Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = air-water properties of the organic substrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 708 KB  
Article
Sustainable Strategies for Raspberry Production: Greenhouse Gas Mitigation Through Biodegradable Substrate Additives in High Tunnels
by Monika Komorowska, Maciej Kuboń, Marcin Niemiec, Justyna Tora, Małgorzata Okręglicka and Arunee Wongkaew
Sustainability 2025, 17(19), 8740; https://doi.org/10.3390/su17198740 - 29 Sep 2025
Cited by 1 | Viewed by 1264
Abstract
Fruit production is a high environmental impact sector, requiring sustainable strategies that reduce greenhouse gas (GHG) emissions, improve resource efficiency, and maintain fruit quality. This study assessed the environmental performance of innovative substrates with biodegradable additives and organic binders in tunnel-grown raspberry production. [...] Read more.
Fruit production is a high environmental impact sector, requiring sustainable strategies that reduce greenhouse gas (GHG) emissions, improve resource efficiency, and maintain fruit quality. This study assessed the environmental performance of innovative substrates with biodegradable additives and organic binders in tunnel-grown raspberry production. The functional unit was 1 kg of marketable fruit, and the experiment was conducted in Karwia, Poland. GHG emissions were calculated for eight substrate variants following ISO 14040 and 14041 guidelines. The baseline was coconut fiber, while modified variants included the additions of sunflower husk biochar and/or a wood-industry isolate, representing sustainable strategies in soilless cultivation. Emissions ranged from 0.728 to 1.226 kg CO2 eq/kg of raspberries, with the control showing the highest values. All modified substrates (produced based on a mixture of biochar and isolate) reduced emissions, with the most efficient variant achieving nearly a 40% decrease. Water use efficiency was decisive, as consumption declined from 2744 m3/ha (control) to 1838 m3/ha in improved variants. Substrate air–water properties proved critical for both environmental and economic outcomes. The findings confirm that substrate modification constitutes an effective, sustainable strategy for raspberry production under high tunnels, supporting climate-smart horticulture and resource-efficient food systems. Full article
(This article belongs to the Special Issue Sustainable Agricultural and Rural Development)
Show Figures

Figure 1

14 pages, 4529 KB  
Article
Optical and Electrical Properties of AlxGa1−xN/GaN Epilayers Modulated by Aluminum Content
by Wenwang Wei, Yanlian Yang, Yi Peng, Mudassar Maraj and Wenhong Sun
Molecules 2024, 29(5), 1152; https://doi.org/10.3390/molecules29051152 - 5 Mar 2024
Cited by 4 | Viewed by 2014
Abstract
AlGaN-based LEDs are promising for many applications in deep ultraviolet fields, especially for water-purification projects, air sterilization, fluorescence sensing, etc. However, in order to realize these potentials, it is critical to understand the factors that influence the optical and electrical properties of the [...] Read more.
AlGaN-based LEDs are promising for many applications in deep ultraviolet fields, especially for water-purification projects, air sterilization, fluorescence sensing, etc. However, in order to realize these potentials, it is critical to understand the factors that influence the optical and electrical properties of the device. In this work, AlxGa1−xN (x = 0.24, 0.34, 0.47) epilayers grown on c-plane patterned sapphire substrate with GaN template by the metal organic chemical vapor deposition (MOCVD). It is demonstrated that the increase of the aluminum content leads to the deterioration of the surface morphology and crystal quality of the AlGaN epitaxial layer. The dislocation densities of AlxGa1−xN epilayers were determined from symmetric and asymmetric planes of the ω-scan rocking curve and the minimum value is 1.01 × 109 cm−2. The (101¯5) plane reciprocal space mapping was employed to measure the in-plane strain of the AlxGa1−xN layers grown on GaN. The surface barrier heights of the AlxGa1−xN samples derived from XPS are 1.57, 1.65, and 1.75 eV, respectively. The results of the bandgap obtained by PL spectroscopy are in good accordance with those of XRD. The Hall mobility and sheet electron concentration of the samples are successfully determined by preparing simple indium sphere electrodes. Full article
Show Figures

Figure 1

20 pages, 1696 KB  
Review
The Effect of Different Biochar Characteristics on Soil Nitrogen Transformation Processes: A Review
by Donna Davys, Francis Rayns, Susanne Charlesworth and Robert Lillywhite
Sustainability 2023, 15(23), 16446; https://doi.org/10.3390/su152316446 - 30 Nov 2023
Cited by 15 | Viewed by 3861
Abstract
For the last 30 years, interest has focused on biochar and its potential to store carbon in soil to mitigate climate change whilst improving soil properties for increased crop production and, therefore, could play a critical role in both agricultural sustainability and broader [...] Read more.
For the last 30 years, interest has focused on biochar and its potential to store carbon in soil to mitigate climate change whilst improving soil properties for increased crop production and, therefore, could play a critical role in both agricultural sustainability and broader environmental aims. Biochar, a carbonaceous product, is formed from organic feedstock pyrolysised in the absence of air and, therefore, is a potential means of recycling organic waste. However, different feedstock and pyrolysis conditions result in a biochar with a range of altered characteristics. These characteristics influence nitrogen transformation processes in soil and result in the metabolism of different substrates and the formation of different products, which have different effects on agricultural yield. This paper reviews how the production of biochar, from varying feedstock and pyrolysis conditions, results in different biochar characteristics that influence each stage of the nitrogen cycle, namely processes involved in fixation, assimilation, mineralisation and denitrification. The nitrogen cycle is briefly outlined, providing a structure for the following discussion on influential biochar characteristics including carbon composition (whether recalcitrant or rapidly metabolisable), mineral composition, surface area, porosity, cation exchange capacity, inhibitory substances and pH and so on. Hence, after the addition of biochar to soil, microbial biomass and diversity, soil porosity, bulk density, water-holding capacity, cation exchange capacity, pH and other parameters change, but that change is subject to the type and amount of biochar. Hence, products from soil-based nitrogen transformation processes, which may be beneficial for plant growth, are highly dependent on biochar characteristics. The paper concludes with a diagrammatic summation of the influence of biochar on each phase of the nitrogen cycle, which, it is hoped, will serve as a reference for both students and biochar practitioners. Full article
(This article belongs to the Special Issue Sustainable Development and Application of Biochar)
Show Figures

Graphical abstract

13 pages, 5549 KB  
Article
Fabrication of Photo-Responsive Mesh Membrane with Surface-Engineered Wettability for Oil–Water Separation and Photocatalytic Degradation of Organic Pollutants
by Umair Baig and Mohamed A. Dastageer
Membranes 2023, 13(3), 302; https://doi.org/10.3390/membranes13030302 - 4 Mar 2023
Cited by 21 | Viewed by 2909
Abstract
A photo-responsive TiO2-coated stainless-steel mesh membrane (TiO2@SSM), possessing unique surface wettability, was fabricated. This TiO2@SSM membrane is found to be capable of separating oil and water from oily water and has the potential to carry out photocatalytic [...] Read more.
A photo-responsive TiO2-coated stainless-steel mesh membrane (TiO2@SSM), possessing unique surface wettability, was fabricated. This TiO2@SSM membrane is found to be capable of separating oil and water from oily water and has the potential to carry out photocatalytic self-cleaning and/or the degradation of organic pollutants present in water. The fabrication of TiO2@SSM is quite simple: titanium dioxide (TiO2) nanoparticles were spray-coated onto stainless steel microporous mesh (SSM) substrates and annealed at the temperature of 500 °C. The fabricated TiO2@SSM membrane was structurally and morphologically characterized by XRD, FE-SEM, EDX, and elemental mapping. The contact angle measurements using a goniometer showed that the fabricated TiO2@SSM membrane surface is superhydrophilic and superoleophilic in air and superoleophobic under water. This is a favorable wetting condition for the water passing oil–water separation membrane, and this water passing property of the membrane eased the common problem of the fast clogging of the membrane by oil. An oil–water separation efficiency of about 99% was achieved, when the TiO2@SSM membrane was used as the separating medium in the gravity-driven oil–water separation system, unlike the uncoated stainless steel mesh membrane, which allowed both oil and water to pass together. This confirmed that the oil–water separating functionality of the membrane is attributed to TiO2 coating on the stainless steel mesh. The photocatalytic degradation property of the TiO2@SSM membrane is an added advantage, where the membrane can be potentially used for self-cleaning of the membrane’s surface and/or for water purification. Full article
(This article belongs to the Section Polymeric Membranes)
Show Figures

Figure 1

24 pages, 790 KB  
Review
The Use of Waste to Produce Liquid Fertilizers in Terms of Sustainable Development and Energy Consumption in the Fertilizer Industry—A Case Study from Poland
by Rebeka Pajura, Adam Masłoń and Joanna Czarnota
Energies 2023, 16(4), 1747; https://doi.org/10.3390/en16041747 - 9 Feb 2023
Cited by 26 | Viewed by 11060
Abstract
The topical challenge for the Polish, European, and global fertilizer industry is to produce sufficient nutrients for growing plants using more energy-efficient and environmentally friendly methods. The appropriate course of action, in terms of the challenges posed, could be the production of liquid [...] Read more.
The topical challenge for the Polish, European, and global fertilizer industry is to produce sufficient nutrients for growing plants using more energy-efficient and environmentally friendly methods. The appropriate course of action, in terms of the challenges posed, could be the production of liquid fertilizers, made from waste materials that exhibit fertilizer properties. This solution makes it possible not only to reduce the exploitation of natural resources but above all, to implement elements of a circular economy and reduce the energy intensity of the fertilizer industry. This study shows that both in Poland and the European Union, there are current regulations aimed at elements of a circular economy and indicating the need to obtain fertilizers containing valuable plant nutrients from organic waste or recycled materials. The recognition carried out for the Polish market clearly indicates that to produce liquid organic fertilizers and soil conditioners, the most used is the digestate from the fermentation process. The preparation of liquid organic–mineral fertilizers is mainly based on algae extracts. Mine minerals are used in the production of mineral–liquid fertilizers. An analysis of data has shown that the above-mentioned waste materials, used as substrates to produce fertilizers, contain chemical substances and elements important for, among other things, stimulation of proper plant development, growth of aboveground and underground parts of plants, increased resistance to diseases and pests, and regulation of plant water management. Referring to the above information, the production of liquid fertilizers from waste materials seems reasonable and is an alternative to mineral–solid fertilizers, whose production process is energy-intensive and produces air emissions. Detailed identification of the properties of the various components made it possible to demonstrate their usefulness in terms of fertilizing plants and soils, but also to emphasize the importance of this line of research and the need to look for other groups of waste for reuse within the framework of a circular economy. Full article
(This article belongs to the Special Issue Energy Consumption in the EU Countries II)
Show Figures

Figure 1

35 pages, 1290 KB  
Review
Digestate Management and Processing Practices: A Review
by Đurđica Kovačić, Zdenko Lončarić, Jurica Jović, Danijela Samac, Brigita Popović and Marina Tišma
Appl. Sci. 2022, 12(18), 9216; https://doi.org/10.3390/app12189216 - 14 Sep 2022
Cited by 101 | Viewed by 17117
Abstract
The implementation of sustainable agro-energy systems that integrate crop, livestock, and bioenergy production is attracting increasing interest from farmers. Livestock produces large amounts of animal manure which can serve as organic fertilizer for crops and pasture growth. However, the nutrients contained in manure [...] Read more.
The implementation of sustainable agro-energy systems that integrate crop, livestock, and bioenergy production is attracting increasing interest from farmers. Livestock produces large amounts of animal manure which can serve as organic fertilizer for crops and pasture growth. However, the nutrients contained in manure can adversely affect air, water, and soil quality and pose a public health risk if not handled properly. Existing manure management practices vary widely on a global scale. Researchers are striving to identify appropriate manure management practices with the aim of environmental protection. Anaerobic digestion of manure and subsequent digestate (DG) processing technologies have been proposed to stabilize manure so that it can be safely used for land applications. DG, which represents digested substrate removed from the anaerobic reactor after recovery of biogas, is a rich source of N, P, K, and S, various micronutrients, and organic matter, the addition of which to the soil can stimulate soil microbial biomass metabolic activities thus improving soil ecosystem function. However, the optimal fertilization properties of DG can be lost if it is neither fully stabilized nor contains biodegradable materials. To overcome these problems, various processing technologies can be used to convert DG into value-added by-products. Composting has been proposed as one such preferred post-treatment that can convert DG into mature, stable, safe, humus- and nutrient-rich compost. Other processing technologies such as thermal drying, gasification, hydrothermal carbonization, pyrolysis, membrane filtration, struvite precipitation, ammonia stripping, and evaporation have also been proposed for DG processing and nutrient recovery from DG. The objective of this review paper was to provide an overview of the current state of the art in DG management regulations and practices and to provide an update on the various processes that have been developed to meet DG stabilization requirements, with a focus on composting as one of the preferred solutions. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

16 pages, 4403 KB  
Article
Effect of Plasmonic Au and Ag/Au Nanoparticles and Sodium Citrate on the Optical Properties of Chitin-Based Photonic Nanoarchitectures in Butterfly Wing Scales
by Krisztián Kertész, Gábor Piszter, Zsolt Endre Horváth, Dániel Zámbó, András Deák and László Péter Biró
Photonics 2022, 9(8), 553; https://doi.org/10.3390/photonics9080553 - 6 Aug 2022
Cited by 3 | Viewed by 4190
Abstract
Porous butterfly wings with hierarchically organized structures from nanometer to centimeter scales were tested as substrates for carrying plasmonic Au and Ag/Au nanoparticles with potential application in photocatalysis. Wings exhibiting structural color generated by chitin-air nanocomposites were used. Hundreds of butterfly species possess [...] Read more.
Porous butterfly wings with hierarchically organized structures from nanometer to centimeter scales were tested as substrates for carrying plasmonic Au and Ag/Au nanoparticles with potential application in photocatalysis. Wings exhibiting structural color generated by chitin-air nanocomposites were used. Hundreds of butterfly species possess these types of color-generating photonic nanoarchitectures, producing color by a similar mechanism to manmade photonic crystals. Artificial photonic crystals are known to enhance photocatalytic processes through the slow light effect. The impact of pure water, water-based sodium citrate solution, and Au and Ag/Au alloy nanoparticles on the optical properties of the natural photonic structures were separated. While water and aqueous sodium citrate solutions change the wing reflectance by the alteration of the wing scale position with respect to the wing plane, Au and Ag/Au alloy nanoparticles form a new, hybrid nanostructure with the chitin nanoarchitecture modifying the structural color of the butterfly wings. The optical properties of the new types of hybrid photonic nanoarchitectures (consisting of butterfly wings and plasmonic nanoparticles) are different from those of the components. Full article
(This article belongs to the Special Issue Advanced/Novel Photonics Nanostructures)
Show Figures

Figure 1

17 pages, 1084 KB  
Article
Soilless Tomato Production: Effects of Hemp Fiber and Rock Wool Growing Media on Yield, Secondary Metabolites, Substrate Characteristics and Greenhouse Gas Emissions
by Annika Nerlich, Stefan Karlowsky, Dietmar Schwarz, Nadja Förster and Dennis Dannehl
Horticulturae 2022, 8(3), 272; https://doi.org/10.3390/horticulturae8030272 - 21 Mar 2022
Cited by 23 | Viewed by 7937
Abstract
Replacement of rock wool by organic substrates is considered to reduce the environmental impact, e.g., through energy savings during production and waste prevention, caused by hydroponically produced crops. A suitable substrate for plant production is characterized by an optimal composition of air- and [...] Read more.
Replacement of rock wool by organic substrates is considered to reduce the environmental impact, e.g., through energy savings during production and waste prevention, caused by hydroponically produced crops. A suitable substrate for plant production is characterized by an optimal composition of air- and water-filled pores. In our study, we used hemp fibers as an organic alternative to rock wool in order to cultivate tomato plants in hydroponics for 36 weeks. The leaf area, plant length, and yields, as well as the quality of fruits including soluble solid contents, dry weight content, mineral composition, and contents of phenolic compounds caused by both substrates, were similar. Carotenoids were significantly increased in fruits from plants grown in hemp at some measuring dates. Nevertheless, higher emission rates of greenhouse gases such as N2O, CO2, and CH4 caused by hemp fiber compared to those emitted by rock wool during use are rather disadvantageous for the environment. While hemp proved to be a suitable substrate in terms of some physical properties (total pore volume, bulk density), a lower volume of air and easily available water as well as very rapid microbial decomposition and the associated high nitrogen immobilization must be considered as disadvantages. Full article
Show Figures

Figure 1

10 pages, 3561 KB  
Article
Keeping a Clean Surface under Water: Nanoscale Nipple Array Decreases Surface Adsorption and Adhesion Forces
by Kaoru Uesugi, Kazuaki Nagayama and Euichi Hirose
J. Mar. Sci. Eng. 2022, 10(1), 81; https://doi.org/10.3390/jmse10010081 - 8 Jan 2022
Cited by 4 | Viewed by 2480
Abstract
While nanoscale nipple arrays are expected to reduce light reflection and/or dust contamination in some insects, similar structures have been reported in various marine invertebrates. To evaluate the anti-contamination property of the structure in aquatic regimes, we measured the adsorption and adhesion forces [...] Read more.
While nanoscale nipple arrays are expected to reduce light reflection and/or dust contamination in some insects, similar structures have been reported in various marine invertebrates. To evaluate the anti-contamination property of the structure in aquatic regimes, we measured the adsorption and adhesion forces on the flat surface and MOSMITE™ (Mitsubishi Chemical Corporation, Tokyo, Japan), a synthetic material mimicking the nipple array, under water. A small force toward the surface occurred when the probe approached the substrate surface. This adsorption force was significantly smaller on MOSMITE™ than on the flat surface. The adhesion force toward the surface occurred when the probe was detached from the surface, and it was also significantly smaller on MOSMITE™ than on the flat surface. The adhesion force in the air was much greater than the force under water, and the force was also significantly smaller on MOSMITE™ than on the flat surface. In the aquatic regime, the nipple array provides less adsorption/adhesion properties for the surface and thus, the organisms would have less contamination of microparticles on their body surface. As the adsorption and adhesion forces are also involved in the attachment of cells, tissue, and larvae, less adhesive body surfaces should be beneficial for survival in aquatic environments, as well as land environments. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

12 pages, 9357 KB  
Article
Effective Purification of Eutrophic Wastewater from the Beverage Industry by Microbubbles
by Kimio Fukami, Tatsuro Oogi, Kohtaro Motomura, Tomoka Morita, Masaoki Sakamoto and Takashi Hata
Water 2021, 13(24), 3661; https://doi.org/10.3390/w13243661 - 20 Dec 2021
Cited by 5 | Viewed by 4479
Abstract
Beverage industries often discharge large amounts of organic matter with their wastewater. Purification of the effluent is their obligation, but it is nontrivial. Among wastewater components, removal of dissolved organic matter often requires much effort. Therefore, a special effective technique must be considered. [...] Read more.
Beverage industries often discharge large amounts of organic matter with their wastewater. Purification of the effluent is their obligation, but it is nontrivial. Among wastewater components, removal of dissolved organic matter often requires much effort. Therefore, a special effective technique must be considered. Microbubbles (1–100 μm) have several special properties of relevance to wastewater treatment. In this study, the effectiveness of microbubbles for treating and purifying beverage wastewater was evaluated. Orange juice, lactic acid drink, and milk were used as model substrates of dissolved organic matter, and degradation experiments were carried out. Rates of air supply by microbubbles were 0.05% (air/wastewater) min−1. Results indicated that the total organic carbon (TOC) in an experimental vessel containing milk (high nitrogen content) decreased by 93.1% from 11.0 to 0.76 g during a 10-day incubation. The TOC of lactic acid drink (least nitrogen content) decreased by 66.3%, from 15.6 to 5.26 g, and the TOC of orange juice (medium nitrogen content) decreased by 82.7%, from 14.8 to 2.55 g. Large amounts of particulate organic matter floated on the water surface in the milk with microbubbles and were removed easily, while almost no floating materials were observed in the orange juice and lactic acid drink. In contrast, in the macrobubble treatment (diameter 0.1 to 2 mm), only 37.0% of TOC in the milk was removed. Whereas the macrobubble treatments were anaerobic throughout the incubations, the microbubble treatments returned to aerobic conditions quickly, and brought 10 times greater bacterial abundances (>108 cells mL−1). These results suggest that microbubbles are much superior to macrobubbles in supplying oxygen and accelerating the growth of aerobic bacteria, and that wastewater containing more nitrogenous compounds was purified more effectively than that with less nitrogen by microbial degradation and floating separation. Full article
Show Figures

Graphical abstract

19 pages, 585 KB  
Review
Microbial Life on the Surface of Microplastics in Natural Waters
by Olena Stabnikova, Viktor Stabnikov, Andriy Marinin, Maris Klavins, Linards Klavins and Ashok Vaseashta
Appl. Sci. 2021, 11(24), 11692; https://doi.org/10.3390/app112411692 - 9 Dec 2021
Cited by 66 | Viewed by 9212
Abstract
Major water-polluting microplastics (for example, polyethylene, polypropylene and others) have lower density than water. Therefore, they are concentrated in the neustonic layer near the water-air interface altogether with dissolved or colloidal natural organic matter, hydrophobic cells and spores of bacteria. This can cause [...] Read more.
Major water-polluting microplastics (for example, polyethylene, polypropylene and others) have lower density than water. Therefore, they are concentrated in the neustonic layer near the water-air interface altogether with dissolved or colloidal natural organic matter, hydrophobic cells and spores of bacteria. This can cause environmental and public health problems because the floating micro- and nanoparticles of plastics could be coated with biofilm of hydrophobic and often putative pathogenic bacteria. Biofilm-coated microplastics are more attractive for consumption by aquatic animals than pure microplastics, and that increases the negative impacts of microplastics. So, impacts of even small quantities of microplastics in aquatic environments must be accounted for considering their accumulation in the micro-layer of water-air interphase and its interaction with bacterioneuston. Microorganisms attached to the surface of microplastic particles could interact with them, use them as substrates for growth, to change properties and biodegrade. The study of microbial life on the surface of microplastic particles is one of the key topics to understanding their role in the environment. Full article
(This article belongs to the Special Issue Environmental Chemical: Pollution, Analysis and Restoration)
Show Figures

Figure 1

13 pages, 1161 KB  
Article
Estimation of Yield, Photosynthetic Rate, Biochemical, and Nutritional Content of Red Leaf Lettuce (Lactuca sativa L.) Grown in Organic Substrates
by Md. Dulal Sarkar, Md. Jahedur Rahman, Jasim Uddain, Md. Quamruzzaman, Md. Obyedul Kalam Azad, Md. Hafizur Rahman, Md. Jahirul Islam, Mohammed Saifur Rahman, Ki-Young Choi and Most Tahera Naznin
Plants 2021, 10(6), 1220; https://doi.org/10.3390/plants10061220 - 15 Jun 2021
Cited by 20 | Viewed by 5645
Abstract
This study aimed to evaluate the effect of organic substrates on the growth yield, photosynthetic response, and nutritional profile of red leaf lettuce grown in different compositions of cocopeat (CP), sawdust (SD), and rice husk (RH). The result showed that the properties of [...] Read more.
This study aimed to evaluate the effect of organic substrates on the growth yield, photosynthetic response, and nutritional profile of red leaf lettuce grown in different compositions of cocopeat (CP), sawdust (SD), and rice husk (RH). The result showed that the properties of substrates were influenced variably by their mixing ratios. The highest water holding capacity and moisture content were found in CP, and it provided the preferable pH, electrical conductivity, bulk density, and air-filled porosity in association with other categories of the substrate. Cocopeat-based media provides ample microclimate conditions in the root region of plants and increased their height, number of leaves, and fresh biomass components. The utmost dry biomass of plant parts also remarkably increased in CP; L*, a*, and b* chromaticity of leaves remained unchanged. The maximum chlorophyll content was attained in CP substrate, except for chlorophyll a/b, which was higher in RH. The net photosynthetic rate (PN), transpiration rate (E), and nitrate in leaves were enhanced substantially in CP, while it was lower in SD. Biochemical compositions and nutrients in leaves were likewise stimulated under the culture of cocopeat-based media. Results indicate that cocopeat, sawdust, and rice husk are a possible substrates mixture in a volume ratio of 3:1:1, which would be a better choice in the cultivation of red leaf lettuce. Full article
(This article belongs to the Collection Plant Nutrition Biofortification)
Show Figures

Figure 1

14 pages, 18238 KB  
Article
Effect of Re-Used Lignite and Mineral Wool Growing Mats on Plant Growth, Yield and Fruit Quality of Cucumber and Physical Parameters of Substrates in Hydroponic Cultivation
by Radosław Łaźny, Małgorzata Mirgos, Jarosław L. Przybył, Jacek S. Nowak, Małgorzata Kunka, Janina Gajc-Wolska and Katarzyna Kowalczyk
Agronomy 2021, 11(5), 998; https://doi.org/10.3390/agronomy11050998 - 18 May 2021
Cited by 14 | Viewed by 4961
Abstract
In hydroponic cultivation of vegetables with a solid substrate, mineral wool predominates. The pro-ecological policy and consumers’ expectations cause an increase in interest in organic substrates, which, when properly used, are less harmful to the environment. The aim of this study was to [...] Read more.
In hydroponic cultivation of vegetables with a solid substrate, mineral wool predominates. The pro-ecological policy and consumers’ expectations cause an increase in interest in organic substrates, which, when properly used, are less harmful to the environment. The aim of this study was to determine the effect of reusing lignite substrate in hydroponic cultivation on the growth, yield and quality of cucumber fruit and on the physical parameters of the substrate. The greenhouse cucumber cultivar ‘Mewa F1’ with semi-long fruits and smooth skin was used for the study. The plants were grown in the ‘Carbomat’ lignite substrate and ‘Grotop Master’ rockwool in two cycles. In cycle 1, new growing mats were used, while in cycle 2 the same growing mats as in cycle 1 were used again. In the hydroponic cultivation carried out on mineral wool and in the lignite substrate, both in the new and the reused substrate, the cucumber obtained mostly similar plant growth parameters and fruit color. Cucumber grown on the new mineral wool had a higher number and weight of fruits, which were characterized by a higher content of β-carotene and lutein compared to fruits from plants grown in the new lignite substrate. On the other hand, the reused lignite substrate resulted in higher cucumber yields and fruits with higher firmness and higher carotenoid content compared to cucumber grown on reused mineral wool. At the same time, the content of dry matter and sugar extract in fruits obtained from plants growing in the new and reused lignite substrate was higher compared to fruits grown in mineral wool. Both new and reused lignite substrate were characterized by very low plant-available water content. In contrast; the air and water holding capacity of lignite after cultivation did not change as much as that of mineral wool. Full article
Show Figures

Figure 1

57 pages, 11428 KB  
Review
Charge Carrier Processes and Optical Properties in TiO2 and TiO2-Based Heterojunction Photocatalysts: A Review
by Stefano Lettieri, Michele Pavone, Ambra Fioravanti, Luigi Santamaria Amato and Pasqualino Maddalena
Materials 2021, 14(7), 1645; https://doi.org/10.3390/ma14071645 - 27 Mar 2021
Cited by 263 | Viewed by 14858
Abstract
Photocatalysis based technologies have a key role in addressing important challenges of the ecological transition, such as environment remediation and conversion of renewable energies. Photocatalysts can in fact be used in hydrogen (H2) production (e.g., via water splitting or photo-reforming of [...] Read more.
Photocatalysis based technologies have a key role in addressing important challenges of the ecological transition, such as environment remediation and conversion of renewable energies. Photocatalysts can in fact be used in hydrogen (H2) production (e.g., via water splitting or photo-reforming of organic substrates), CO2 reduction, pollution mitigation and water or air remediation via oxidation (photodegradation) of pollutants. Titanium dioxide (TiO2) is a “benchmark” photocatalyst, thanks to many favorable characteristics. We here review the basic knowledge on the charge carrier processes that define the optical and photophysical properties of intrinsic TiO2. We describe the main characteristics and advantages of TiO2 as photocatalyst, followed by a summary of historical facts about its application. Next, the dynamics of photogenerated electrons and holes is reviewed, including energy levels and trapping states, charge separation and charge recombination. A section on optical absorption and optical properties follows, including a discussion on TiO2 photoluminescence and on the effect of molecular oxygen (O2) on radiative recombination. We next summarize the elementary photocatalytic processes in aqueous solution, including the photogeneration of reactive oxygen species (ROS) and the hydrogen evolution reaction. We pinpoint the TiO2 limitations and possible ways to overcome them by discussing some of the “hottest” research trends toward solar hydrogen production, which are classified in two categories: (1) approaches based on the use of engineered TiO2 without any cocatalysts. Discussed topics are highly-reduced “black TiO2”, grey and colored TiO2, surface-engineered anatase nanocrystals; (2) strategies based on heterojunction photocatalysts, where TiO2 is electronically coupled with a different material acting as cocatalyst or as sensitizer. Examples discussed include TiO2 composites or heterostructures with metals (e.g., Pt-TiO2, Au-TiO2), with other metal oxides (e.g., Cu2O, NiO, etc.), direct Z-scheme heterojunctions with g-C3N4 (graphitic carbon nitride) and dye-sensitized TiO2. Full article
(This article belongs to the Special Issue TiO2-Based Nanostructures, Composites and Hybrid Photocatalysts)
Show Figures

Figure 1

16 pages, 3055 KB  
Article
Comparative Photo-Electrochemical and Photocatalytic Studies with Nanosized TiO2 Photocatalysts towards Organic Pollutants Oxidation
by Damián Monllor-Satoca, Pedro Bonete, Ridha Djellabi, Giuseppina Cerrato, Lorenza Operti, Roberto Gómez and Claudia Letizia Bianchi
Catalysts 2021, 11(3), 349; https://doi.org/10.3390/catal11030349 - 9 Mar 2021
Cited by 12 | Viewed by 3524
Abstract
The size of TiO2 can significantly affect both its photocatalytic and photo-electrochemical properties, thus altering the photooxidation of organic pollutants in air or water. In this work, we give an account of the photo-electrochemical and photocatalytic features of some nanosized TiO2 [...] Read more.
The size of TiO2 can significantly affect both its photocatalytic and photo-electrochemical properties, thus altering the photooxidation of organic pollutants in air or water. In this work, we give an account of the photo-electrochemical and photocatalytic features of some nanosized TiO2 commercial powders towards a model reaction, the photooxidation of acetone. Cyclic voltammograms (CV) of TiO2 particulate electrodes under UV illumination experiments were carried out in either saturated O2 or N2 solutions for a direct correlation with the photocatalytic process. In addition, the effect of different reaction conditions on the photocatalytic efficiency under UV light in both aqueous and gaseous phases was also investigated. CV curves with the addition of acetone under UV light showed a negative shift of the photocurrent onset, confirming the efficient transfer of photoproduced reactive oxygen species (ROSs), e.g., hydroxyl radicals or holes to acetone molecules. The photocatalytic experiments showed that the two nano-sized samples exhibit the best photocatalytic performance. The different photoactivity of the larger-sized samples is probably attributed to their morphological differences, affecting both the amount and distribution of free ROSs involved in the photooxidation reaction. Finally, a direct correlation between the photocatalytic measurements in gas phase and the photo-electrochemical measurements in aqueous phase is given, thus evincing the important role of the substrate-surface interaction with similar acetone concentrations. Full article
(This article belongs to the Special Issue TiO2-Based Materials for (Photo)Catalysis)
Show Figures

Figure 1

Back to TopTop