Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = alkyl glucosides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 696 KB  
Article
Application of Alkyl Polyglucosides as Components of the Extraction Medium in the Preparation of a Shampoo Cosmetic Formulation Containing Substances Isolated from Red Grape Pomace
by Tomasz Wasilewski, Zofia Hordyjewicz-Baran, Ewa Sabura, Katarzyna Malorna, Ewa Dresler, Maciej Zegarski and Natalia Stanek-Wandzel
Molecules 2025, 30(18), 3817; https://doi.org/10.3390/molecules30183817 - 19 Sep 2025
Cited by 2 | Viewed by 2921
Abstract
This study highlights the use of alkyl polyglucosides (APGs) as sustainable and mild surfactants in cosmetic preparations, such as shampoos, following the principles of green chemistry and environmentally friendly development. APGs are non-ionic surfactants of plant origin. Their favorable dermatological and toxicological profile, [...] Read more.
This study highlights the use of alkyl polyglucosides (APGs) as sustainable and mild surfactants in cosmetic preparations, such as shampoos, following the principles of green chemistry and environmentally friendly development. APGs are non-ionic surfactants of plant origin. Their favorable dermatological and toxicological profile, as well as their high skin compatibility, make them an excellent alternative to conventional surfactants used in cosmetic products. To increase the sustainability and functionality of cosmetic preparations, the concept of loan extraction was applied, in which the extraction medium is borrowed from the final cosmetic formulation. After the extraction process, the medium enriched with the extracted compounds is returned to the cosmetic. The APGs, as part of cosmetic formulations, were used in the micellar extraction process of grape pomace, a by-product of wine production. The study evaluated the effect of different types of APGs—coco-glucoside and decyl glucoside—and their concentrations on extraction efficiency, measured by LC-MS/MS based on the content of phenolic compounds and amino acids, as well as the total phenolic content, total anthocyanin content and antioxidant activity assessed by UV-Vis spectroscopy. The designed extraction medium was then used to develop a shampoo, which showed a significantly lower zein value compared to the reference preparation without extract, indicating a reduced skin irritation potential. These results highlight the potential of APG in the development of milder, sustainable cosmetic products with the ability to extract bioactive components, supporting their use in the production of environmentally friendly cosmetics. Full article
Show Figures

Figure 1

20 pages, 5950 KB  
Article
The Synergistic Combination of Curcumin and Polydatin Improves Temozolomide Efficacy on Glioblastoma Cells
by Annalucia Serafino, Ewa Krystyna Krasnowska, Sabrina Romanò, Alex De Gregorio, Marisa Colone, Maria Luisa Dupuis, Massimo Bonucci, Giampietro Ravagnan, Annarita Stringaro and Maria Pia Fuggetta
Int. J. Mol. Sci. 2024, 25(19), 10572; https://doi.org/10.3390/ijms251910572 - 30 Sep 2024
Cited by 8 | Viewed by 5560
Abstract
Glioblastoma (GBL) is one of the more malignant primary brain tumors; it is currently treated by a multimodality strategy including surgery, and radio- and chemotherapy, mainly consisting of temozolomide (TMZ)-based chemotherapy. Tumor relapse often occurs due to the establishment of TMZ resistance, with [...] Read more.
Glioblastoma (GBL) is one of the more malignant primary brain tumors; it is currently treated by a multimodality strategy including surgery, and radio- and chemotherapy, mainly consisting of temozolomide (TMZ)-based chemotherapy. Tumor relapse often occurs due to the establishment of TMZ resistance, with a patient median survival time of <2 years. The identification of natural molecules with strong anti-tumor activity led to the combination of these compounds with conventional chemotherapeutic agents, developing protocols for integrated anticancer therapies. Curcumin (CUR), resveratrol (RES), and its glucoside polydatin (PLD) are widely employed in the pharmaceutical and nutraceutical fields, and several studies have demonstrated that the combination of these natural products was more cytotoxic than the individual compounds alone against different cancers. Some of us recently demonstrated the synergistic efficacy of the sublingual administration of a new nutraceutical formulation of CUR+PLD in reducing tumor size and improving GBL patient survival. To provide some experimental evidence to reinforce these clinical results, we investigated if pretreatment with a combination of CUR+PLD can improve TMZ cytotoxicity on GBL cells by analyzing the effects on cell cycle, viability, morphology, expression of proteins related to cell proliferation, differentiation, apoptosis or autophagy, and the actin network. Cell viability was assessed using the MTT assay or a CytoSmart cell counter. CalcuSyn software was used to study the CUR+PLD synergism. The morphology was evaluated by optical and scanning electron microscopy, and protein expression was analyzed by Western blot. Flow cytometry was used for the cell cycle, autophagic flux, and apoptosis analyses. The results provide evidence that CUR and PLD, acting in synergy with each other, strongly improve the efficacy of alkylating anti-tumor agents such as TMZ on drug-resistant GBL cells through their ability to affect survival, differentiation, and tumor invasiveness. Full article
(This article belongs to the Special Issue New Agents and Novel Drugs Use for the Oncological Diseases Treatment)
Show Figures

Graphical abstract

19 pages, 4160 KB  
Article
Identification of Protosappanoside D from Caesalpinia decapetala and Evaluation of Its Pharmacokinetic, Metabolism and Pharmacological Activity
by Yueting Li, Wensha Meng, Li Yuan, Li Jiang, Zuying Zhou, Mingyan Chi, Zipeng Gong, Xue Ma, Yong Huang and Lin Zheng
Molecules 2022, 27(18), 6090; https://doi.org/10.3390/molecules27186090 - 18 Sep 2022
Cited by 7 | Viewed by 2307
Abstract
Protosappanoside D (PTD) is a new component isolated from the extract of Caesalpinia decapetala for the first time. Its structure was identified as protosappanin B-3-O-β-D-glucoside by 1H-NMR, 13C-NMR, 2D-NMR and MS techniques. To date, the pharmacological activities, [...] Read more.
Protosappanoside D (PTD) is a new component isolated from the extract of Caesalpinia decapetala for the first time. Its structure was identified as protosappanin B-3-O-β-D-glucoside by 1H-NMR, 13C-NMR, 2D-NMR and MS techniques. To date, the pharmacological activities, metabolism or pharmacokinetics of PTD has not been reported. Therefore, this research to study the anti-inflammatory activity of PTD was investigated via the LPS-induced RAW264.7 cells model. At the same time, we also used the UHPLC/Q Exactive Plus MS and UPLC-MS/MS methods to study the metabolites and pharmacokinetics of PTD, to calculate its bioavailability for the first time. The results showed that PTD could downregulate secretion of the pro-inflammatory cytokines. In the metabolic study, four metabolites were identified, and the primary degradative pathways in vivo involved the desaturation, oxidation, methylation, alkylation, dehydration, degradation and desugarization. In the pharmacokinetic study, PTD and its main metabolite protosappanin B (PTB) were measured after oral and intravenous administration. After oral administration of PTD, its Tmax was 0.49 h, t1/2z and MRT(0–t) were 3.47 ± 0.78 h and 3.06 ± 0.63 h, respectively. It shows that PTD was quickly absorbed into plasma and it may be eliminated quickly in the body, and its bioavailability is about 0.65%. Full article
Show Figures

Figure 1

12 pages, 3584 KB  
Article
Short-Chain Mono-Alkyl β-D-Glucoside Crystals—Do They Form a Cubic Crystal Structure?
by Shigesaburo Ogawa and Isao Takahashi
Molecules 2022, 27(14), 4359; https://doi.org/10.3390/molecules27144359 - 7 Jul 2022
Cited by 1 | Viewed by 2215
Abstract
Three-dimensional liquid crystal (LC) phases, cubic LC phases, have been extensively studied as fascinating molecular assembled systems formed by amphiphilic compounds. However, similar structures have only been seen in rare instances in lipid crystal states in glycolipid crystal studies. In this study, we [...] Read more.
Three-dimensional liquid crystal (LC) phases, cubic LC phases, have been extensively studied as fascinating molecular assembled systems formed by amphiphilic compounds. However, similar structures have only been seen in rare instances in lipid crystal states in glycolipid crystal studies. In this study, we prepared short-chain n-alkyl β-D-glucosides (CnG) with an alkyl chain length n ranging from 4 to 6 and investigated their crystal structures. First, differential thermal analysis (DTA) and thermogravimetric analysis (TG) measurements showed the formation of hydrated crystals for C4G and C5G, respectively. Second, the crystal structures of CnG (n = 4, 5, 6) in both anhydrous and hydrated states were examined using a temperature-controlled powder X-ray diffraction (PXRD) measurement. Both hydrate and anhydrous crystals of C4G and C5G with critical packing parameters (CPPs) less than 0.33 formed cubic crystal phases. Bilayer lengths, calculated from the main diffraction peaks in each PXRD profile, depended on crystalline moisture for C5G, but no significant change was confirmed for C4G, indicating that the properties of each hydrophilic layer differ. However, C6G with a CPP of 0.42 formed a crystal structure with a modulated lamellar structure similar to C7G and C8G with similar CPP values. Thus, a glycolipid motif concept with a cubic crystal structure was demonstrated. Full article
Show Figures

Graphical abstract

10 pages, 1024 KB  
Article
Investigating the Solubility and Activity of a Novel Class of Ice Recrystallization Inhibitors
by Anna A. Ampaw, Kayla Newell and Robert N. Ben
Processes 2021, 9(10), 1781; https://doi.org/10.3390/pr9101781 - 6 Oct 2021
Cited by 3 | Viewed by 3797
Abstract
O-aryl-β-d-glucosides and N-alkyl-d-gluconamides are two classes of effective ice recrystallization inhibitors (IRIs), however their solubilities limit their use in cryopreservation applications. Herein, we have synthesized and assessed phosphonate analogues of small-molecule IRIs as a method to improve [...] Read more.
O-aryl-β-d-glucosides and N-alkyl-d-gluconamides are two classes of effective ice recrystallization inhibitors (IRIs), however their solubilities limit their use in cryopreservation applications. Herein, we have synthesized and assessed phosphonate analogues of small-molecule IRIs as a method to improve their chemical and physical properties. Four sodium phosphonate compounds 4–7 were synthesized and exhibited high solubilities greater than 200 mM. Their IRI activity was evaluated using the splat cooling assay and only the sodium phosphonate derivatives of α-methyl-d-glucoside (5-Na) and N-octyl-d-gluconamide (7-Na) exhibited an IC50 value less than 30 mM. It was found that the addition of a polar sodium phosphonate group to the alkyl gluconamide (1) and aryl glucoside (2) structure decreased its IRI activity, indicating the importance of a delicate hydrophobic/hydrophilic balance within these compounds. The evaluation of various cation-phosphonate pairs was studied and revealed the IRI activity of ammonium and its ability to modulate the IRI activity of its paired anion. A preliminary cytotoxicity study was also performed in a HepG2 cell line and phosphonate analogues were found to have relatively low cytotoxicity. As such, we present phosphonate small-molecule carbohydrates as a biocompatible novel class of IRIs with high solubilities and moderate-to-high IRI activities. Full article
(This article belongs to the Special Issue Study on Bio-Thermofluid Dynamics)
Show Figures

Figure 1

24 pages, 7792 KB  
Article
Synthesis and Self-Assembling Properties of Peracetylated β-1-Triazolyl Alkyl D-Glucosides and D-Galactosides
by Pooja Sharma, Anji Chen, Dan Wang and Guijun Wang
Chemistry 2021, 3(3), 935-958; https://doi.org/10.3390/chemistry3030068 - 28 Aug 2021
Cited by 8 | Viewed by 3811
Abstract
Carbohydrate-based low-molecular-weight gelators (LMWGs) are useful classes of compounds due to their numerous applications. Among sugar-based LMWGs, certain peracetylated sugar beta-triazole derivatives were found to be effective organogelators and showed interesting self-assembling properties. To further understand the structural influence towards molecular assemblies and [...] Read more.
Carbohydrate-based low-molecular-weight gelators (LMWGs) are useful classes of compounds due to their numerous applications. Among sugar-based LMWGs, certain peracetylated sugar beta-triazole derivatives were found to be effective organogelators and showed interesting self-assembling properties. To further understand the structural influence towards molecular assemblies and obtain new functional materials with interesting properties, we designed and synthesized a library of tetraacetyl beta-1-triazolyl alkyl-D-glucosides and D-galactosides, in which a two or three carbon spacer is inserted between the anomeric position and the triazole moiety. A series of 16 glucose derivatives and 14 galactose derivatives were synthesized and analyzed. The self-assembling properties of these new triazole containing glycoconjugates in different solvents were analyzed. Several glucose derivatives were found to be effective LMWGs, with compound 7a forming gels in a variety of organic solvents as well as in the presence of metal ions in aqueous solutions. The organogels formed by several compounds were characterized using optical microscopy, atomic force microscopy (AFM) and UV-vis spectroscopy, etc. The co-gels formed by compound 7a with the Fmoc derivative 7i showed interesting fluorescence enhancement upon gelation. Several gelators were also characterized using powder X-ray diffraction and FT-IR spectroscopy. The potential applications of these sugar-based gelators for drug delivery and dye removal were also studied. Full article
(This article belongs to the Special Issue Supramolecular Materials)
Show Figures

Graphical abstract

13 pages, 1432 KB  
Article
Production and Surfactant Properties of Tert-Butyl α-d-Glucopyranosides Catalyzed by Cyclodextrin Glucanotransferase
by Humberto Garcia-Arellano, Jose L. Gonzalez-Alfonso, Claudia Ubilla, Francesc Comelles, Miguel Alcalde, Manuel Bernabé, José-Luis Parra, Antonio O. Ballesteros and Francisco J. Plou
Catalysts 2019, 9(7), 575; https://doi.org/10.3390/catal9070575 - 29 Jun 2019
Cited by 11 | Viewed by 4506
Abstract
While testing the ability of cyclodextrin glucanotransferases (CGTases) to glucosylate a series of flavonoids in the presence of organic cosolvents, we found out that this enzyme was able to glycosylate a tertiary alcohol (tert-butyl alcohol). In particular, CGTases from Thermoanaerobacter sp. [...] Read more.
While testing the ability of cyclodextrin glucanotransferases (CGTases) to glucosylate a series of flavonoids in the presence of organic cosolvents, we found out that this enzyme was able to glycosylate a tertiary alcohol (tert-butyl alcohol). In particular, CGTases from Thermoanaerobacter sp. and Thermoanaerobacterium thermosulfurigenes EM1 gave rise to the appearance of at least two glycosylation products, which were characterized by mass spectrometry (MS) and nuclear magnetic resonance (NMR) as tert-butyl-α-D-glucoside (major product) and tert-butyl-α-D-maltoside (minor product). Using partially hydrolyzed starch as glucose donor, the yield of transglucosylation was approximately 44% (13 g/L of tert-butyl-α-D-glucoside and 4 g/L of tert-butyl-α-D-maltoside). The synthesized tert-butyl-α-D-glucoside exhibited the typical surfactant behavior (critical micellar concentration, 4.0–4.5 mM) and its properties compared well with those of the related octyl-α-D-glucoside. To the best of our knowledge, this is the first description of an enzymatic α-glucosylation of a tertiary alcohol. Full article
(This article belongs to the Special Issue Biocatalysis: Chemical Biosynthesis)
Show Figures

Figure 1

13 pages, 3128 KB  
Article
Enzymatic Synthesis of Glucose-Based Fatty Acid Esters in Bisolvent Systems Containing Ionic Liquids or Deep Eutectic Solvents
by Kai-Hua Zhao, Yu-Zheng Cai, Xiao-Sheng Lin, Jun Xiong, Peter J. Halling and Zhen Yang
Molecules 2016, 21(10), 1294; https://doi.org/10.3390/molecules21101294 - 27 Sep 2016
Cited by 45 | Viewed by 12166
Abstract
Sugar fatty acid esters (SFAEs) are biocompatible nonionic surfactants with broad applications in food, cosmetic, and pharmaceutical industries. They can be synthesized enzymatically with many advantages over their chemical synthesis. In this study, SFAE synthesis was investigated by using two reactions: (1) transesterification [...] Read more.
Sugar fatty acid esters (SFAEs) are biocompatible nonionic surfactants with broad applications in food, cosmetic, and pharmaceutical industries. They can be synthesized enzymatically with many advantages over their chemical synthesis. In this study, SFAE synthesis was investigated by using two reactions: (1) transesterification of glucose with fatty acid vinyl esters and (2) esterification of methyl glucoside with fatty acids, catalyzed by Lipozyme TLIM and Novozym 435 respectively. Fourteen ionic liquids (ILs) and 14 deep eutectic solvents (DESs) were screened as solvents, and the bisolvent system composed of 1-hexyl-3-methylimidazolium trifluoromethylsulfonate ([HMIm][TfO]) and 2-methyl-2-butanol (2M2B) was the best for both reactions, yielding optimal productivities (769.6 and 397.5 µmol/h/g, respectively) which are superior to those reported in the literature. Impacts of different reaction conditions were studied for both reactions. Response surface methodology (RSM) was employed to optimize the transesterification reaction. Results also demonstrated that as co-substrate, methyl glucoside yielded higher conversions than glucose, and that conversions increased with an increase in the chain length of the fatty acid moieties. DESs were poor solvents for the above reactions presumably due to their high viscosity and high polarity. Full article
Show Figures

Graphical abstract

1 pages, 104 KB  
Conference Report
Natural Surfactant of Alkyl Polyglucoside Type: A Physicochemical Characterization of New Mixed Emulsifier
by M. LUKIC, I. JAKSIC, R. DANIELS, G. VULETA and S. SAVIC
Sci. Pharm. 2010, 78(3), 719; https://doi.org/10.3797/scipharm.cespt.8.POT04 - 12 Jul 2010
Viewed by 1492
Abstract
In the light of the current trend for natural surfactants to be used as emulsifiers [1], a physicochemical characterization of a new mixed alkyl polyglucoside (APG) emulsifier (Arahidyl&Behenyl alcohol&Arahidyl glucoside) was performed. [...]
Full article
Back to TopTop