata Grazia D’Amico, Grazia Maugeri, Giovanna Morello, Maria Guarnaccia, Benedetta Magrì, Eleonora Aronica, Velia D’Agata and Sebastiano Cavallaro
Cells 2023, 12(14), 1813; https://doi.org/10.3390/cells12141813 - 9 Jul 2023
Cited by 5 | Viewed by 2640
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterized by progressive depletion of motor neurons (MNs). Recent evidence suggests a role in ALS pathology for the C-X-C motif chemokine receptor 2 (CXCR2), whose expression was found increased at both mRNA and protein [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterized by progressive depletion of motor neurons (MNs). Recent evidence suggests a role in ALS pathology for the C-X-C motif chemokine receptor 2 (CXCR2), whose expression was found increased at both mRNA and protein level in cortical neurons of sporadic ALS patients. Previous findings also showed that the receptor inhibition is able to prevent iPSC-derived MNs degeneration in vitro and improve neuromuscular function in SOD1-G93A mice. Here, by performing transcriptional analysis and immunofluorescence studies, we detailed the increased expression and localization of CXCR2 and its main ligand CXCL8 in the human lumbar spinal cord of sporadic ALS patients. We further investigated the functional role of CXCR2/ligands axis in NSC-34 motor neuron-like cells expressing human wild-type (WT) or mutant (G93A) SOD1. A significant expression of CXCR2 was found in doxycycline-induced G93A-SOD1-expressing cells, but not in WT cells. In vitro assays showed CXCR2 activation by GROα and MIP2α, two murine endogenous ligands and functional homologs of CXCL8, reduces cellular viability and triggers apoptosis in a dose dependent manner, while treatment with reparixin, a non-competitive allosteric CXCR2 inhibitor, effectively counteracts GROα and MIP2α toxicity, significantly inhibiting the chemokine-induced cell death. Altogether, data further support a role of CXCR2 axis in ALS etiopathogenesis and confirm its pharmacological modulation as a candidate therapeutic strategy. Full article
Show Figures

Figure 1

Back to TopTop