Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = agar-based film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2510 KiB  
Article
Development of Vancomycin, a Glycopeptide Antibiotic, in a Suitable Nanoform for Oral Delivery
by Ali A. Amer, Lewis Bingle, Cheng Shu Chaw and Amal Ali Elkordy
Molecules 2025, 30(7), 1624; https://doi.org/10.3390/molecules30071624 - 5 Apr 2025
Viewed by 1271
Abstract
Bacterial infections caused by resistant strains have emerged as one of the most significant life-threatening challenges. Developing alternatives to conventional antibiotic formulations is crucial to overcoming these challenges. Vancomycin HCl (VCM) is a glycopeptide antibiotic used for Gram-positive bacterial infections that must be [...] Read more.
Bacterial infections caused by resistant strains have emerged as one of the most significant life-threatening challenges. Developing alternatives to conventional antibiotic formulations is crucial to overcoming these challenges. Vancomycin HCl (VCM) is a glycopeptide antibiotic used for Gram-positive bacterial infections that must be given intravenously for systemic infections since it cannot pass through the gut wall due to its chemical structure and characteristics. The aim of this research is to develop VCM in a niosomal nanoform to then be encapsulated in fast-disintegrating oral films for effective delivery to enhance the application of vancomycin-loaded niosomes for treating oral infections and to be used in dental treatments. The formulation of niosomes encapsulating VCM was conducted with various ratios of Span 40, Span 60, and cholesterol as well as Kolliphor RH40 and Kolliphor ELP as co-surfactants using the microfluidic technique. The prepared niosomes were characterised using dynamic light scattering (DLS) for their size determination; high-pressure liquid chromatography, HPLC, for drug encapsulation efficiency determination; and the agar diffusion method for the determination of the antibacterial efficacy of the VCM niosomes against Bacillus subtilis. The niosomal formulation was then incorporated into polyvinyl alcohol (PVA) film, and the properties of the oral film were characterised by in vitro assays. The vancomycin-loaded niosomes produced with optimal conditions exhibited small diameter with acceptable polydispersity index, and drug encapsulation efficiency. This study presents multifunctional niosomes loaded with VCM, which demonstrated efficient in vitro activity against Gram-positive bacteria upon the slow release of VCM from niosomes, as demonstrated by the dissolution test. Oral films containing VCM niosomes demonstrated uniform weights and excellent flexibility with high foldability and a rapid disintegration time of 105 ± 12 s to release the niosomal content. This study showed that the microfluidic approach could encapsulate VCM, a peptide in salt form, in surfactant-based niosomal vesicles with a narrow size distribution. The incorporation of niosomes into fast-disintegrating film provides a non-invasive and patient-friendly alternative for treating bacterial infections in the oral cavity, making it a promising approach for dental and systemic applications. Full article
(This article belongs to the Special Issue Molecular Approaches to Drug Discovery and Development)
Show Figures

Figure 1

22 pages, 5119 KiB  
Article
Mechanical and Thermal Behavior of Hemp-Reinforced Starch/Agar Biocomposites: Insights from Finite Element Simulation and Machine Learning Models
by Ehsan Fartash Naeimi, Kemal Çağatay Selvi, İbrahim İnanç and Nicoleta Ungureanu
Polymers 2025, 17(7), 855; https://doi.org/10.3390/polym17070855 - 23 Mar 2025
Cited by 1 | Viewed by 720
Abstract
The increasing effects of plastic pollution have led to the study of eco-friendly and biodegradable alternatives. The present study concerns the production and characterization of biocomposite films from starch, agar, and alkaline/peroxide-treated hemp fiber powder. In total, nine films were fabricated with variable [...] Read more.
The increasing effects of plastic pollution have led to the study of eco-friendly and biodegradable alternatives. The present study concerns the production and characterization of biocomposite films from starch, agar, and alkaline/peroxide-treated hemp fiber powder. In total, nine films were fabricated with variable ratios of starch–agar (0, 0.5, and 0.75) and hemp fiber (0, 15, and 30 wt.%). The physical, mechanical, and thermal properties of these films were evaluated. Tensile tests demonstrated that adding 30% hemp fiber increased Young’s modulus, while 15% fiber decreased tensile strength. In the SAH group, adding 1.5 g of agar significantly improved tensile strength and Young’s modulus, especially in the SAH30 sample. Finite element simulations of tensile tests showed remarkable agreement with experimental data. Machine learning models (SVM and GP) were used to predict tensile strength, with the SVM model using the RBF kernel showing the highest accuracy (R2 = 0.938). Impact tests indicated that resistance was improved by agar, with the SAH group showing optimal stress distribution and energy absorption. Steady-state and transient thermal analyses showed that hemp fiber increased thermal resistance, and heat stress depended mainly on composition, especially agar and fiber. This research accentuates the potential of hemp fiber and agar to improve the properties of starch-based films and thereby opens routes toward sustainable material development. Full article
Show Figures

Figure 1

15 pages, 711 KiB  
Article
Cassava Waste Starch as a Source of Bioplastics: Development of a Polymeric Film with Antimicrobial Properties
by Yuri D. O. Silveira, Adriana S. Franca and Leandro S. Oliveira
Foods 2025, 14(1), 113; https://doi.org/10.3390/foods14010113 - 3 Jan 2025
Cited by 2 | Viewed by 3276
Abstract
Polysaccharides represent the most abundant biopolymers in agri-food wastes and thus are the most studied polymers to produce biodegradable films for use in packaging. Starch is among the major polysaccharides extracted from food and agricultural waste that have been used as precursor material [...] Read more.
Polysaccharides represent the most abundant biopolymers in agri-food wastes and thus are the most studied polymers to produce biodegradable films for use in packaging. Starch is among the major polysaccharides extracted from food and agricultural waste that have been used as precursor material for film production. Therefore, the present study aimed at producing an active film with antimicrobial properties using starch extracted from cassava waste and oil extracted from cloves. The antimicrobial activity of the produced films was tested against Staphylococcus aureus, Salmonella Typhimurium and Listeria monocytogenes. Cassava periderm and cortex were bleached with either NaClO or H2O2 before starch aqueous extraction. The active films’ antimicrobial effectiveness was assessed by the formation of inhibitory halos around film disc samples in an agar diffusion method. The inhibition zone diameters were statistically similar for all microorganisms, with an average diameter of 11.87 ± 1.62 mm. The films presented an average water vapor permeability of 0.14 g mm/m2 h kPa, an average tensile strength of 0.17 MPa and an elongation at break of 32.90%. Based on the determined properties, the produced films were deemed adequate for use in food packaging, in which antimicrobial activity is paramount. Full article
(This article belongs to the Collection Edible Films and Coatings for Food Preservation)
Show Figures

Figure 1

37 pages, 16800 KiB  
Review
An Overview of Microorganisms Immobilized in a Gel Structure for the Production of Precursors, Antibiotics, and Valuable Products
by Dmitriy Berillo, Turganova Malika, Baiken B. Baimakhanova, Amankeldi K. Sadanov, Vladimir E. Berezin, Lyudmila P. Trenozhnikova, Gul B. Baimakhanova, Alma A. Amangeldi and Bakhytzhan Kerimzhanova
Gels 2024, 10(10), 646; https://doi.org/10.3390/gels10100646 - 10 Oct 2024
Cited by 7 | Viewed by 4865
Abstract
Using free microorganisms for industrial processes has some limitations, such as the extensive consumption of substrates for growth, significant sensitivity to the microenvironment, and the necessity of separation from the product and, therefore, the cyclic process. It is widely acknowledged that confining or [...] Read more.
Using free microorganisms for industrial processes has some limitations, such as the extensive consumption of substrates for growth, significant sensitivity to the microenvironment, and the necessity of separation from the product and, therefore, the cyclic process. It is widely acknowledged that confining or immobilizing cells in a matrix or support structure enhances enzyme stability, facilitates recycling, enhances rheological resilience, lowers bioprocess costs, and serves as a fundamental prerequisite for large-scale applications. This report summarizes the various cell immobilization methods, including several synthetic (polyvinylalcohol, polyethylenimine, polyacrylates, and Eudragit) and natural (gelatin, chitosan, alginate, cellulose, agar–agar, carboxymethylcellulose, and other polysaccharides) polymeric materials in the form of thin films, hydrogels, and cryogels. Advancements in the production of well-known antibiotics like penicillin and cephalosporin by various strains were discussed. Additionally, we highlighted cutting-edge research related to strain producers of peptide-based antibiotics (polymyxin B, Subtilin, Tyrothricin, varigomycin, gramicidin S, friulimicin, and bacteriocin), glusoseamines, and polyene derivatives. Crosslinking agents, especially covalent linkers, significantly affect the activity and stability of biocatalysts (penicillin G acylase, penicillinase, deacetoxycephalosporinase, L-asparaginase, β-glucosidase, Xylanase, and urease). The molecular weight of polymers is an important parameter influencing oxygen and nutrient diffusion, the kinetics of hydrogel formation, rigidity, rheology, elastic moduli, and other mechanical properties crucial for long-term utilization. A comparison of stability and enzymatic activity between immobilized enzymes and their free native counterparts was explored. The discussion was not limited to recent advancements in the biopharmaceutical field, such as microorganism or enzyme immobilization, but also extended to methods used in sensor and biosensor applications. In this study, we present data on the advantages of cell and enzyme immobilization over microorganism (bacteria and fungi) suspension states to produce various bioproducts and metabolites—such as antibiotics, enzymes, and precursors—and determine the efficiency of immobilization processes and the optimal conditions and process parameters to maximize the yield of the target products. Full article
(This article belongs to the Special Issue Gel Film and Its Wide Range of Applications)
Show Figures

Figure 1

23 pages, 1533 KiB  
Review
Seaweed as a Valuable and Sustainable Resource for Food Packaging Materials
by Aleksandra Nesic, Sladjana Meseldzija, Sergio Benavides, Fabián A. Figueroa and Gustavo Cabrera-Barjas
Foods 2024, 13(19), 3212; https://doi.org/10.3390/foods13193212 - 9 Oct 2024
Cited by 2 | Viewed by 5725
Abstract
Plastic food packaging causes massive pollution in the environment via resource extraction, gas emissions, and the enduring plastic waste accumulation. Hence, it is of crucial importance to discover sustainable alternatives in order to protect ecosystems and conserve precious resources. Recently, seaweed has been [...] Read more.
Plastic food packaging causes massive pollution in the environment via resource extraction, gas emissions, and the enduring plastic waste accumulation. Hence, it is of crucial importance to discover sustainable alternatives in order to protect ecosystems and conserve precious resources. Recently, seaweed has been emerging as a promising sustainable solution to plastic pollution. Seaweed is a fast-growing marine plant that is abundant in tropical coastlines and requires minimal resources to cultivate. In addition, seaweed is rich in valuable polysaccharides such as alginate, fucoidan, carrageenan, agar, and ulva, which can be extracted and processed into biodegradable films, coatings, and wraps. This ability allows the creation of an alternative to plastic food packages that are completely biodegradable, made from renewable resources, and do not linger in landfills or oceans for centuries. In this context, this review discusses the main classification of seaweed, their production and abundance in the world, and provides a summary of seaweed-based materials developed in the last 2–5 years for potential usage in the food packaging sector. Full article
Show Figures

Graphical abstract

24 pages, 4978 KiB  
Article
Development of Eco-Friendly Biocomposite Films Based on Opuntia ficus-indica Cladodes Powder Blended with Gum Arabic and Xanthan Envisaging Food Packaging Applications
by Malha Oudir, Zohra Ait Mesbah, Djahida Lerari, Nadia Issad and Djamel Djenane
Foods 2024, 13(1), 78; https://doi.org/10.3390/foods13010078 - 25 Dec 2023
Cited by 10 | Viewed by 2841
Abstract
Currently, food packaging is facing a critical transition period and a major challenge: it must preserve the food products’ quality and, at the same time, it must meet the current requirements of the circular economy and the fundamental principles of packaging materials eco-design. [...] Read more.
Currently, food packaging is facing a critical transition period and a major challenge: it must preserve the food products’ quality and, at the same time, it must meet the current requirements of the circular economy and the fundamental principles of packaging materials eco-design. Our research presents the development of eco-friendly packaging films based on Opuntia ficus-indica cladodes (OFIC) as renewable resources. OFIC powder (OFICP)-agar, OFICP–agar-gum arabic (GA), and OFICP–agar-xanthan (XG) blend films were eco-friendlily prepared by a solution casting method. The films’ properties were investigated by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (X-RD), and differential scanning calorimeter (DSC). Water solubility and moisture content were also determined. Morphology, thickness, molecular interactions, miscibility, crystallinity, and thermal properties, were affected by adjusting the gums (GA and XG) content and glycerol in the blend films. Moisture content increased with increasing glycerol and XG content, and when 1.5 g of GA was added. Water solubility decreased when glycerol was added at 50% and increased with increasing GA and XG content. FTIR and XRD confirmed strong intermolecular interactions between the different blend film compounds, which were reflected in the shifting, appearance, and disappearance of FTIR bands and XRD peaks, indicating excellent miscibility. DSC results revealed a glass transition temperature (Tg) below room temperature for all prepared blend films, indicating that they are flexible and soft at room temperature. The results corroborated that the addition of glycerol at 30% and the GA to the OFICP increased the stability of the film, making it ideal for different food packaging applications. Full article
(This article belongs to the Special Issue New Technological Advances in Meat Packaging: Shelf-Life and Safety)
Show Figures

Graphical abstract

20 pages, 2939 KiB  
Article
Development of Chitosan-Based Active Films with Medicinal Plant Extracts for Potential Food Packaging Applications
by Kwanele Andy Nxumalo, Olaniyi Amos Fawole and Adeyemi Oladapo Aremu
Processes 2024, 12(1), 23; https://doi.org/10.3390/pr12010023 - 21 Dec 2023
Cited by 10 | Viewed by 2205
Abstract
In this study, 2% chitosan (Ch) (w/v) was enriched with 1% Lippia javanica, Syzygium cordatum, and Ximenia caffra extract to form Ch+L, Ch+S, and Ch+X, respectively. The control film was the chitosan (Ch) film without plant extracts. [...] Read more.
In this study, 2% chitosan (Ch) (w/v) was enriched with 1% Lippia javanica, Syzygium cordatum, and Ximenia caffra extract to form Ch+L, Ch+S, and Ch+X, respectively. The control film was the chitosan (Ch) film without plant extracts. The composite films were assessed for their antifungal ability using the agar diffusion method against economically relevant plant pathogens, Botrytis cinerea, and Penicillium expansum. These chitosan films were further evaluated using an X-ray diffractometer and scanning electron microscope, and their physical and mechanical properties were also assessed. The medicinal plants in the chitosan matrix had the highest inhibition zone (10 mm) against P. expansum, while the chitosan-only films had the lowest inhibition zone (3.3 mm). Notably, Ch+S and Ch+X films had the highest inhibition zone (10 mm) against B. cinerea, while chitosan-only films did not avert the spread of B. cinerea. Ch+L films had the highest film thickness (0.189 mm), density (1.62 g·cm3), swelling degree (48.6%), and water solubility (32.8%). Films with other plant extracts had moderate properties, while chitosan without plant extract had the least film thickness (0.128 mm), density (1.08 g·cm3), swelling degree (31.9%), and water solubility (18.9%). X-ray diffraction images revealed that the chitosan films fused with plant extracts altered the extent of crystallinity of the films because they ranged between 14,710.43 for chitosan-only films and 26,288.31 a.u. for Ch+S films. Enriching the chitosan-based films with the investigated medicinal plant extracts resulted in different favorable properties and could make good candidates for food preservation and packaging if optimized. Full article
(This article belongs to the Special Issue Process Research in Thin Film and Coating Technology)
Show Figures

Figure 1

18 pages, 6105 KiB  
Article
Development and Characterization of Bio-Based Composite Films for Food Packing Applications Using Boiled Rice Water and Pistacia vera Shells
by Vinnarasi A. Raj, Karthikumar Sankar, Pandiarajan Narayanasamy, Innasi Ganesh Moorthy, Natesan Sivakumar, Shyam Kumar Rajaram, Ponmurugan Karuppiah, Mohammed Rafi Shaik, Abdulrahman Alwarthan, Tae Hwan Oh and Baji Shaik
Polymers 2023, 15(16), 3456; https://doi.org/10.3390/polym15163456 - 18 Aug 2023
Cited by 11 | Viewed by 3088
Abstract
Customer demand for natural packaging materials in the food industry has increased. Biocomposite films developed using boiled rice water could be an eco-friendly and cost-effective packaging product in the future. This study reports the development of bio-based films using waste materials, such as [...] Read more.
Customer demand for natural packaging materials in the food industry has increased. Biocomposite films developed using boiled rice water could be an eco-friendly and cost-effective packaging product in the future. This study reports the development of bio-based films using waste materials, such as boiled rice water (matrix) and Pistacia vera shells (reinforcement material), using an adapted solution casting method. Several film combinations were developed using various concentrations of plasticizing agent (sorbitol), thickening agent (oil and agar), and stabilizing agents (Arabic gum, corn starch, and Pistacia vera shell powder). Various packaging properties of the film were analyzed and examined to select the best bio-based film for food packaging applications. The film fabricated with Pistacia vera shell powder in the biocomposite film exhibited a reduced water solubility, swelling index, and moisture content, as compared to polyethene packaging material, whereas the biocomposite film exhibited poor antimicrobial properties, high vapor transmission rate, and high biodegradability rate. The packaging properties and characterization of the film indicated that the boiled rice water film with Pistacia vera shell powder was suitable for packaging material applications. Full article
(This article belongs to the Special Issue Polymer Composites with Antibacterial Properties)
Show Figures

Figure 1

23 pages, 11632 KiB  
Article
Preparation of pH-Responsive Films from Polyvinyl Alcohol/Agar Containing Cochineal for Monitoring the Freshness of Pork
by Danfei Liu, Yunfei Zhong, Yumei Pu, Xiaoxuan Li, Siyuan Chen and Changfan Zhang
Foods 2023, 12(12), 2316; https://doi.org/10.3390/foods12122316 - 8 Jun 2023
Cited by 12 | Viewed by 3367
Abstract
This study reported the production of pH-responsive films based on 8 wt% polyvinyl alcohol solution/0.2 wt% agar solution incorporated with cochineal-loaded starch particles (CSN) (2, 4, 6 and 8 wt% on agar basis) by a casting process. Results revealed that CSN presented obvious [...] Read more.
This study reported the production of pH-responsive films based on 8 wt% polyvinyl alcohol solution/0.2 wt% agar solution incorporated with cochineal-loaded starch particles (CSN) (2, 4, 6 and 8 wt% on agar basis) by a casting process. Results revealed that CSN presented obvious color changes over the pH range of 2–12. FTIR, XRD spectra and SEM micrographs presented that the incorporation of CSN formed new hydrogen bonds with a matrix and a tighter network structure. A certain improvement was observed in the color stability, swelling index and functional properties (antimicrobial and antioxidant activities) but water solubility, water vapor permeability and water contact angle of the pH-responsive films were decreased by the addition of CSN. The release of cochineal was a rate-limiting step following the Korsmeyer-Peppas model. The agar/polyvinyl alcohol film containing 6% CSN (PVA/GG-6) exhibited the best sensitivity for ammonia detection and its limit of detection was 35.4 ppm (part per million) for ammonia. The application trials showed that the PVA/GG-6 film presented different color changes for pork freshness. Hence, these pH-responsive films can be used as potential packaging materials for tracking the freshness of protein-rich fresh food in a non-destructive way. Full article
(This article belongs to the Special Issue Trends and Prospects in Sustainable Food Packaging Materials)
Show Figures

Graphical abstract

14 pages, 4566 KiB  
Review
Insights into the Edible and Biodegradable Ulvan-Based Films and Coatings for Food Packaging
by Huatian Wang, Zhen Cao, Lingyun Yao, Tao Feng, Shiqing Song and Min Sun
Foods 2023, 12(8), 1622; https://doi.org/10.3390/foods12081622 - 12 Apr 2023
Cited by 22 | Viewed by 6725
Abstract
Recently, edible films or coatings that are made from algal polysaccharides have become promising candidates for replacing plastic-based packaging materials for food storage due to their non-toxic, biodegradable, biocompatible, and bioactive characteristics. Ulvan, a significant biopolymer with unique functional properties derived from marine [...] Read more.
Recently, edible films or coatings that are made from algal polysaccharides have become promising candidates for replacing plastic-based packaging materials for food storage due to their non-toxic, biodegradable, biocompatible, and bioactive characteristics. Ulvan, a significant biopolymer with unique functional properties derived from marine green algae, has been extensively used in various sectors. However, there are fewer commercial applications of this sugar in the food packaging industry compared to many other algae-derived polysaccharides, such as alginates, carrageenan, and agar. This article aims to review the unparalleled chemical composition/structure and physiochemical properties of ulvan and the latest developments in ulvan-based edible films and coatings, thus highlighting their potential applications in the food packaging industry. Full article
(This article belongs to the Special Issue Edible Film Based on Polysaccharides, Proteins and Lipids)
Show Figures

Figure 1

14 pages, 1863 KiB  
Article
A New Method to Determine Antioxidant Activities of Biofilms Using a pH Indicator (Resazurin) Model System
by Young-Teck Kim, Robert Kimmel and Xiyu Wang
Molecules 2023, 28(5), 2092; https://doi.org/10.3390/molecules28052092 - 23 Feb 2023
Cited by 3 | Viewed by 2233
Abstract
Biopolymeric films were prepared with gelatin, plasticizer, and three different types of antioxidants (ascorbic acid, phytic acid, and BHA) corresponding to different mechanisms in activity. The antioxidant activity of films was monitored for 14 storage days upon color changes using a pH indicator [...] Read more.
Biopolymeric films were prepared with gelatin, plasticizer, and three different types of antioxidants (ascorbic acid, phytic acid, and BHA) corresponding to different mechanisms in activity. The antioxidant activity of films was monitored for 14 storage days upon color changes using a pH indicator (resazurin). The instant antioxidant activity of films was measured by a DPPH free radical test. The system using resazurin was composed of an agar, an emulsifier, and soybean oil to simulate a highly oxidative oil-based food system (AES-R). Gelatin-based films (GBF) containing phytic acid showed higher tensile strength and energy to break than all other samples due to the increased intermolecular interactions between phytic acid and gelatin molecules. The oxygen barrier properties of GBF films containing ascorbic acid and phytic acid increased due to the increased polarity, while GBF films containing BHA showed increased oxygen permeability compared to the control. According to “a-value” (redness) of the AES-R system tested with films, films incorporating BHA showed the most retardation of lipid oxidation in the system. This retardation corresponds to 59.8% antioxidation activity at 14 days, compared with the control. Phytic acid-based films did not show antioxidant activity, whereas ascorbic acid-based GBFs accelerated the oxidation process due to its prooxidant activity. The comparison between the DPPH free radical test and the control showed that the ascorbic acid and BHA-based GBFs showed highly effective free radical scavenging behavior (71.7% and 41.7%, respectively). This novel method using a pH indicator system can potentially determine the antioxidation activity of biopolymer films and film-based samples in a food system. Full article
(This article belongs to the Special Issue Antioxidant/Antimicrobial Packaging Films)
Show Figures

Figure 1

10 pages, 1825 KiB  
Article
Pullulan/Agar-Based Functional Film Containing Eucalyptus Essential Oil and Rutin
by Swarup Roy and Jong-Whan Rhim
Coatings 2023, 13(2), 460; https://doi.org/10.3390/coatings13020460 - 17 Feb 2023
Cited by 12 | Viewed by 2979
Abstract
Biopolymer-based films were developed using a mixture of pullulan and agar, and the fabricated film was functionalized with bioactive functional components, Pickering emulsion of eucalyptus essential oil (PEU), and rutin. The color of the film with PEU and rutin supplemented was light yellow. [...] Read more.
Biopolymer-based films were developed using a mixture of pullulan and agar, and the fabricated film was functionalized with bioactive functional components, Pickering emulsion of eucalyptus essential oil (PEU), and rutin. The color of the film with PEU and rutin supplemented was light yellow. As a result, the yellowness index increased while the whiteness index of the film reduced. The functional filler showed a biocompatibility with the pullulan/agar polymer matrix. The presence of bioactive functional materials enhanced the UV protection properties of the film. The films’ mechanical properties, vapor barrier properties, and thermal stability were not pointedly affected by the presence of essential oils and rutin alone or in combination. The presence of essential oils and rutin markedly enhanced the antioxidant activity of pullulan/agar-based films. Therefore, the bioactive functional film developed can be useful for active food packaging applications. Full article
Show Figures

Graphical abstract

30 pages, 9529 KiB  
Article
Polymer Blends Based on 1-Hexadecyl-3-methyl Imidazolium 1,3-Dimethyl 5-Sulfoisophthalate Ionic Liquid: Thermo-Mechanical, Surface Morphology and Antibacterial Properties
by Daniela C. Zampino, Filippo Samperi, Monique Mancuso, Tiziana Ferreri, Loredana Ferreri, Sandro Dattilo, Emanuele F. Mirabella, Domenico C. Carbone, Giuseppe Recca, Andrea A. Scamporrino, Elisabetta Novello and Concetto Puglisi
Polymers 2023, 15(4), 970; https://doi.org/10.3390/polym15040970 - 16 Feb 2023
Cited by 4 | Viewed by 2958
Abstract
In this study, antibacterial polymer blends based on Polyvinyl Chloride (PVC) and Polystyrene-Ethylene-Butylene-Styrene (SEBS), loaded with the ionic liquid (IL) 1-hexadecyl-3-methyl imidazolium 1,3-dimethyl 5-sulfoisophthalate (HdmimDMSIP) at three different concentrations (1%, 5%, and 10%), were produced. The IL/blends were characterized by their thermo-mechanical properties, [...] Read more.
In this study, antibacterial polymer blends based on Polyvinyl Chloride (PVC) and Polystyrene-Ethylene-Butylene-Styrene (SEBS), loaded with the ionic liquid (IL) 1-hexadecyl-3-methyl imidazolium 1,3-dimethyl 5-sulfoisophthalate (HdmimDMSIP) at three different concentrations (1%, 5%, and 10%), were produced. The IL/blends were characterized by their thermo-mechanical properties, surface morphology, and wettability. IL release from the blends was also evaluated. The agar diffusion method was used to test the antibacterial activity of the blends against Staphylococcus epidermidis and Escherichia coli. Results from thermal analyses showed compatibility between the IL and the PVC matrix, while phase separation in the SEBS/IL blends was observed. These results were confirmed using PY-GC MS data. SEM analyses highlighted abundant IL deposition on PVC blend film surfaces containing the IL at 5–10% concentrations, whereas the SEBS blend film surfaces showed irregular structures similar to islands of different sizes. Data on water contact angle proved that the loading of the IL into both polymer matrices induced higher wettability of the blends’ surfaces, mostly in the SEBS films. The mechanical analyses evidenced a lowering of Young’s Modulus, Tensile Stress, and Strain at Break in the SEBS blends, according to IL concentration. The PVC/IL blends showed a similar trend, but with an increase in the Strain at Break as IL concentration in the blends increased. Both PVC/IL and SEBS/IL blends displayed the best performance against Staphylococcus epidermidis, being active at low concentration (1%), whereas the antimicrobial activity against Escherichia coli was lower than that of S. epidermidis. Release data highlighted an IL dose-dependent release. These results are promising for a versatile use of these antimicrobial polymers in a variety of fields. Full article
Show Figures

Figure 1

17 pages, 2515 KiB  
Article
Antiadherent AgBDC Metal–Organic Framework Coating for Escherichia coli Biofilm Inhibition
by Ana Arenas-Vivo, Vanessa Celis Arias, Georgiana Amariei, Roberto Rosal, Isabel Izquierdo-Barba, Tania Hidalgo, María Vallet-Regí, Hiram I. Beltrán, Sandra Loera-Serna and Patricia Horcajada
Pharmaceutics 2023, 15(1), 301; https://doi.org/10.3390/pharmaceutics15010301 - 16 Jan 2023
Cited by 7 | Viewed by 3837
Abstract
Surface microbial colonization and its potential biofilm formation are currently a major unsolved problem, causing almost 75% of human infectious diseases. Pathogenic biofilms are capable of surviving high antibiotic doses, resulting in inefficient treatments and, subsequently, raised infection prevalence rates. Antibacterial coatings have [...] Read more.
Surface microbial colonization and its potential biofilm formation are currently a major unsolved problem, causing almost 75% of human infectious diseases. Pathogenic biofilms are capable of surviving high antibiotic doses, resulting in inefficient treatments and, subsequently, raised infection prevalence rates. Antibacterial coatings have become a promising strategy against the biofilm formation in biomedical devices due to their biocidal activity without compromising the bulk material. Here, we propose for the first time a silver-based metal–organic framework (MOF; here denoted AgBDC) showing original antifouling properties able to suppress not only the initial bacterial adhesion, but also the potential surface contamination. Firstly, the AgBDC stability (colloidal, structural and chemical) was confirmed under bacteria culture conditions by using agar diffusion and colony counting assays, evidencing its biocide effect against the challenging E. coli, one of the main representative indicators of Gram-negative resistance bacteria. Then, this material was shaped as homogeneous spin-coated AgBDC thin film, investigating its antifouling and biocide features using a combination of complementary procedures such as colony counting, optical density or confocal scanning microscopy, which allowed to visualize for the first time the biofilm impact generated by MOFs via a specific fluorochrome, calcofluor. Full article
Show Figures

Figure 1

14 pages, 8763 KiB  
Article
Hemigraphis alternata Leaf Extract Incorporated Agar/Pectin-Based Bio-Engineered Wound Dressing Materials for Effective Skin Cancer Wound Care Therapy
by Jijo Koshy and Dhanaraj Sangeetha
Polymers 2023, 15(1), 115; https://doi.org/10.3390/polym15010115 - 27 Dec 2022
Cited by 7 | Viewed by 3761
Abstract
The rapidly expanding area of regenerative medicine may soon enter a new phase owing to developments in biomaterials and their application in generating new tissues. Chemicals and synthetic drugs are currently the subject of heated debate due to their effects on human health [...] Read more.
The rapidly expanding area of regenerative medicine may soon enter a new phase owing to developments in biomaterials and their application in generating new tissues. Chemicals and synthetic drugs are currently the subject of heated debate due to their effects on human health and the environment. Therefore, scientists seek out new products and procedures that are harmless to both the environment and human health concerns. Bio-based materials provide excellent functional qualities with a variety of applications. This study resulted in the development of a film with antimicrobial, hydrophilic, and anti-cancer properties, which is most beneficial in the medical sectors. In this study, we developed a blended biodegradable film containing agar and pectin (AP), with excellent surface functional properties framed through a casting technique. Additionally, the property can be changed by the addition of extract of hemigraphis alternata (HA) extract. The incorporation of extract in AP (APH) can be used for anti-cancer wound care therapy. The fabricated film is biodegradable, biocompatible, and non-toxic. This material is entirely based on a green methodology, and it was prepared in a concise manner without the use of any hazardous solvents. Based on the overall nature of biopolymer, the prepared material is a promising alternative to our society. Full article
(This article belongs to the Special Issue Polymer-Based Biomaterials for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop