Biomarker Analysis of Stored Blood Products: Emphasis on Pre-Analytical Issues
Abstract
:1. Blood Components Preparation and Storage
2. Blood Products Storage Lesions
2.1. Erythrocyte Concentrates Storage Lesions
2.2. Platelet Concentrates Storage Lesions
3. Analysis of Blood Products Aging and Storage Lesions Biomarkers: Pre-Analytical Issues
3.1. Importance of Pre-Analytics in Biomarker Discovery Field
3.2. Proteomics in Blood Transfusion
3.2.1. Proteomic Tools for Biomarker Discovery
3.2.2. Involvement of Proteomics in Blood Transfusion
3.2.2.1. Erythrocyte Proteome Investigations
3.2.2.2. Platelet Proteomic Analyses
3.3. Blood Proteomics Pre-Analytical Considerations
3.3.1. Sample Collection
3.3.2. Sample Container Type
3.3.3. Sample Processing and Handling
3.3.4. Sample Storage
4. Conclusions
Acknowledgments
References
- Council of Europe. Guide to the Preparation, Use and Quality Assurance of Blood Components. Recommendation n° R (95) 15 on the Preparation, Use and Quality Assurance of Blood Components, 14th ed; Council of Europe Press: Strasbourg, France, 2008. [Google Scholar]
- Yazer, MH; Podlosky, L; Clarke, G; Nahirniak, SM. The effect of prestorage WBC reduction on the rates of febrile nonhemolytic transfusion reactions to platelet concentrates and RBC. Transfusion 2004, 44, 10–15. [Google Scholar]
- Snyder, EL; Rinder, HM. Platelet storage-time to come in from the cold? N. Engl. J. Med 2003, 348, 2032–2033. [Google Scholar]
- Zubair, AC. Clinical impact of blood storage lesions. Am. J. Hematol 2010, 85, 117–122. [Google Scholar]
- van de Watering, LMG; Brand, A. Effects of storage of red cells. Transfus. Med. Hemother 2008, 35, 359–367. [Google Scholar]
- Kor, DJ; van Buskirk, CM; Gajic, O. Red blood cell storage lesion. Bosn. J. Basic Med. Sci 2009, 9, S21–S27. [Google Scholar]
- Bennett-Guerrero, E; Veldman, TH; Doctor, A; Telen, MJ; Ortel, TL; Reid, TS; Mulherin, MA; Zhu, HM; Buck, RD; Califf, RM; McMahon, TJ. Evolution of adverse changes in stored RBCs. Proc. Natl. Acad. Sci. USA 2007, 104, 17063–17068. [Google Scholar]
- Berezina, TL; Zaets, SB; Morgan, C; Spillert, CR; Kamiyama, M; Spolarics, Z; Deitch, EA; Machiedo, GW. Influence of storage on red blood cell rheological properties. J. Surg. Res 2002, 102, 6–12. [Google Scholar]
- Zehnder, L; Schulzki, T; Goede, JS; Hayes, J; Reinhart, WH. Erythrocyte storage in hypertonic (SAGM) or isotonic (PAGGSM) conservation medium: Influence on cell properties. Vox Sang 2008, 95, 280–287. [Google Scholar]
- Kriebardis, AG; Antonelou, MH; Stamoulis, KE; Economou-Petersen, E; Margaritis, LH; Papassideri, IS. Progressive oxidation of cytoskeletal proteins and accumulation of denatured hemoglobin in stored red cells. J. Cell. Mol. Med 2007, 11, 148–155. [Google Scholar]
- Kanias, T; Acker, JP. Biopreservation of red blood cells - the struggle with hemoglobin oxidation. FEBS J 2010, 277, 343–356. [Google Scholar]
- D’Amici, GM; Rinalducci, S; Zolla, L. Proteomic analysis of RBC membrane protein degradation during blood storage. J. Proteome Res 2007, 6, 3242–3255. [Google Scholar]
- Antonelou, MH; Kriebardis, AG; Stamoulis, KE; Economou-Petersen, E; Margaritis, LH; Papassideri, IS. Red blood cell aging markers during storage in citrate-phosphate-dextrose-saline-adenine-glucose-mannitol. Transfusion 2010, 50, 376–389. [Google Scholar]
- Yoshida, T; Shevkoplyas, SS. Anaerobic storage of red blood cells. Blood Transfus 2010, 8, 220–236. [Google Scholar]
- Tissot, J-D; Rubin, O; Canellini, G. Analysis and clinical relevance of microparticles from red blood cells. Curr. Opin. Hematol 2010, 17, 571–577. [Google Scholar]
- Kay, MM; Wyant, T; Goodman, J. Autoantibodies to band 3 during aging and disease and aging interventions. Ann. N. Y. Acad. Sci 1994, 719, 419–447. [Google Scholar]
- Hornig, R; Lutz, HU. Band 3 protein clustering on human erythrocytes promotes binding of naturally occurring anti-band 3 and anti-spectrin antibodies. Exp. Gerontol 2000, 35, 1025–1044. [Google Scholar]
- Kay, MM; Goodman, SR; Sorensen, K; Whitfield, CF; Wong, P; Zaki, L; Rudloff, V. Senescent cell antigen is immunologically related to band 3. Proc. Natl. Acad. Sci. USA 1983, 80, 1631–1635. [Google Scholar]
- Kay, MM. Localization of senescent cell antigen on band 3. Proc. Natl. Acad. Sci. USA 1984, 81, 5753–5757. [Google Scholar]
- Kay, MM; Flowers, N; Goodman, J; Bosman, G. Alteration in membrane protein band 3 associated with accelerated erythrocyte aging. Proc. Natl. Acad. Sci. USA 1989, 86, 5834–5838. [Google Scholar]
- Paleari, R; Ceriotti, F; Azzario, F; Maccioni, L; Galanello, R; Mosca, A. Experiences in the measurement of RBC-bound IgG as markers of cell age. Bioelectrochemistry 2004, 62, 175–179. [Google Scholar]
- Seghatchian, J; Krailadsiri, P. The platelet storage lesion. Transf. Med. Rev 1997, 11, 130–144. [Google Scholar]
- Shrivastava, M. The platelet storage lesion. Transfus. Apher. Sci 2009, 41, 105–113. [Google Scholar]
- George, JN; Pickett, EB; Heinz, R. Platelet membrane glycoprotein changes during the preparation and storage of platelet concentrates. Transfusion 1988, 28, 123–126. [Google Scholar]
- Bessos, H; Seghatchian, MJ; Cutts, M; Murphy, WG. Glycoprotein-IB and glycoprotein-IIB/IIIA in the quality assessment of platelet concentrates during storage. Blood Coagul. Fibrinolysis 1992, 3, 633–636. [Google Scholar]
- Jaremo, P; Rubachdahlberg, E; Solum, NO. Correlation of light transmission changes to changes of platelet glycoprotein-IB during storage of platelet concentrates. Thromb. Res 1993, 69, 467–477. [Google Scholar]
- Diminno, G; Silver, MJ; Murphy, S. Stored human-platelets retain full aggregation potential in response to pairs of aggregating agents. Blood 1982, 59, 563–568. [Google Scholar]
- Shapira, S; Friedman, Z; Shapiro, H; Presseizen, K; Radnay, J; Ellis, MH. The effect of storage on the expression of platelet membrane phosphatidylserine and the subsequent impact on the coagulant function of stored platelets. Transfusion 2000, 40, 1257–1263. [Google Scholar]
- van der Meer, PF; Kerkhoffs, JL; Curvers, J; Scharenberg, J; de Korte, D; Brand, A; de Wildt-Eggen, J. In vitro comparison of platelet storage in plasma and in four platelet additive solutions, and the effect of pathogen reduction: A proposal for an in vitro rating system. Vox Sang 2010, 98, 517–524. [Google Scholar]
- Hale, JE; Gelfanova, V; Ludwig, JR; Knierman, MD. Application of proteomics for discovery of protein biomarkers. Brief. Funct. Genomic Proteomic 2003, 2, 185–193. [Google Scholar]
- Aebersold, R; Anderson, L; Caprioli, R; Druker, B; Hartwell, L; Smith, R. Perspective: A program to improve protein biomarker discovery for cancer. J. Proteome Res 2005, 4, 1104–1109. [Google Scholar]
- Thadikkaran, L; Siegenthaler, MA; Crettaz, D; Queloz, PA; Schneider, P; Tissot, JD. Recent advances in blood-related proteomics. Proteomics 2005, 5, 3019–3034. [Google Scholar]
- Queloz, PA; Thadikkaran, L; Crettaz, D; Rossier, JS; Barelli, S; Tissot, JD. Proteomics and transfusion medicine: Future perspectives. Proteomics 2006, 6, 5605–5614. [Google Scholar]
- Simpson, KL; Whetton, AD; Dive, C. Quantitative mass spectrometry-based techniques for clinical use: Biomarker identification and quantification. J. Chromatogr. B 2009, 877, 1240–1249. [Google Scholar]
- Anderson, NL; Anderson, NG; Pearson, TW; Borchers, CH; Paulovich, AG; Patterson, SD; Gillette, M; Aebersold, R; Carr, SA. A human proteome detection and quantitation project. Mol. Cell. Proteomics 2009, 8, 883–886. [Google Scholar]
- Kline, KG; Sussman, MR. Protein quantitation using isotope-assisted mass spectrometry. Ann. Rev. Biophys 2010, 39, 291–308. [Google Scholar]
- Ong, SE; Blagoev, B; Kratchmarova, I; Kristensen, DB; Steen, H; Pandey, A; Mann, M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 2002, 1, 376–386. [Google Scholar]
- Gygi, SP; Rist, B; Gerber, SA; Turecek, F; Gelb, MH; Aebersold, R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol 1999, 17, 994–999. [Google Scholar]
- Ross, PL; Huang, YN; Marchese, JN; Williamson, B; Parker, K; Hattan, S; Khainovski, N; Pillai, S; Dey, S; Daniels, S; Purkayastha, S; Juhasz, P; Martin, S; Bartlet-Jones, M; He, F; Jacobson, A; Pappin, DJ. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 2004, 3, 1154–1169. [Google Scholar]
- Gerber, SA; Rush, J; Stemman, O; Kirschner, MW; Gygi, SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. USA 2003, 100, 6940–6945. [Google Scholar]
- Liu, H; Sadygov, RG; Yates, JR, III. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem 2004, 76, 4193–4201. [Google Scholar]
- Asara, JM; Christofk, HR; Freimark, LM; Cantley, LC. A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen. Proteomics 2008, 8, 994–999. [Google Scholar]
- Issaq, HJ; Veenstra, TD; Conrads, TP; Felschow, D. The SELDI-TOF MS approach to proteomics: Protein profiling and biomarker identification. Biochem. Biophys. Res. Commun 2002, 292, 587–592. [Google Scholar]
- De Bock, M; de Seny, D; Meuwis, MA; Chapelle, JP; Louis, E; Malaise, M; Merville, MP; Fillet, M. Challenges for biomarker discovery in body fluids using SELDI-TOF-MS. J. Biomed. Biotechnol 2010, 2010, 906082. [Google Scholar]
- Caputo, E; Moharram, R; Martin, BM. Methods for on-chip protein analysis. Anal. Biochem 2003, 321, 116–124. [Google Scholar]
- Lehmann, S; Roche, S; Allory, Y; Barthelaix, A; Beaudeux, J-L; Berger, F; Betsou, F; Borg, J; Dupuy, A; Garin, J; Quillard, M; Lizard, G; Peoc’h, K; Riviere, M; Ducoroy, P. Recommandations préanalytiques pour les analyses de protéomique clinique des fluides biologiques. Ann. Biol. Clin 2009, 67, 629–639. [Google Scholar]
- Low, TY; Seow, TK; Chung, MCM. Separation of human erythrocyte membrane associated proteins with one-dimensional and two-dimensional gel electrophoresis followed by identification with matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2002, 2, 1229–1239. [Google Scholar]
- Kakhniashvili, DG; Bulla, LA; Goodman, SR. The human erythrocyte proteome - Analysis by ion trap mass spectrometry. Mol. Cell. Proteomics 2004, 3, 501–509. [Google Scholar]
- Pasini, EM; Kirkegaard, M; Mortensen, P; Lutz, HU; Thomas, AW; Mann, M. In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood 2006, 108, 791–801. [Google Scholar]
- Boschetti, E; Righetti, PG. The art of observing rare protein species in proteomes with peptide ligand libraries. Proteomics 2009, 9, 1492–1510. [Google Scholar]
- Roux-Dalvai, F; de Peredo, AG; Simo, C; Guerrier, L; Bouyssiee, D; Zanella, A; Citterio, A; Burlet-Schiltz, O; Boschetti, E; Righetti, PG; Monsarrat, B. Extensive analysis of the cytoplasmic proteome of human erythrocytes using the peptide ligand library technology and advanced mass spectrometry. Mol. Cell. Proteomics 2008, 7, 2254–2269. [Google Scholar]
- Alvarez-Llamas, G; de la Cuesta, F; Barderas, MG; Darde, VM; Zubiri, I; Caramelo, C; Vivanco, F. A novel methodology for the analysis of membrane and cytosolic sub-proteomes of erythrocytes by 2-DE. Electrophoresis 2009, 30, 4095–4108. [Google Scholar]
- van Gestel, RA; van Solinge, WW; van der Toorn, HW; Rijksen, G; Heck, AJ; van Wijk, R; Slijper, M. Quantitative erythrocyte membrane proteome analysis with Blue-native/SDS PAGE. J. Proteomics 2010, 73, 456–465. [Google Scholar]
- Goodman, SR; Kurdia, A; Ammann, L; Kakhniashvili, D; Daescu, O. The human red blood cell proteome and interactome. Exp. Biol. Med. (Maywood) 2007, 232, 1391–1408. [Google Scholar]
- D’Alessandro, A; Righetti, PG; Zoha, L. The red blood cell proteome and interactome: An update. J. Proteome Res 2010, 9, 144–163. [Google Scholar]
- Snyder, EL; Dunn, BE; Giometti, CS; Napychank, PA; Tandon, NN; Ferri, PM; Hofmann, JP. Protein-changes occurring during storage of platelet concentrates - a two-dimensional gel-electrophoretic analysis. Transfusion 1987, 27, 335–341. [Google Scholar]
- Snyder, EL; Horne, WC; Napychank, P; Heinemann, FS; Dunn, B. Calcium-dependent proteolysis of actin during storage of platelet concentrates. Blood 1989, 73, 1380–1385. [Google Scholar]
- Estebanell, E; Diaz-Ricart, M; Lozano, M; Mazzara, R; Escolar, G; Ordinas, A. Cytoskeletal reorganization after preparation of platelet concentrates, using the buffy coat method, and during their storage. Haematologica 1998, 83, 112–117. [Google Scholar]
- Schubert, P; Devine, DV. Proteomics meets blood banking: Identification of protein targets for the improvement of platelet quality. J. Proteomics 2010, 73, 436–444. [Google Scholar]
- Egidi, MG; D’Alessandro, A; Mandarello, G; Zolla, L. Troubelshooting in platelet storage temperature and new perspectives through peoteomics. Blood Transfus 2010, 8, s73–s81. [Google Scholar]
- Marcus, K; Immler, D; Sternberger, J; Meyer, HE. Identification of platelet proteins separated by two-dimensional gel electrophoresis and analyzed by matrix assisted laser desorption/ioniztion-time of flight-mass spectrometry and detection of tyrosine-phosphorylated proteins. Electrophoresis 2000, 21, 2622–2636. [Google Scholar]
- O’Neill, EE; Brock, CJ; von Kriegsheim, AF; Pearce, AC; Dwek, RA; Watson, SP; Hebestreit, HF. Towards complete analysis of the platelet proteome. Proteomics 2002, 2, 288–305. [Google Scholar]
- Garcia, A; Prabhakar, S; Brock, CJ; Pearce, AC; Dwek, RA; Watson, SP; Hebestreit, HF; Zitzmann, N. Extensive analysis of the human platelet proteome by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2004, 4, 656–668. [Google Scholar]
- Martens, L; van Damme, P; van Damme, J; Staes, A; Timmerman, E; Ghesquiere, B; Thomas, GR; Vandekerckhove, J; Gevaert, K. The human platelet proteome mapped by peptide-centric proteomics: A functional protein profile. Proteomics 2005, 5, 3193–3204. [Google Scholar]
- Thiele, T; Steil, L; Gebhard, S; Scharf, C; Hammer, E; Brigulla, M; Lubenow, N; Clemetson, KJ; Volker, U; Greinacher, A. Profiling of alterations in platelet proteins during storage of platelet concentrates. Transfusion 2007, 47, 1221–1233. [Google Scholar]
- Glenister, KM; Payne, KA; Sparrow, RL. Proteomic analysis of supernatant from pooled buffy-coat platelet concentrates throughout 7-day storage. Transfusion 2008, 48, 99–107. [Google Scholar]
- Thon, JN; Schubert, P; Duguay, M; Serrano, K; Lin, SJ; Kast, J; Devine, DV. Comprehensive proteomic analysis of protein changes during platelet storage requires complementary proteomic approaches. Transfusion 2008, 48, 425–435. [Google Scholar]
- Schubert, P; Thon, JN; Walsh, GM; Chen, CHI; Moore, ED; Devine, DV; Kast, J. A signaling pathway contributing to platelet storage lesion development: Targeting PI3-kinase-dependent Rap1 activation slows storage-induced platelet deterioration. Transfusion 2009, 49, 1944–1955. [Google Scholar]
- Qureshi, AH; Chaoji, V; Maiguel, D; Faridi, MH; Barth, CJ; Salem, SM; Singhal, M; Stoub, D; Krastins, B; Ogihara, M; Zaki, MJ; Gupta, V. Proteomic and phospho-proteomic profile of human platelets in basal, resting state: Insights into integrin signaling. PLoS One 2009, 4, e7627. [Google Scholar]
- Maw, GJ; Mackenzie, IL; Taylor, NA. Redistribution of body fluids during postural manipulations. Acta Physiol. Scand 1995, 155, 157–163. [Google Scholar]
- Cengiz, M; Ulker, P; Meiselman, HJ; Baskurt, OK. Influence of tourniquet application on venous blood sampling for serum chemistry, hematological parameters, leukocyte activation and erythrocyte mechanical properties. Clin. Chem. Lab. Med 2009, 47, 769–776. [Google Scholar]
- Ernst, DJ; Ernst, C. Phlebotomy tools of the trade. Home Healthc. Nurse 2002, 20, 151–153. [Google Scholar]
- Lippi, G; Salvagno, GL; Montagnana, M; Brocco, G; Guidi, GC. Influence of the needle bore size used for collecting venous blood samples on routine clinical chemistry testing. Clin. Chem. Lab. Med 2006, 44, 1009–1014. [Google Scholar]
- Drake, SK; Bowen, RAR; Remaley, AT; Hortin, GL. Potential interferences from blood collection tubes in mass spectrometric analyses of serum polypeptides. Clin. Chem 2004, 50, 2398–2401. [Google Scholar]
- Hsieh, SY; Chen, RK; Pan, YH; Lee, HL. Systematical evaluation of the effects of sample collection procedures on low-molecular-weight serum/plasma proteome profiling. Proteomics 2006, 6, 3189–3198. [Google Scholar]
- Banks, RE; Stanley, AJ; Cairns, DA; Barrett, JH; Clarke, P; Thompson, D; Selby, PJ. Influences of blood sample processing on low-molecular-weight proteome identified by surface-enhanced laser desorption/ionization mass spectrometry. Clin. Chem 2005, 51, 1637–1649. [Google Scholar]
- West-Nielsen, M; Hogdall, EV; Marchiori, E; Hogdall, CK; Schou, C; Heegaard, NHH. Sample handling for mass spectrometric proteomic investigations of human sera. Anal. Chem 2005, 77, 5114–5123. [Google Scholar]
- Timms, JF; Arslan-Low, E; Gentry-Maharaj, A; Luo, Z; T’Jampens, D; Podust, VN; Ford, J; Fung, ET; Gammerman, A; Jacobs, I; Menon, U. Preanalytic influence of sample handling on SELDI-TOF serum protein profiles. Clin. Chem 2007, 53, 645–656. [Google Scholar]
- Rubin, O; Crettaz, D; Tissot, JD; Lion, N. Pre-analytical and methodological challenges in red blood cell microparticle proteomics. Talanta 2010, 82, 1–8. [Google Scholar]
- Olivieri, E; Herbert, B; Righetti, PG. The effect of protease inhibitors on the two-dimensional electrophoresis pattern of red blood cell membranes. Electrophoresis 2001, 22, 560–565. [Google Scholar]
- Davis, MT; Patterson, SD. Does the serum peptidome reveal hemostatic dysregulation? In Systems Biology: Applications and Perspectives; Bringmann, P, Butcher, EC, Parry, G, Weiss, B, Eds.; Springer: New York, NY, USA, 2007; Volume 61, pp. 23–44. [Google Scholar]
- Cox, AG; Peskin, AV; Paton, LN; Winterbourn, CC; Hampton, MB. Redox potential and peroxide reactivity of human peroxiredoxin 3. Biochemistry 2009, 48, 6495–6501. [Google Scholar]
- Le Moan, N; Tacnet, F; Toledano, MB. Protein-thiol oxidation, from single proteins to proteome-wide analyses. Methods Mol. Biol 2009, 476, 175–192. [Google Scholar]
- Traum, AZ; Wells, MP; Aivado, M; Libermann, TA; Ramoni, MF; Schachter, AD. SELDI-TOF MS of quadruplicate urine and serum samples to evaluate changes related to storage conditions. Proteomics 2006, 6, 1676–1680. [Google Scholar]
- Ulmert, D; Becker, C; Nilsson, JA; Piironen, T; Bjork, T; Hugosson, J; Berglund, G; Lilja, H. Reproducibility and accuracy of measurements of free and total prostate-specific antigen in serum vs plasma after long-term storage at-20 degrees C. Clin. Chem 2006, 52, 235–239. [Google Scholar]
- Insenser, M; Martínez-García, MÁ; Nieto, RM; San-Millán, JL; Escobar-Morreale, HF. Impact of the storage temperature on human plasma proteomic analysis: Implications for the use of human plasma collections in research. Proteomics Clin. Appl 2010, 4, 739–744. [Google Scholar]
- Wintrobe, MM; Buell, MV. Hyperproteinemia associated with multiple myeloma - With report of a case in which an extraordinary hyperproteinemia was associated with thrombosis of the retinal veins and symptoms suggesting Raynaud’s disease. Bull. Johns Hopkins Hosp 1933, 52, 156–165. [Google Scholar]
- Brouet, J-C; Clauvel, J-P; Danon, F; Klein, M; Seligmann, M. Biologic and clinical significance of cryoglobulins: A report of 86 cases. Am. J. Med 1974, 57, 775–788. [Google Scholar]
- Blain, H; Cacoub, P; Musset, L; Costedoat-Chalumeau, N; Silberstein, C; Chosidow, O; Godeau, P; Frances, C; Piette, JC. Cryofibrinogenaemia: A study of 49 patients. Clin. Exp. Immunol 2000, 120, 253–260. [Google Scholar]
- Robert, D; Barelli, S; Crettaz, D; Bart, PA; Schifferli, JA; Betticher, D; Tissot, JD. Clinical proteomics: Study of a cryogel. Proteomics 2006, 6, 3958–3960. [Google Scholar]
- Rai, AJ; Gelfand, CA; Haywood, BC; Warunek, DJ; Yi, J; Schuchard, MD; Mehigh, RJ; Cockrill, SL; Scott, GB; Tammen, H; Schulz-Knappe, P; Speicher, DW; Vitzthum, F; Haab, BB; Siest, G; Chan, DW. HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 2005, 5, 3262–3277. [Google Scholar]
Labile blood products | Blood sample for pathological-case biomarker research | References | |||||
---|---|---|---|---|---|---|---|
ECs | PCs | FFP | |||||
Sampling | sample obtention | donor position | resting position | [68] | |||
tourniquet application | less than 30 seconds if possible, no more than 1 minute | [69] | |||||
needle bore size | avoid too thin needle (21–23 gauge needles are preferred) | [70,71] | |||||
container type | material | approved plastic bags | vacuette®-like blood collection tubes | [72,73] | |||
anticoagulant content | Citrate Phosphate Dextrose (CPD) | depends on analyses | [73] | ||||
processing and handling | time between sampling and processing | up to 24 h at +4 °C or up to 4 h at +24 °C | [74,75] | ||||
transport time and temperature | controlled transport at +4 °C, must be as brief as possible | [76] | |||||
centrifugation | prefer centrifugation at +4 °C, up to 3000 × g | [73] | |||||
use of protease inhibitors | required to avoid proteolysis | [78,79] | |||||
use of antioxidant reagents | needed in case of redox proteomic studies | [80,81] | |||||
storage | temperature | original sample | +4 °C | +22 °C | −25 °C | −20/−30 °C or −80 °C | [73,82,83] |
proteinic extracts | −20/−30 °C and −80 °C stored extracts are both suitable | [84] | |||||
freeze/thaw cycles | better only once, but several cycles do not affect proteomic patterns | [73,82,83] | |||||
case of cryoproteins | always work at 37 °C (pre-heated containers) | [87] |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Delobel, J.; Rubin, O.; Prudent, M.; Crettaz, D.; Tissot, J.-D.; Lion, N. Biomarker Analysis of Stored Blood Products: Emphasis on Pre-Analytical Issues. Int. J. Mol. Sci. 2010, 11, 4601-4617. https://doi.org/10.3390/ijms11114601
Delobel J, Rubin O, Prudent M, Crettaz D, Tissot J-D, Lion N. Biomarker Analysis of Stored Blood Products: Emphasis on Pre-Analytical Issues. International Journal of Molecular Sciences. 2010; 11(11):4601-4617. https://doi.org/10.3390/ijms11114601
Chicago/Turabian StyleDelobel, Julien, Olivier Rubin, Michel Prudent, David Crettaz, Jean-Daniel Tissot, and Niels Lion. 2010. "Biomarker Analysis of Stored Blood Products: Emphasis on Pre-Analytical Issues" International Journal of Molecular Sciences 11, no. 11: 4601-4617. https://doi.org/10.3390/ijms11114601
APA StyleDelobel, J., Rubin, O., Prudent, M., Crettaz, D., Tissot, J.-D., & Lion, N. (2010). Biomarker Analysis of Stored Blood Products: Emphasis on Pre-Analytical Issues. International Journal of Molecular Sciences, 11(11), 4601-4617. https://doi.org/10.3390/ijms11114601