Development of Chitosan-Based Active Films with Medicinal Plant Extracts for Potential Food Packaging Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining and Preserving Plant Material
2.2. Medicinal Plant Extraction and Development of Chitosan Films
2.3. Experimental Layout
2.4. Characterization of Films
2.4.1. X-ray Diffraction
2.4.2. Film Morphological Characteristics
2.4.3. Film Thickness and Density
2.4.4. Film Water Vapor Transmission Rate
2.4.5. Water Content
2.4.6. Film Solubility and Swelling Degree
2.4.7. Film Color Attributes and Glossiness
2.4.8. Transmittance and Opacity
2.4.9. Mechanical Characteristics
2.5. Release Kinetics of Phenolic Content and Antioxidant Capacity
2.5.1. Total Phenolic Content
2.5.2. Radical Scavenging Activity
2.5.3. Ferric Reducing Antioxidant Power
2.6. Antifungal Activity Assay
2.7. Statistical Analyses
3. Results and Discussion
3.1. Characterization of Films
3.1.1. X-ray Diffraction
3.1.2. Scanning Electron Microscopy
3.1.3. Film Thickness and Density
3.1.4. Film Water Vapor Transmission Rate and Water Content
3.1.5. Film Swelling Degree and Water Solubility
3.1.6. Mechanical Properties of the Chitosan Films
3.1.7. Film Color Attributes
3.1.8. Transmittance and Opacity
3.1.9. Film Glossiness
3.2. Release Kinetics of Total Phenolic Content and Antioxidant Capacity
3.3. Antifungal Activity
3.4. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coma, V. Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci. 2008, 78, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Dong, Y.; Men, H.; Tong, J.; Zhou, J. Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocoll. 2013, 32, 35–41. [Google Scholar] [CrossRef]
- Riaz, A.; Lei, S.; Akhtar, H.M.S.; Wan, P.; Chen, D.; Jabbar, S.; Abid, M.; Hashim, M.M.; Zeng, X. Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. Int. J. Biol. Macromol. 2018, 114, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Tajik, H.; Rohani, S.M.S.; Oromiehie, A.R.; Malekinejad, H.; Aliakbarlu, J.; Hadian, M. Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss. essential oil and grape seed extract. LWT-Food Sci. Technol. 2012, 46, 477–484. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Harte, B.R. Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll. 2010, 24, 770–775. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Vitchayakitti, W. Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll. 2016, 61, 695–702. [Google Scholar] [CrossRef]
- Dutta, P.K.; Tripathi, S.; Mehrotra, G.K.; Dutta, J. Perspectives for chitosan-based antimicrobial films in food applications. Food Chem. 2009, 114, 1173–1182. [Google Scholar] [CrossRef]
- Aider, M. Chitosan application for active bio-based film production and potential in the food industry: A review. LWT-J. Food Sci. Technol. 2010, 43, 837–842. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Pastor, C.; Vargas, M.; Chiralt, A.; González-Martínez, C.; Cháfer, M. Effect of hydroxypropylmethylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes. Postharvest Biol. Technol. 2011, 60, 57–63. [Google Scholar] [CrossRef]
- Madureira, A.R.; Pereira, A.; Pintado, M. Current state on the development of nanoparticles for use against bacterial gastrointestinal pathogens. Focus on chitosan nanoparticles loaded with phenolic compounds. Carbohydr. Polym. 2015, 130, 429–439. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocoll. 2015, 43, 547–556. [Google Scholar] [CrossRef]
- Nxumalo, K.A.; Aremu, A.O.; Fawole, O.A. Potentials of medicinal plant extracts as an alternative to synthetic chemicals in postharvest protection and preservation of horticultural crops: A review. Sustainability 2021, 13, 5897. [Google Scholar] [CrossRef]
- Burt, S. Essential oils their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Genskowsky, E.; Puente, L.A.; Perez-Alvarez, J.A.; Fernandez-Lopez, J.; Munoz, L.A.; Viuda-Martos, M. Assessment of antibacterial and antioxidant properties of chitosan edible films incorporated with maqui berry (Aristotelia chilensis). LWT-Food Sci. Technol. 2015, 64, 1057–1062. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, M.; Woo, M.W.; Li, Y.; Han, W.; Dang, X. High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing. Carbohydr. Polym. 2021, 256, 117590. [Google Scholar] [CrossRef] [PubMed]
- Nxumalo, K.A.; Fawole, O.A. Chitosan-Bidens pilosa extract-based coating with enhanced free radical scavenging, antifungal, and water barrier properties: Metabolite profiling, film characterization, and raspberry preservation. J. Food Qual. 2023, 2023, 5580928. [Google Scholar] [CrossRef]
- Maroyi, A. Lippia javanica (Burm.f.) Spreng.: Traditional and commercial uses and phytochemical and pharmacological significance in the African and Indian subcontinent. Evid. Based Complement. Altern. Med. 2017, 2017, 6746071. [Google Scholar] [CrossRef]
- Dlamini, C.S.; Geldenhuys, C.J. The socioeconomic status of the non-timber forest product subsector in Swaziland, Southern Forests. J. For. Sci. 2009, 71, 311–318. [Google Scholar] [CrossRef]
- Mulaudzi, R.B.; Ndhlala, A.R.; Kulkarni, M.G.; Finnie, J.F.; Van Staden, J. Antimicrobial properties and phenolic contents of medicinal plants used by the Venda people for conditions related to venereal diseases. J. Ethnopharmacol. 2011, 135, 330–337. [Google Scholar] [CrossRef]
- Shikanga, E.A.; Combrinck, S.; Regnier, T. South African Lippia herbal infusions: Total phenolic content, antioxidant and antibacterial activities. S. Afr. J. Bot. 2010, 76, 567–571. [Google Scholar] [CrossRef]
- Van Wyk, B.E.; van Oudtshoorn, B.; Gericke, N. Medicinal Plants of South Africa; Briza: Pretoria, South Africa, 2013; p. 36. [Google Scholar] [CrossRef]
- Sibandze, G.F.; Van Zyl, R.L.; Van Vuuren, S.F. The anti-diarrhoeal properties of Breonadia salicina, Syzygium cordatum and Ozoroa sphaerocarpa when used in combination in Swazi traditional medicine. J. Ethnopharmacol. 2010, 132, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Cheikhyoussef, A.; Shapi, M.K.; Matengu, K.K.; Mu Ashekele, H. Ethnobotanical study of indigenous knowledge on medicinal plant use by traditional healers in Oshikoto region, Namibia. J. Ethnobiol. Ethnomed. 2011, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Van Wyk, B.E. A review of African medicinal and aromatic plants. In Medicinal and Aromatic Plants of the World—Africa; Neffati, M., Najjaa, H., Máthé, Á., Eds.; Medicinal and Aromatic Plants of the World; Springer: Dordrecht, Netherlands, 2017; Volume 3. [Google Scholar] [CrossRef]
- Fabry, W.; Okemo, P.O.; Ansorg, R. Antibacterial activity of East African medicinal plants. J. Ethnopharmacol. 1998, 60, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Nair, J.J.; Mulaudzi, R.B.; Chukwujekwu, J.C.; Van Heerden, F.R.; Van Staden, J. Antigonococcal activity of Ximenia caffra Sond. (Olacaceae) and identification of the active principle. S. Afr. J. Bot. 2013, 86, 111–115. [Google Scholar] [CrossRef]
- Nxumalo, K.A.; Aremu, A.O.; Fawole, O.A. Metabolite profiling, antioxidant and antibacterial properties of four medicinal plants from Eswatini and their relevance in food preservation. S. Afr. J. Bot. 2023, 162, 719–729. [Google Scholar] [CrossRef]
- World Flora Online. 2022. Available online: http://www.worldfloraonline.org/ (accessed on 10 April 2023).
- Ramesh, P.; Rajendran, A.; Meenakshisundaram, M. Green synthesis of zinc oxide nanoparticles using flower extract Cassia Auriculata. J. Nanosci. Nanotechnol. 2014, 2, 41–45. [Google Scholar] [CrossRef]
- Hassan, M.A.; Marwa, A.Z.; El-Feky, S.A. Role of green synthesized ZnO nanoparticles as antifungal against postharvest gray and black mold of sweet bell pepper. J. Biotechnol. Bioeng. 2019, 3, 8–15. [Google Scholar] [CrossRef]
- Ferreira, A.; Nunes, C.; Castro, A.; Ferrerira, E.; Coimbra, M.A. Influence of grape pomace extract incorporation on chitosan films properties. Carbohydr. Polym. 2014, 113, 490–499. [Google Scholar] [CrossRef]
- Lian, H.; Peng, Y.; Shi, J.Y.; Wang, Q.G. Effect of emulsifier hydrophilic-lipophilic balance (HLB) on the release of thyme essential oil from chitosan films. Food Hydrocoll. 2019, 97, 105213. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Seydim, A.C.; Sarikus, G. Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res. Int. 2006, 39, 639–644. [Google Scholar] [CrossRef]
- Podgorbunskikh, E.; Kuskov, T.; Rychkov, D.; Lomovskii, O.; Bychkov, A. Mechanical amorphization of chitosan with different molecular weights. Polymers 2022, 14, 4438. [Google Scholar] [CrossRef]
- Souza, B.S.; Cerqueira, M.A.; Martins, J.T.; Casariego, A.; Teixeira, J.A.; Vicente, A.A. Influence of electric fields on the structure of chitosan edible coatings. Food Hydrocoll. 2010, 24, 330–335. [Google Scholar] [CrossRef]
- Rubilar, J.F.; Cruz, R.M.; Khmelinskii, I.; Vieira, M.C. Effect of antioxidant and optimal antimicrobial mixtures of carvacrol, grape seed extract and chitosan on different spoilage microorganisms and their application as coatings on different food matrices. Int. J. Food Stud. 2013, 2, 22–38. [Google Scholar] [CrossRef]
- Peng, Y.; Li, Y. Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocoll. 2014, 36, 287–293. [Google Scholar] [CrossRef]
- Biao, Y.; Yuxuan, C.; Qi, T.; Ziqi, Y.; Yourong, Z.; McClements, D.J.; Chongjiang, C. Enhanced performance and functionality of active edible films by incorporating tea polyphenols into thin calcium alginate hydrogels. Food Hydrocoll. 2019, 97, 105197. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Yang, Y.; Tang, K.; Hu, X.; Zou, G.L. Physicochemical characterization and antioxidant activity of quercetin-loaded chitosan nanoparticles. J. Appl. Polym. Sci. 2008, 107, 891–897. [Google Scholar] [CrossRef]
- Bourtoom, T.; Chinnan, M.S. Preparation and properties of rice starch-chitosan blend biodegradable film. LWT-Food Sci. Technol. 2008, 41, 1633–1641. [Google Scholar] [CrossRef]
- Wu, J.; Chen, S.; Ge, S.; Miao, J.; Li, J.; Zhang, Q. Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocoll. 2013, 32, 42–51. [Google Scholar] [CrossRef]
- Hosseini, M.H.; Razavi, S.H.; Mousavi, M.A. Antimicrobial, physical and mechanical properties of chitosan-based films incorporated with thyme, clove and cinnamon essential oils. J. Food Process. Preserv. 2009, 33, 727–743. [Google Scholar] [CrossRef]
- Liu, J.; Meng, C.G.; Yan, Y.H.; Shan, Y.N.; Kan, J.; Jin, C.H. Protocatechuic acid grafted onto chitosan: Characterization and antioxidant activity. Int. J. Biol. Macromol. 2016, 89, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Bodini, R.B.; Sobral, P.J.A.; Favaro-Trindade, C.S.; Carvalho, R.A. Properties of gelatin-based films with added ethanol-propolis extract. LWT-Food Sci. Technol. 2013, 51, 104–110. [Google Scholar] [CrossRef]
- Arfat, Y.A.; Benjakul, S.; Vongkamjan, K.; Sumpavapol, P.; Yarnpakdee, S.; Benjakul, S.; Vongkamjan, K.; Sumpavapol, P.; Yarnpakdee, S. Shelf-life extension of refrigerated sea bass slices wrapped with fish protein isolate/fish skin gelatin-ZnO nanocomposite film incorporated with basil leaf essential oil. J. Food Sci. Technol. 2015, 52, 6182–6193. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, J.B. Food and Color Appearance, 2nd ed.; Chapman and Hall Food Science Book; Aspen Publication: Gaithersburg, MD, USA, 1999; pp. 1–29. [Google Scholar] [CrossRef]
- Bitencourt, C.M.; Fávaro-Trindade, C.S.; Sobral, P.J.A.; Carvalho, R.A. Gelatin-based films additivated with curcuma ethanol extract: Antioxidant activity and physical properties of films. Food Hydrocoll. 2014, 40, 145–152. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Vargas, M.; González-Martínez, C.; Chiralt, A.; Cháfer, M. Characterization of edible films based on hydroxypropylmethylcellulose and tea tree essential oil. Food Hydrocoll. 2009, 23, 2102–2109. [Google Scholar] [CrossRef]
- Bors, W.; Michel, C.; Stettmaier, K. Structure-activity relationships governing antioxidant capacities of plant polyphenols. Meth. Enzymol. 2001, 335, 166–180. [Google Scholar]
- Pan, Y.; Wang, K.; Huang, S.; Wang, H.; Mu, X.; He, C.; Ji, X.; Zhang, J.; Huang, F. Antioxidant activity of microwave-assisted extract of longan (Dimocarpus longan Lour.) peel. Food Chem. 2008, 106, 1264–1270. [Google Scholar] [CrossRef]
- Fawole, O.A.; Opara, U.L. Effects of storage temperature and duration on physiological responses of pomegranate fruit. Ind. Crops Prod. 2013, 47, 300–309. [Google Scholar] [CrossRef]
Films | WVTR (g m−2 24 h−1) | Water Content (%) |
---|---|---|
Ch+L | 10.2 ± 1.45 c | 27.8 ± 0.77 b |
Ch+S | 13.1 ± 1.73 b | 26.2 ± 0.72 b |
Ch+X | 9.9 ± 1.76 c | 26.3 ± 0.61 b |
Ch | 17.15 ± 2.54 a | 33.3 ± 0.57 a |
Treatment | b* | TCD | Yellow Index | White Index | Transmittance (%) | Opacity (A·mm−1) |
---|---|---|---|---|---|---|
Ch+L | 8.1 ± 0.59 c | 8.01 ± 0.3 b | 35.4 ± 1.12 c | 32.2 ± 1.48 b | 31.6 ± 1.74 c | 12.5 ± 0.51 a |
Ch+S | 12.2 ± 2.02 b | 10.9 ± 0.24 a | 54.3 ± 0.84 b | 30 ± 0.61 c | 31.8 ± 1.29 c | 10.9 ± 0.17 b |
Ch+X | 15.1 ± 1.15 a | 11.5 ± 0.40 a | 61.3 ± 0.61 a | 28.5 ± 0.99 d | 36.6 ± 1.71 b | 9.5 ± 0.12 c |
Ch | 4.8 ± 0.44 c | - | 17.3 ± 0.92 d | 39.6 ± 0.59 a | 51.8 ± 0.40 a | 3.3 ± 0.07 d |
Angle | |||
---|---|---|---|
Films | 20° | 60° | 80° |
Ch+L | 39.8 ± 0.58 d | 59.9 ± 0.91 d | 80.9 ± 0.88 d |
Ch+S | 45.3 ± 0.55 b | 76.1 ± 2.38 b | 105.7 ± 1.35 b |
Ch+X | 41.2 ± 0.67 c | 61.4 ± 1.39 c | 84.7 ± 0.95 c |
Ch | 52.8 ± 0.59 a | 86.3 ± 1.53 a | 113.4 ± 1.22 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nxumalo, K.A.; Fawole, O.A.; Aremu, A.O. Development of Chitosan-Based Active Films with Medicinal Plant Extracts for Potential Food Packaging Applications. Processes 2024, 12, 23. https://doi.org/10.3390/pr12010023
Nxumalo KA, Fawole OA, Aremu AO. Development of Chitosan-Based Active Films with Medicinal Plant Extracts for Potential Food Packaging Applications. Processes. 2024; 12(1):23. https://doi.org/10.3390/pr12010023
Chicago/Turabian StyleNxumalo, Kwanele Andy, Olaniyi Amos Fawole, and Adeyemi Oladapo Aremu. 2024. "Development of Chitosan-Based Active Films with Medicinal Plant Extracts for Potential Food Packaging Applications" Processes 12, no. 1: 23. https://doi.org/10.3390/pr12010023
APA StyleNxumalo, K. A., Fawole, O. A., & Aremu, A. O. (2024). Development of Chitosan-Based Active Films with Medicinal Plant Extracts for Potential Food Packaging Applications. Processes, 12(1), 23. https://doi.org/10.3390/pr12010023