Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = aging and storage lesions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7525 KiB  
Article
Novel Molecular Weight Gradient Hyaluronate Dissolving Microneedles for Sustained Intralesional Delivery and Photodynamic Activation of Hematoporphyrin in Port-Wine Stain Therapy
by Xueli Peng, Chenxin Yan, Nengquan Fan, Chaoguo Sun, Suohui Zhang and Yunhua Gao
Polymers 2025, 17(9), 1238; https://doi.org/10.3390/polym17091238 - 1 May 2025
Viewed by 536
Abstract
Port-wine stain (PWS), a progressive congenital vascular malformation characterized by ectatic dermal capillaries, demonstrates age-dependent lesion expansion and chromatic intensification, resulting in significant psychosocial comorbidity. While systemic hematoporphyrin (HP) administration remains the clinical paradigm for photodynamic therapy (PDT), its therapeutic utility is severely [...] Read more.
Port-wine stain (PWS), a progressive congenital vascular malformation characterized by ectatic dermal capillaries, demonstrates age-dependent lesion expansion and chromatic intensification, resulting in significant psychosocial comorbidity. While systemic hematoporphyrin (HP) administration remains the clinical paradigm for photodynamic therapy (PDT), its therapeutic utility is severely constrained by non-targeted biodistribution. Pharmacokinetic analyses reveal prolonged dermal retention and suboptimal lesion accumulation, predisposing 42% of patients to phototoxic reactions. To address these limitations, this work creatively suggested a local targeted drug delivery method based on soluble microneedles in response to the difficulties mentioned above. The rational design of a molecular weight (MW) HA gradient system enabled the engineering of ternary nanocomposite microneedles with enhanced biomechanical integrity (0.49 N/needle) and superior HP loading capacity, which collectively facilitated spatiotemporally controlled transdermal delivery of hematoporphyrin with complete dissolution within 30 min. The release performance, skin permeability, and storage stability of hematoporphyrin dissolving microneedles (HP-DMNs) have all been demonstrated in vitro. This study applies soluble microneedle technology to the delivery of HP in PWS for the first time. It avoids the risk of systemic exposure through precise local administration. It uses the rapid dissolution properties of microneedles to achieve high concentration and rapid release of drugs in skin lesions. This study provides a new strategy for sustained intralesional release and rapid drug delivery treatment of PWS and provides novel ideas for the development of new formulations of HP and related photosensitizers. Full article
(This article belongs to the Special Issue Polymers and Their Role in Drug Delivery, 2nd Edition)
Show Figures

Figure 1

10 pages, 1622 KiB  
Article
Evaluation of Microleakage, Tensile Bond Strength, and Adhesive Interface of Bulk Fill, Ormocer, and Alkasite Against Conventional Composite in Caries-Affected Primary Molars
by Nourah N. Shono and Fahad Alkhudhairy
Coatings 2025, 15(3), 321; https://doi.org/10.3390/coatings15030321 - 10 Mar 2025
Viewed by 1055
Abstract
This study presents an evaluation of the microtensile bond strength (µTBS) and microleakage (ML) of a bulk-fill (BF) composite, Ormocer, and Alkasite in comparison to the conventional composite bonded to caries-affected dentin (CAD) in deciduous dentition. Eighty-four human primary molars displaying carious lesions [...] Read more.
This study presents an evaluation of the microtensile bond strength (µTBS) and microleakage (ML) of a bulk-fill (BF) composite, Ormocer, and Alkasite in comparison to the conventional composite bonded to caries-affected dentin (CAD) in deciduous dentition. Eighty-four human primary molars displaying carious lesions involving the middle third of dentin were included. CAD was exposed, and the teeth were randomly assigned to four groups based on the type of restorative material used: Group 1 (conventional composite), Group 2 (BF composite), Group 3 (Alkasite), and Group 4 (Ormocer). Sample storage and artificial aging were performed. Dye penetration, a universal testing machine, and a stereomicroscope were used for microleakage, µTBS, and failure mode assessment. The interface was evaluated by scanning electron microscopy (SEM). µTBS and ML results were analyzed using a one-way analysis of variance (ANOVA) and Tukey’s post hoc tests (p < 0.05). Group 1 (conventional composite) exhibited the highest microleakage and lowest bond strength. The minimum ML and maximum μTBS values were demonstrated by Group 4 (Ormocer). Ormocer and Alkasite proved to be better alternatives to conventional composites in terms of ML and bond strength in deciduous dentition. Full article
(This article belongs to the Special Issue Bioactive Coatings on Elements Used in the Oral Cavity Environment)
Show Figures

Figure 1

10 pages, 1702 KiB  
Brief Report
Synergistic Effects of a Novel Combination of Natural Compounds Prevent H2O2-Induced Oxidative Stress in Red Blood Cells
by Giuditta Benincasa, Paola Bontempo, Ugo Trama and Claudio Napoli
Int. J. Mol. Sci. 2025, 26(3), 1334; https://doi.org/10.3390/ijms26031334 - 5 Feb 2025
Viewed by 1330
Abstract
Novel strategies to prevent the “storage lesions” of red blood cells (RBCs) are needed to prevent the risk of adverse effects after blood transfusion. One option could be the supplementation of stored blood bags with natural compounds that may increase the basal load [...] Read more.
Novel strategies to prevent the “storage lesions” of red blood cells (RBCs) are needed to prevent the risk of adverse effects after blood transfusion. One option could be the supplementation of stored blood bags with natural compounds that may increase the basal load of antioxidant protection and the shelf life of RBCs. In this pilot study, we investigated for the first time potential synergistic effects of a triple combination of well-known anti-oxidant compounds curcumin (curc), vitamin E (vit E), and vitamin C (vit C). Briefly, we established an ex vivo model of H2O2-induced oxidative stress and measured the hemolysis ratio (HR) (%) and thiobarbituric acid reactive substances (TBARS) levels in RBCs with or without pre-exposure for 30 min with increasing concentrations of curc, vit E, and vit C and then exposed to 10 mM H2O2. for 60 min. Exposure of RBCs to a triple combination of curc, vit E, and vit C at the highest concentration (100 µM) completely prevented H2O2-induced hemolysis. Surprisingly, we found that pre-treatment of RBCs with curc 100 µM alone completely prevented hemolysis as compared to vit E and vit C alone or in combination at the same concentration. On the other hand, pre-treatment with the triple combination of curc, vit E, and vit C 100 µM was required to totally prevent lipid peroxidation, as compared to curc 100 µM alone, supporting their synergistic effects in preventing RBCs membrane peroxidation. Further experiments are ongoing to investigate the anti-aging effects of the triple combination of curc, vit E, and vit C on cold-stored bags. Full article
(This article belongs to the Special Issue Natural Products in Drug Discovery and Development)
Show Figures

Figure 1

9 pages, 3923 KiB  
Case Report
Leukodystrophy with Macrocephaly, Refractory Epilepsy, and Severe Hyponatremia—The Neonatal Type of Alexander Disease
by Justyna Paprocka, Magdalena Nowak, Magdalena Machnikowska-Sokołowska, Karolina Rutkowska and Rafał Płoski
Genes 2024, 15(3), 350; https://doi.org/10.3390/genes15030350 - 11 Mar 2024
Cited by 2 | Viewed by 2986
Abstract
Introduction: Alexander disease (AxD) is a rare neurodegenerative condition that represents the group of leukodystrophies. The disease is caused by GFAP mutation. Symptoms usually occur in the infantile age with macrocephaly, developmental deterioration, progressive quadriparesis, and seizures as the most characteristic features. In [...] Read more.
Introduction: Alexander disease (AxD) is a rare neurodegenerative condition that represents the group of leukodystrophies. The disease is caused by GFAP mutation. Symptoms usually occur in the infantile age with macrocephaly, developmental deterioration, progressive quadriparesis, and seizures as the most characteristic features. In this case report, we provide a detailed clinical description of the neonatal type of AxD. Method: Next-Generation Sequencing (NGS), including a panel of 49 genes related to Early Infantile Epileptic Encephalopathy (EIEE), was carried out, and then Whole Exome Sequencing (WES) was performed on the proband’s DNA extracted from blood. Case description: In the first weeks of life, the child presented with signs of increased intracranial pressure, which led to ventriculoperitoneal shunt implementation. Recurrent focal-onset motor seizures with secondary generalization occurred despite phenobarbital treatment. Therapy was modified with multiple anti-seizure medications. In MRI contrast-enhanced lesions in basal ganglia, midbrain and cortico-spinal tracts were observed. During the diagnostic process, GLUT-1 deficiency, lysosomal storage disorders, organic acidurias, and fatty acid oxidation defects were excluded. The NGS panel of EIEE revealed no abnormalities. In WES analysis, GFAP missense heterozygous variant NM_002055.5: c.1187C>T, p.(Thr396Ile) was detected, confirming the diagnosis of AxD. Conclusion: AxD should be considered in the differential diagnosis in all neonates with progressive, intractable seizures accompanied by macrocephaly. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

27 pages, 38561 KiB  
Article
Homozygous CNP Mutation and Neurodegeneration in Weimaraners: Myelin Abnormalities and Accumulation of Lipofuscin-like Inclusions
by Stefan H. Keller, Gary S. Johnson, Garrett Bullock, Tendai Mhlanga-Mutangadura, Malte Schwartz, Savannah G. Pattridge, Juyuan Guo, Gregg D. Kortz and Martin L. Katz
Genes 2024, 15(2), 246; https://doi.org/10.3390/genes15020246 - 15 Feb 2024
Cited by 3 | Viewed by 3456
Abstract
A progressive neurological disorder was observed in a male neutered Weimaraner. Clinical signs included fecal incontinence, lethargy, moderate paraparesis, proprioceptive pelvic limb ataxia, falling, cognitive decline, incoordination, decreased interest in food, changes in posture, and episodes of trance-like behavior. Neurologic signs were first [...] Read more.
A progressive neurological disorder was observed in a male neutered Weimaraner. Clinical signs included fecal incontinence, lethargy, moderate paraparesis, proprioceptive pelvic limb ataxia, falling, cognitive decline, incoordination, decreased interest in food, changes in posture, and episodes of trance-like behavior. Neurologic signs were first observed at approximately 4 years, 10 months of age and progressed slowly. Magnetic resonance imaging showed generalized brain atrophy with areas of white matter pathology. Humane euthanasia was elected at 6 years, 7 months of age due to increasing severity of the neurological signs. Autofluorescent intracellular granules were observed in the cerebral and cerebellar cortexes, optic nerve, and cardiac muscle of the affected dog. These abnormal inclusions in the cerebral cortex and cardiac muscle immunolabeled with antibodies to mitochondrial ATP synthase subunit c protein, like that observed in the neuronal ceroid lipofuscinosis group of lysosomal storage diseases. Immunolabeling also demonstrated pronounced neuroinflammation in brain tissues. The ultrastructural appearances of the disease-related inclusion bodies in the brain and optic nerve were quite variable. The ultrastructure and locations of many of the inclusions in the nervous tissues suggested that they were derived, at least in part, from the myelin surrounding axons. The storage bodies in the cardiac muscle were located in mitochondria-rich regions and consisted of parallel arrays of membrane-like components interspersed with electron-dense flocculent material. The disease was characterized by pronounced abnormalities in the myelin of the brain and optic nerve consisting of distinctive areas of ballooning between the layers of myelin. The whole genome sequence generated from the affected dog contained a homozygous G-to-A missense mutation in CNP, which encodes proteins with CNPase enzyme activity and a structural role in myelin. The mutation predicts a Thr42Met amino acid sequence substitution. Genotyping of archived Weimaraner DNA samples identified an additional G > A variant homozygote with a clinical history and brain lesions similar to those of the proband. Of 304 Weimaraners and over 4000 other dogs of various breeds, the proband and the other Weimaraner that exhibited similar signs were the only two that were homozygous for the CNP missense variant. CNPase immunolabeling was widespread in brain tissues from normal dogs but was undetectable in the same tissues from the proband. Based on the clinical history, fluorescence and electron-microscopy, immunohistochemistry, and molecular genetic findings, the late-onset Weimaraner disorder likely results from the missense mutation that results in CNPase deficiency, leading to myelin abnormalities, accumulation of lysosomal storage bodies, and brain atrophy. Similar disorders have been associated with different CNP variants in Dalmatians and in human subjects. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Graphical abstract

18 pages, 6441 KiB  
Article
Genomic Identification and Expression Profiling of Lesion Simulating Disease Genes in Alfalfa (Medicago sativa) Elucidate Their Responsiveness to Seed Vigor
by Shoujiang Sun, Wen Ma, Zhicheng Jia, Chengming Ou, Manli Li and Peisheng Mao
Antioxidants 2023, 12(9), 1768; https://doi.org/10.3390/antiox12091768 - 15 Sep 2023
Cited by 2 | Viewed by 1773
Abstract
Seed aging, a common physiological phenomenon during forage seed storage, is a crucial factor contributing to a loss of vigor, resulting in delayed seed germination and seedling growth, as well as limiting the production of hay. Extensive bodies of research are dedicated to [...] Read more.
Seed aging, a common physiological phenomenon during forage seed storage, is a crucial factor contributing to a loss of vigor, resulting in delayed seed germination and seedling growth, as well as limiting the production of hay. Extensive bodies of research are dedicated to the study of seed aging, with a particular focus on the role of the production and accumulation of reactive oxygen species (ROS) and the ensuing oxidative damage during storage as a primary cause of decreases in seed vigor. To preserve optimal seed vigor, ROS levels must be regulated. The excessive accumulation of ROS can trigger programmed cell death (PCD), which causes the seed to lose vigor permanently. LESION SIMULATING DISEASE (LSD) is one of the proteins that regulate PCD, encodes a small C2C2 zinc finger protein, and plays a molecular function as a transcriptional regulator and scaffold protein. However, genome-wide analysis of LSD genes has not been performed for alfalfa (Medicago sativa), as one of the most important crop species, and, presently, the molecular regulation mechanism of seed aging is not clear enough. Numerous studies have also been unable to explain the essence of seed aging for LSD gene regulating PCD and affecting seed vigor. In this study, we obtained six MsLSD genes in total from the alfalfa (cultivar Zhongmu No. 1) genome. Phylogenetic analysis demonstrated that the MsLSD genes could be classified into three subgroups. In addition, six MsLSD genes were unevenly mapped on three chromosomes in alfalfa. Gene duplication analysis demonstrated that segmental duplication was the key driving force for the expansion of this gene family during evolution. Expression analysis of six MsLSD genes in various tissues and germinating seeds presented their different expressions. RT-qPCR analysis revealed that the expression of three MsLSD genes, including MsLSD2, MsLSD5, and MsLSD6, was significantly induced by seed aging treatment, suggesting that they might play an important role in maintaining seed vigor. Although this finding will provide valuable insights into unveiling the molecular mechanism involved in losing vigor and new strategies to improve alfalfa seed germinability, additional research must comprehensively elucidate the precise pathways through which the MsLSD genes regulate seed vigor. Full article
(This article belongs to the Special Issue Antioxidant Mechanisms and Redox Signalling in Seeds)
Show Figures

Figure 1

15 pages, 2167 KiB  
Article
CNS Manifestations in Mucolipidosis Type II—A Retrospective Analysis of Longitudinal Data on Neurocognitive Development and Neuroimaging in Eleven Patients
by Luise Sophie Ammer, Karolin Täuber, Anna Perez, Thorsten Dohrmann, Jonas Denecke, René Santer, Ulrike Blümlein, Ann-Kathrin Ozga, Sandra Pohl and Nicole Maria Muschol
J. Clin. Med. 2023, 12(12), 4114; https://doi.org/10.3390/jcm12124114 - 18 Jun 2023
Cited by 3 | Viewed by 2141
Abstract
Mucolipidosis type II (MLII), an ultra-rare lysosomal storage disorder, manifests as a fatal multi-systemic disease. Mental inhibition and progressive neurodegeneration are commonly reported disease manifestations. Nevertheless, longitudinal data on neurocognitive testing and neuroimaging lack in current literature. This study aimed to provide details [...] Read more.
Mucolipidosis type II (MLII), an ultra-rare lysosomal storage disorder, manifests as a fatal multi-systemic disease. Mental inhibition and progressive neurodegeneration are commonly reported disease manifestations. Nevertheless, longitudinal data on neurocognitive testing and neuroimaging lack in current literature. This study aimed to provide details on central nervous system manifestations in MLII. All MLII patients with at least one standardized developmental assessment performed between 2005 and 2022 were included by retrospective chart review. A multiple mixed linear regression model was applied. Eleven patients with a median age of 34.0 months (range 1.6–159.6) underwent 32 neurocognitive and 28 adaptive behaviour assessments as well as 14 brain magnetic resonance imagings. The scales used were mainly BSID-III (42%) and VABS-II (47%). Neurocognitive testing (per patient: mean 2.9, standard deviation (SD) 2.0) performed over 0–52.1 months (median 12.1) revealed profound impairment with a mean developmental quotient of 36.7% (SD 20.4) at last assessment. The patients showed sustained development; on average, they gained 0.28 age-equivalent score points per month (confidence interval 0.17–0.38). Apart from common (63%) cervical spinal stenosis, neuroimaging revealed unspecific, non-progressive abnormalities (i.e., mild brain atrophy, white matter lesions). In summary, MLII is associated with profound developmental impairment, but not with neurodegeneration and neurocognitive decline. Full article
Show Figures

Figure 1

16 pages, 536 KiB  
Article
Mycological Investigation of Bottled Water Dispensers in Healthcare Facilities
by Zsófia Tischner, Rózsa Sebők, László Kredics, Henrietta Allaga, Márta Vargha, Ágnes Sebestyén, Csaba Dobolyi, Balázs Kriszt and Donát Magyar
Pathogens 2021, 10(7), 871; https://doi.org/10.3390/pathogens10070871 - 10 Jul 2021
Cited by 8 | Viewed by 4681
Abstract
The usage of bottled water dispensers (BWDs) has spread worldwide. Despite their popularity, few studies have dealt with their microbial contaminants, and little attention is given to their fungal contamination. To our knowledge this is the first mycological study of BWDs in Europe. [...] Read more.
The usage of bottled water dispensers (BWDs) has spread worldwide. Despite their popularity, few studies have dealt with their microbial contaminants, and little attention is given to their fungal contamination. To our knowledge this is the first mycological study of BWDs in Europe. 36 devices have been examined in Budapest, Hungary. Despite of the strictly regulated water hygiene system in Hungary, molds and yeasts were detected in 86.8% of the samples, 56.76% were highly contaminated. Elevated heterotrophic plate counts were also observed in all samples compared to that of Hungarian drinking water. As all physical and chemical water quality characteristics have met the relevant national and European parametric values and neither totally explained the results of microbial counts, the effect of usage and maintenance habits of the devices were examined. Fungal concentrations were affected by the time elapsed since disinfection, days remaining until expiration of bottles, month of sampling and exposure to sunlight during storage. Microbes are able to proliferate in the bottled water and disperse inside the BWDs. Many of the detected fungal species (Sarocladium kiliense, Acremonium sclerotigenum/egyptiacum, Exophiala jeanselmei var. lecanii-corni, Exophiala equina, Meyerozyma guilliermondii, Cystobasidium slooffiae, Aspergillus jensenii, Bisifusarium biseptatum) are opportunistic pathogens for subpopulations of sensitive age groups and patients with immunodeficient conditions, including cystic fibrosis. Thus BWDs may pose a health risk to visitors of healthcare institutions, especially to patients with oral lesions in dental surgeries. The study draws attention to the need to investigate microbial contamination of these devices in other countries as well. Full article
Show Figures

Figure 1

30 pages, 5730 KiB  
Article
Axonopathy and Reduction of Membrane Resistance: Key Features in a New Murine Model of Human GM1-Gangliosidosis
by Deborah Eikelberg, Annika Lehmbecker, Graham Brogden, Witchaya Tongtako, Kerstin Hahn, Andre Habierski, Julia B. Hennermann, Hassan Y. Naim, Felix Felmy, Wolfgang Baumgärtner and Ingo Gerhauser
J. Clin. Med. 2020, 9(4), 1004; https://doi.org/10.3390/jcm9041004 - 2 Apr 2020
Cited by 14 | Viewed by 4770
Abstract
GM1-gangliosidosis is caused by a reduced activity of β-galactosidase (Glb1), resulting in intralysosomal accumulations of GM1. The aim of this study was to reveal the pathogenic mechanisms of GM1-gangliosidosis in a new Glb1 knockout mouse [...] Read more.
GM1-gangliosidosis is caused by a reduced activity of β-galactosidase (Glb1), resulting in intralysosomal accumulations of GM1. The aim of this study was to reveal the pathogenic mechanisms of GM1-gangliosidosis in a new Glb1 knockout mouse model. Glb1−/− mice were analyzed clinically, histologically, immunohistochemically, electrophysiologically and biochemically. Morphological lesions in the central nervous system were already observed in two-month-old mice, whereas functional deficits, including ataxia and tremor, did not start before 3.5-months of age. This was most likely due to a reduced membrane resistance as a compensatory mechanism. Swollen neurons exhibited intralysosomal storage of lipids extending into axons and amyloid precursor protein positive spheroids. Additionally, axons showed a higher kinesin and lower dynein immunoreactivity compared to wildtype controls. Glb1−/− mice also demonstrated loss of phosphorylated neurofilament positive axons and a mild increase in non-phosphorylated neurofilament positive axons. Moreover, marked astrogliosis and microgliosis were found, but no demyelination. In addition to the main storage material GM1, GA1, sphingomyelin, phosphatidylcholine and phosphatidylserine were elevated in the brain. In summary, the current Glb1−/− mice exhibit a so far undescribed axonopathy and a reduced membrane resistance to compensate the functional effects of structural changes. They can be used for detailed examinations of axon–glial interactions and therapy trials of lysosomal storage diseases. Full article
Show Figures

Figure 1

9 pages, 1255 KiB  
Article
The Contribution of Storage Medium and Membranes in the Microwave Dielectric Response of Packed Red Blood Cells Suspension
by Larisa Latypova, Gregory Barshtein, Dan Arbell and Yuri Feldman
Appl. Sci. 2020, 10(5), 1702; https://doi.org/10.3390/app10051702 - 2 Mar 2020
Cited by 2 | Viewed by 2804
Abstract
During cold storage, packed red blood cells (PRBCs) undergo slow detrimental changes that are collectively termed storage lesion. The aging of the cells causes alterations in the composition of the storage-medium in the PRBC unit. In this paper, we present the comparison of [...] Read more.
During cold storage, packed red blood cells (PRBCs) undergo slow detrimental changes that are collectively termed storage lesion. The aging of the cells causes alterations in the composition of the storage-medium in the PRBC unit. In this paper, we present the comparison of the dielectric response of water in the primary (fresh) storage medium (citrate phosphate dextrose adenine solution, CPDA-1) versus the storage medium from three expired units of PRBCs. Dielectric response of the water molecules has been characterized by dielectric spectroscopy technique in the microwave frequency band (0.5–40 GHz). The dominant phenomenon is the significant increase of the dielectric strength and decrease the relaxation time τ for the samples of the stored medium in comparison with the fresh medium CPDA-1. Furthermore, we demonstrated that removing the ghosts from PRBC hemolysate did not cause the alteration of the dielectric spectrum of water. Thus, the contribution associated with water located near the cell membrane can be neglected in microwave dielectric measurements. Full article
(This article belongs to the Special Issue Insights into Red Blood Cell Aging: In Vivo and in Vitro)
Show Figures

Figure 1

16 pages, 10302 KiB  
Article
Time-Course Investigation of Small Molecule Metabolites in MAP-Stored Red Blood Cells Using UPLC-QTOF-MS
by Yong Zhou, Zhiyun Meng, Hui Gan, Ying Zheng, Xiaoxia Zhu, Zhuona Wu, Jian Li, Ruolan Gu and Guifang Dou
Molecules 2018, 23(4), 923; https://doi.org/10.3390/molecules23040923 - 16 Apr 2018
Cited by 6 | Viewed by 4550
Abstract
Red blood cells (RBCs) are routinely stored for 35 to 42 days in most countries. During storage, RBCs undergo biochemical and biophysical changes known as RBC storage lesion, which is influenced by alternative storage additive solutions (ASs). Metabolomic studies have been completed on [...] Read more.
Red blood cells (RBCs) are routinely stored for 35 to 42 days in most countries. During storage, RBCs undergo biochemical and biophysical changes known as RBC storage lesion, which is influenced by alternative storage additive solutions (ASs). Metabolomic studies have been completed on RBCs stored in a number of ASs, including SAGM, AS-1, AS-3, AS-5, AS-7, PAGGGM, and MAP. However, the reported metabolome analysis of laboratory-made MAP-stored RBCs was mainly focused on the time-dependent alterations in glycolytic intermediates during storage. In this study, we investigated the time-course of alterations in various small molecule metabolites in RBCs stored in commercially used MAP for 49 days using ultra-high performance liquid chromatography quadruple time-of-flight mass spectrometry (UPLC-QTOF-MS). These alterations indicated that RBC storage lesion is related to multiple pathways including glycolysis, pentose phosphate pathway, glutathione homeostasis, and purine metabolism. Thus, our findings might be useful for understanding the complexity of metabolic mechanisms of RBCs in vitro aging and encourage the deployment of systems biology methods to blood products in transfusion medicine. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

16 pages, 1474 KiB  
Article
Effects of Storage Time on Glycolysis in Donated Human Blood Units
by Zhen Qi, John D. Roback and Eberhard O. Voit
Metabolites 2017, 7(2), 12; https://doi.org/10.3390/metabo7020012 - 29 Mar 2017
Cited by 4 | Viewed by 5721
Abstract
Background: Donated blood is typically stored before transfusions. During storage, the metabolism of red blood cells changes, possibly causing storage lesions. The changes are storage time dependent and exhibit donor-specific variations. It is necessary to uncover and characterize the responsible molecular mechanisms [...] Read more.
Background: Donated blood is typically stored before transfusions. During storage, the metabolism of red blood cells changes, possibly causing storage lesions. The changes are storage time dependent and exhibit donor-specific variations. It is necessary to uncover and characterize the responsible molecular mechanisms accounting for such biochemical changes, qualitatively and quantitatively; Study Design and Methods: Based on the integration of metabolic time series data, kinetic models, and a stoichiometric model of the glycolytic pathway, a customized inference method was developed and used to quantify the dynamic changes in glycolytic fluxes during the storage of donated blood units. The method provides a proof of principle for the feasibility of inferences regarding flux characteristics from metabolomics data; Results: Several glycolytic reaction steps change substantially during storage time and vary among different fluxes and donors. The quantification of these storage time effects, which are possibly irreversible, allows for predictions of the transfusion outcome of individual blood units; Conclusion: The improved mechanistic understanding of blood storage, obtained from this computational study, may aid the identification of blood units that age quickly or more slowly during storage, and may ultimately improve transfusion management in clinics. Full article
(This article belongs to the Special Issue Metabolomics Modelling)
Show Figures

Figure 1

2 pages, 548 KiB  
Case Report
Optic Nerve Enlargement in Infantile Form of Krabbe Disease
by Dimas Castilha-Neto, Letícia Fernandes Monteiro, Mirella Maccarini Peruchi, João Moreno Filho, Aline Vieira Scarlatelli-Lima and Jaime Lin
Clin. Pract. 2012, 2(4), e81; https://doi.org/10.4081/cp.2012.e81 - 16 Oct 2012
Abstract
Krabbe disease (KD) is an autosomal recessive lysosomal storage disorder caused by dysfunctional galactosylceramidase activity. Infantile form is the most common subtype, occurring at about 6-month of age. We present a rare case of infantile KD with magnetic resonance imaging showing white matter, [...] Read more.
Krabbe disease (KD) is an autosomal recessive lysosomal storage disorder caused by dysfunctional galactosylceramidase activity. Infantile form is the most common subtype, occurring at about 6-month of age. We present a rare case of infantile KD with magnetic resonance imaging showing white matter, thalamic and basal ganglia lesions rarely associated with an enlargement of the optic nerves bilaterally. Full article
17 pages, 217 KiB  
Review
Biomarker Analysis of Stored Blood Products: Emphasis on Pre-Analytical Issues
by Julien Delobel, Olivier Rubin, Michel Prudent, David Crettaz, Jean-Daniel Tissot and Niels Lion
Int. J. Mol. Sci. 2010, 11(11), 4601-4617; https://doi.org/10.3390/ijms11114601 - 17 Nov 2010
Cited by 31 | Viewed by 14841
Abstract
Millions of blood products are transfused every year; many lives are thus directly concerned by transfusion. The three main labile blood products used in transfusion are erythrocyte concentrates, platelet concentrates and fresh frozen plasma. Each of these products has to be stored according [...] Read more.
Millions of blood products are transfused every year; many lives are thus directly concerned by transfusion. The three main labile blood products used in transfusion are erythrocyte concentrates, platelet concentrates and fresh frozen plasma. Each of these products has to be stored according to its particular components. However, during storage, modifications or degradation of those components may occur, and are known as storage lesions. Thus, biomarker discovery of in vivo blood aging as well as in vitro labile blood products storage lesions is of high interest for the transfusion medicine community. Pre-analytical issues are of major importance in analyzing the various blood products during storage conditions as well as according to various protocols that are currently used in blood banks for their preparations. This paper will review key elements that have to be taken into account in the context of proteomic-based biomarker discovery applied to blood banking. Full article
(This article belongs to the Special Issue Biomarkers)
Back to TopTop