Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = aerosol mass spectrometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1310 KiB  
Article
Assessment of Suppressive Effects of Negative Air Ions on Fungal Growth, Sporulation and Airborne Viral Load
by Stefan Mijatović, Andrea Radalj, Andjelija Ilić, Marko Janković, Jelena Trajković, Stefan Djoković, Borko Gobeljić, Aleksandar Sovtić, Gordana Petrović, Miloš Kuzmanović, Jelena Antić Stanković, Predrag Kolarž and Irena Arandjelović
Atmosphere 2025, 16(8), 896; https://doi.org/10.3390/atmos16080896 - 22 Jul 2025
Viewed by 350
Abstract
Spores of filamentous fungi are common biological particles in indoor air that can negatively impact human health, particularly among immunocompromised individuals and patients with chronic respiratory conditions. Airborne viruses represent an equally pervasive threat, with some carrying the potential for pandemic spread, affecting [...] Read more.
Spores of filamentous fungi are common biological particles in indoor air that can negatively impact human health, particularly among immunocompromised individuals and patients with chronic respiratory conditions. Airborne viruses represent an equally pervasive threat, with some carrying the potential for pandemic spread, affecting both healthy individuals and the immunosuppressed alike. This study investigated the abundance and diversity of airborne fungal spores in both hospital and residential environments, using custom designed air samplers with or without the presence of negative air ions (NAIs) inside the sampler. The main purpose of investigation was the assessment of biological effects of NAIs on fungal spore viability, deposition, mycelial growth, and sporulation, as well as airborne viral load. The precise assessment of mentioned biological effects is otherwise difficult to carry out due to low concentrations of studied specimens; therefore, specially devised and designed, ion-bioaerosol interaction air samplers were used for prolonged collection of specimens of interest. The total fungal spore concentrations were quantified, and fungal isolates were identified using cultural and microscopic methods, complemented by MALDI-TOF mass spectrometry. Results indicated no significant difference in overall spore concentration between environments or treatments; however, presence of NAIs induced a delay in the sporulation process of Cladosporium herbarum, Aspergillus flavus, and Aspergillus niger within 72 h. These effects of NAIs are for the first time demonstrated in this work; most likely, they are mediated by oxidative stress mechanisms. A parallel experiment demonstrated a substantially reduced concentration of aerosolized equine herpesvirus 1 (EHV-1) DNA within 10–30 min of exposure to NAIs, with more than 98% genomic load reduction beyond natural decay. These new results on the NAIs interaction with a virus, as well as new findings regarding the fungal sporulation, resulted in part from a novel interaction setup designed for experiments with the bioaerosols. Our findings highlight the potential of NAIs as a possible approach for controlling fungal sporulation and reducing airborne viral particle quantities in indoor environments. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

20 pages, 11386 KiB  
Article
Real-Time Source Dynamics of PM2.5 During Winter Haze Episodes Resolved by SPAMS: A Case Study in Yinchuan, Northwest China
by Huihui Du, Tantan Tan, Jiaying Pan, Meng Xu, Aidong Liu and Yanpeng Li
Sustainability 2025, 17(14), 6627; https://doi.org/10.3390/su17146627 - 20 Jul 2025
Viewed by 443
Abstract
The occurrence of haze pollution significantly deteriorates air quality and threatens human health, yet persistent knowledge gaps in real-time source apportionment of fine particulate matter (PM2.5) hinder sustained improvements in atmospheric pollution conditions. Thus, this study employed single-particle aerosol mass spectrometry [...] Read more.
The occurrence of haze pollution significantly deteriorates air quality and threatens human health, yet persistent knowledge gaps in real-time source apportionment of fine particulate matter (PM2.5) hinder sustained improvements in atmospheric pollution conditions. Thus, this study employed single-particle aerosol mass spectrometry (SPAMS) to investigate PM2.5 sources and dynamics during winter haze episodes in Yinchuan, Northwest China. Results showed that the average PM2.5 concentration was 57 μg·m−3, peaking at 218 μg·m−3. PM2.5 was dominated by organic carbon (OC, 17.3%), mixed carbonaceous particles (ECOC, 17.0%), and elemental carbon (EC, 14.3%). The primary sources were coal combustion (26.4%), fugitive dust (25.8%), and vehicle emissions (19.1%). Residential coal burning dominated coal emissions (80.9%), highlighting inefficient decentralized heating. Source contributions showed distinct diurnal patterns: coal combustion peaked nocturnally (29.3% at 09:00) due to heating and inversions, fugitive dust rose at night (28.6% at 19:00) from construction and low winds, and vehicle emissions aligned with traffic (17.5% at 07:00). Haze episodes were driven by synergistic increases in local coal (+4.0%), dust (+2.7%), and vehicle (+2.1%) emissions, compounded by regional transport (10.1–36.7%) of aged particles from northwestern zones. Fugitive dust correlated with sulfur dioxide (SO2) and ozone (O3) (p < 0.01), suggesting roles as carriers and reactive interfaces. Findings confirm local emission dominance with spatiotemporal heterogeneity and regional transport influence. SPAMS effectively resolved short-term pollution dynamics, providing critical insights for targeted air quality management in arid regions. Full article
Show Figures

Figure 1

19 pages, 6481 KiB  
Article
Aerosol Composition in a Semi-Urban Environment in Central Mexico: Influence of Local and Regional Processes on Overall Composition and First Quantification of Nitroaromatics
by Sara E. Olivares-Salazar, Roya Bahreini, Ying-Hsuan Lin, Telma Castro, Harry Alvarez-Ospina and Dara Salcedo
Atmosphere 2025, 16(7), 827; https://doi.org/10.3390/atmos16070827 - 7 Jul 2025
Viewed by 318
Abstract
The Metropolitan Area of Queretaro (MAQ) is a significant industrial hub in central Mexico whose air quality, including high concentrations of particulate matter (PM), poses a risk to the population. However, there have not been many studies on the sources and processes that [...] Read more.
The Metropolitan Area of Queretaro (MAQ) is a significant industrial hub in central Mexico whose air quality, including high concentrations of particulate matter (PM), poses a risk to the population. However, there have not been many studies on the sources and processes that influence the concentration of atmospheric pollutants. We used aerosol chemical composition and meteorological data from 1 January to 15 May 2022, along with back-trajectory modeling, to investigate emission sources not previously described in the region and the impact of local and regional meteorology on the chemical composition of aerosols. Furthermore, this study presents the first quantitative analysis of nitroaromatic compounds (NACs) in particulate matter in the MAQ using ultra-performance liquid chromatography coupled with high-resolution mass spectrometry. The NAC concentrations ranged from 0.086 to 3.618 ng m−3, with the highest concentrations occurring during a period of atmospheric stability. The secondary inorganic and organic fractions of the PM were the most abundant (50%) of the PM concentration throughout the campaign. Local and regional meteorology played a significant role in the variability of PM chemical composition, as it influenced oxidation and transport processes. The results reveal that emissions from biomass burning are a recurrent PM source, and regional emissions significantly impact the organic fraction of the PM. These results underscore the importance of considering both local and regional sources in assessing air pollution in the region. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

6 pages, 237 KiB  
Reply
Reply to Sussman et al. Comment on “Svarch-Pérez et al. Methods for a Non-Targeted Qualitative Analysis and Quantification of Benzene, Toluene, and Xylenes by Gas Chromatography-Mass Spectrometry of E-Liquids and Aerosols in Commercially Available Electronic Cigarettes in Mexico. Int. J. Environ. Res. Public Health 2024, 21, 1308”
by Alejandro Svarch-Pérez, María Vanessa Paz-González, Carlota Ruiz-Juárez, Juan C. Olvera-Chacón, Angelina Larios-Solís, Santiago Castro-Gaytán, Eugenia Aldeco-Pérez and Jorge Carlos Alcocer-Varela
Int. J. Environ. Res. Public Health 2025, 22(7), 1050; https://doi.org/10.3390/ijerph22071050 - 30 Jun 2025
Viewed by 393
Abstract
The paper titled “Methods for a Non-Targeted Qualitative Analysis and Quantification of Benzene, Toluene, and Xylenes by Gas Chromatography-Mass Spectrometry of E-Liquids and Aerosols in Commercially Available Electronic Cigarettes in Mexico” was submitted in compliance with all the requirements of the editorial and [...] Read more.
The paper titled “Methods for a Non-Targeted Qualitative Analysis and Quantification of Benzene, Toluene, and Xylenes by Gas Chromatography-Mass Spectrometry of E-Liquids and Aerosols in Commercially Available Electronic Cigarettes in Mexico” was submitted in compliance with all the requirements of the editorial and journal in question, as evidenced by the dates and the respective backup documentation [...] Full article
4 pages, 214 KiB  
Comment
Comment on Svarch-Pérez et al. Methods for a Non-Targeted Qualitative Analysis and Quantification of Benzene, Toluene, and Xylenes by Gas Chromatography-Mass Spectrometry of E-Liquids and Aerosols in Commercially Available Electronic Cigarettes in Mexico. Int. J. Environ. Res. Public Health 2024, 21, 1308
by Roberto A. Sussman, Humberto Gómez-Ruiz and Konstantinos Farsalinos
Int. J. Environ. Res. Public Health 2025, 22(7), 1049; https://doi.org/10.3390/ijerph22071049 - 30 Jun 2025
Viewed by 903
Abstract
The authors of a study recently published in IJERPH quantified levels of benzene, toluene and xylenes (BTXs) in e-liquids and aerosols in a sample of 20 disposable e-cigarettes collected in Mexico City [...] Full article
11 pages, 1107 KiB  
Article
Content Determination and Impurity Profiling of Compound Glycyrrhizin Tablets by Ion-Pair High-Performance Liquid Chromatography, Coupled with Corona-Charged Aerosol Detector
by Limin Zuo, Wenling Su, Yongsheng Gu, Xiaodan Qiu, Ting Zhao, Xiaofang Lian, Huiyi Liu, Qingying Jia, Ruifang Zheng and Guangzhi Shan
Separations 2025, 12(7), 168; https://doi.org/10.3390/separations12070168 - 25 Jun 2025
Viewed by 359
Abstract
Compound Glycyrrhizin tablets (CGTs) are a combination of glycyrrhizin, glycine and methionine. Glycine and methionine have relatively high polarity and lack chromophore; therefore, it is difficult to simultaneously determine the various components using traditional reversed-phase chromatography and ultraviolet detectors. In addition, it is [...] Read more.
Compound Glycyrrhizin tablets (CGTs) are a combination of glycyrrhizin, glycine and methionine. Glycine and methionine have relatively high polarity and lack chromophore; therefore, it is difficult to simultaneously determine the various components using traditional reversed-phase chromatography and ultraviolet detectors. In addition, it is even more challenging to obtain a comprehensive and systematic impurity profiling for the CGTs. In this study, an ion-pair high-performance liquid chromatography (HPLC)–charged aerosol detection (CAD) method was established to determine the content of glycyrrhizin, glycine and methionine. The impurities of CGTs were also identified using mass spectrometry. By optimizing the content of trifluoroacetic acid (TFA) in the mobile phase and optimizing the CAD parameter settings, the developed method was verified in accordance with the guidelines outlined in ICH Q2 (R2). The results indicated that the method demonstrated high accuracy and sensitivity. Glycine, methionine and glycyrrhizin all showed a good linear relationship within the labeled range of 50–200%, and the average recoveries of the three components were 97.62–100.6%. The impurity detection was quantified via the principal component control method. The limit of detection (LOD) method showed an equivalent to 0.05% of the glycyrrhizin in CGTs, approximately 12.5 ng. The ion-pair HPLC–CAD method developed in this study simultaneously determined the content of the main component and the impurities of CGTs, without necessitating derivatization. This has provided a research basis for further improving the quality standards of CGTs. Full article
Show Figures

Figure 1

24 pages, 4061 KiB  
Article
Snow Cover as a Medium for Polycyclic Aromatic Hydrocarbons (PAHs) Deposition and a Measure of Atmospheric Pollution in Carpathian Village–Study Case of Zawoja, Poland
by Kinga Wencel, Witold Żukowski, Gabriela Berkowicz-Płatek and Igor Łabaj
Appl. Sci. 2025, 15(12), 6497; https://doi.org/10.3390/app15126497 - 9 Jun 2025
Viewed by 331
Abstract
Snow cover constitutes a medium that can be used as a way of assessing air pollution. The chemical composition of snow layers from the same snowfall event reflects the composition of atmospheric aerosols and dry precipitates, depending on the properties of the adsorbing [...] Read more.
Snow cover constitutes a medium that can be used as a way of assessing air pollution. The chemical composition of snow layers from the same snowfall event reflects the composition of atmospheric aerosols and dry precipitates, depending on the properties of the adsorbing surface and prevailing weather conditions. Analyzing snow samples provides reliable insights into anthropogenic pollution accumulated in soil and groundwater of different land use type areas, as well as allows the evaluation of the degree and sources of environmental pollution. The aim of the research was to determine the distribution of polycyclic aromatic hydrocarbons in various sites of Zawoja village and identify their possible sources and factors influencing their differentiation. A total of 15 surface snow samples of the same thickness and snowfall origin were collected from different locations in the village in the winter of 2024. The samples were pre-concentrated by solid phase extraction and analyzed by gas chromatography—tandem mass spectrometry. The sampling set was invented, and the extraction procedure and analysis parameters were optimized. A spatial distribution map of PAHs was created. The contamination of ∑16PAHs varied from 710 to 2310 ng/L in melted snow with the highest concentrations detected in Zawoja Markowa by the border of the Babia Góra National Park, which is interpreted mainly as a result of the topographical setting. Medium molecular weight PAHs were the dominant fraction, which, combined with specific PAH ratios, indicate the combustion of biomass and coal as the main source of contamination. Full article
(This article belongs to the Special Issue Air Pollution and Its Impact on the Atmospheric Environment)
Show Figures

Figure 1

11 pages, 1166 KiB  
Article
Composition and Source Apportionment of Heavy Metals in Aerosols at the Great Wall Station, Antarctica
by Haiyu Zeng, Xiaoning Liu, Gaoen Wu, Jianjun Wang and Haitao Ding
Atmosphere 2025, 16(6), 689; https://doi.org/10.3390/atmos16060689 - 6 Jun 2025
Viewed by 359
Abstract
To elucidate the compositional characteristics and sources of heavy metals in aerosols at China’s Great Wall Station in Antarctica, high-volume aerosol sampling was conducted from 4 January to 26 December 2022, on Fildes Peninsula, King George Island. Ten heavy metals (V, Cr, Mn, [...] Read more.
To elucidate the compositional characteristics and sources of heavy metals in aerosols at China’s Great Wall Station in Antarctica, high-volume aerosol sampling was conducted from 4 January to 26 December 2022, on Fildes Peninsula, King George Island. Ten heavy metals (V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, and Pb) in total suspended particulates (TSPs) were quantified via inductively coupled plasma mass spectrometry (ICP-MS). Enrichment factor (EF) analysis, correlation metrics, and backward trajectory clustering were integrated to identify potential sources. The results revealed pronounced enrichment (EF > 10) for Cr, As, Zn, Cd, and Pb, indicating dominant non-crustal contributions. Source apportionment identified three pathways: (1) long-range transported anthropogenic emissions, including Southern Hemisphere marine traffic (e.g., V and Ni from ship fuel combustion) and industrial pollutants from South America (Pb and Cd); (2) local anthropogenic sources, primarily diesel generators and tourism-related gasoline combustion (Cu and Zn); and (3) crustal inputs via glacial melt and weathering (Fe and Mn). This study pioneers the quantification of direct anthropogenic impacts (e.g., power generation and tourism) on aerosol heavy metals in Antarctic research zones, offering critical insights into transboundary pollutant dynamics and regional mitigation strategies. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

14 pages, 1814 KiB  
Article
Atmospheric Photochemical Oxidation of 4-Nitroimidazole
by Nayan Kondapalli, Oliver Cernero, Aaron Welch and Aaron W. Harrison
Atmosphere 2025, 16(5), 624; https://doi.org/10.3390/atmos16050624 - 20 May 2025
Viewed by 618
Abstract
Nitro-functionalized heterocycles, such as nitroimidazoles, are significant environmental contaminants and have been identified as components of secondary organic aerosols (SOA) and biomass-burning organic aerosols (BBOA). Their strong absorption in the near-UV (300–400 nm) makes photochemistry a critical aspect of their atmospheric processing. This [...] Read more.
Nitro-functionalized heterocycles, such as nitroimidazoles, are significant environmental contaminants and have been identified as components of secondary organic aerosols (SOA) and biomass-burning organic aerosols (BBOA). Their strong absorption in the near-UV (300–400 nm) makes photochemistry a critical aspect of their atmospheric processing. This study investigates both the direct near-UV photochemistry and hydroxyl radical (OH) oxidation of 4-nitroimidazole (4-NI). The atmospheric photolysis rate of 4-NI in the near-UV (300–400 nm) was found to be J4-NI = 4.3 × 10−5 (±0.8) s−1, corresponding to an atmospheric lifetime of 391 (±77) min under bulk aqueous conditions simulating aqueous aerosols and cloud water. Electrospray ionization mass spectrometry (ESI-MS) analysis following irradiation indicated loss of the nitro group, while NO elimination was observed as a more minor channel in direct photolysis. In addition, the rate constant for the reaction of 4-NI with OH radicals, kNI+OH, was determined to be 2.9 × 109 (±0.6) M−1s−1. Following OH oxidation, ESI-MS results show the emergence of a dominant peak at m/z = 130 amu, consistent with hydroxylation of 4-NI. Computational results indicate that OH radical addition occurs with the lowest barrier at the C2 and C5 positions of 4-NI. The combined results from direct photolysis and OH oxidation experiments suggest that OH-mediated degradation is likely to dominate under aerosol-phase conditions, where OH radical concentrations are elevated, while direct photolysis is expected to be the primary loss mechanism in high-humidity environments and bulk cloud water. Full article
Show Figures

Figure 1

15 pages, 2303 KiB  
Article
Identification and Characterization of Atmospheric Nickel-Containing Particles in Guangzhou After the Implementation of the Clean Fuel Policy
by Zaihua Wang, Xuanxiao Chen, Cheng Wu, Hong Ju, Zhong Fu, Xin Xiong, Ting Qiu, Yuchen Lu, Junjie He, Yaxi Liu, Haining Wu, Chunlei Cheng and Mei Li
Toxics 2025, 13(5), 345; https://doi.org/10.3390/toxics13050345 - 26 Apr 2025
Viewed by 462
Abstract
Nickel, as a toxic trace element in fine particulate matter (PM2.5), has detrimental effects on both air quality and human health. Based on measurements from 2020 to 2021 using a single-particle aerosol mass spectrometer (SPAMS), this study investigates the properties of [...] Read more.
Nickel, as a toxic trace element in fine particulate matter (PM2.5), has detrimental effects on both air quality and human health. Based on measurements from 2020 to 2021 using a single-particle aerosol mass spectrometer (SPAMS), this study investigates the properties of nickel-containing particles (NCPs) in Guangzhou. The composition, sources, and temporal trends of NCPs were evaluated and the impact of the clean ship fuel policy introduced in 2020 was also examined. The key findings include: (1) Nickel particles account for 0.08% number fraction of PM2.5, which is consistent with previously reported mass fraction in PM2.5. (2) Three distinct types of NCPs were identified, including Ni-fresh, Ni-aged, and Ni-ash. Each type exhibits unique characteristics in size distribution, wind direction dependence, sources, and temporal variations. Ni-fresh particles originate from shipping emissions in the Huangpu Port area 2 km away and are the major contributors to fine nickel particles in the region. (3) Ni-aged and Ni-ash particles, which carry secondary components, tend to be larger (>500 nm) and are representative of regional or background nickel particles. (4) The implementation of the clean ship fuel policy has effectively reduced the number concentrations of NCPs and is beneficial to regional and local air quality. Full article
Show Figures

Figure 1

15 pages, 6078 KiB  
Article
Developing a Quantitative Profiling Method for Detecting Free Fatty Acids in Crude Lanolin Based on Analytical Quality by Design
by Sihan Liu, Shaohua Wu, Hao Zhang and Xingchu Gong
Chemosensors 2025, 13(4), 126; https://doi.org/10.3390/chemosensors13040126 - 3 Apr 2025
Viewed by 745
Abstract
In this study, a quantitative profiling method for detecting free fatty acids in crude lanolin based on the Quality by Design (QbD) concept was developed. High-performance liquid chromatography (HPLC) equipped with a charged aerosol detector (CAD) and a Proshell 120 EC C18 column [...] Read more.
In this study, a quantitative profiling method for detecting free fatty acids in crude lanolin based on the Quality by Design (QbD) concept was developed. High-performance liquid chromatography (HPLC) equipped with a charged aerosol detector (CAD) and a Proshell 120 EC C18 column was employed for the separation of crude lanolin components. Initially, the analytical target profile and critical method attributes were defined. Potential critical method parameters, including column temperature, flow rate, isocratic run time, gradient end organic phase ratio, and gradient time, were identified using fishbone diagrams and single-factor experiments. The definitive screening design (DSD) was then utilized to screen and optimize these parameters. Stepwise regression was applied to establish quantitative models between the critical method attributes and the method parameters. Subsequently, the method operable design region (MODR) was calculated and was successfully verified. The analytical conditions established were configured with 0.1% formic acid in water and 0.1% formic acid in acetonitrile serving as the mobile phases. The flow rate was set at 0.8 mL/min, and the column temperature was maintained at 35 °C with the evaporation tube temperature also set at 35 °C. An injection volume of 10 μL was used for each analysis. The gradient elution conditions were as follows: from 0 to 30 min, 75% of solvent B was used, and from 30 to 60 min, the proportion of solvent B was increased from 75% to 79%. Ten components, including 12-hydroxystearic acid, 2-hexyldecanoic acid, and palmitic acid, were identified by mass spectrometry, and seven common peaks were found in the fingerprints. The contents of palmitic acid, oleic acid, and stearic acid in the crude lanolin were quantitatively determined. Both the fingerprint and quantitative analysis methods were validated. The method was applied to analyze 15 batches of crude lanolin from different sources. The new established quantitative profiling method for free fatty acids can be potentially used for industrial applications to enhance the quality control of crude lanolin. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Chemical Analysis)
Show Figures

Figure 1

37 pages, 1174 KiB  
Review
A Comprehensive Review of the Harmful Compounds in Electronic Cigarettes
by Eduard Ferney Valenzuela Toledo, Ivana Ferreira Simões, Marcel Tavares de Farias, Lucas Almir Cavalcante Minho, Jaquelide de Lima Conceição, Walter Nei Lopes dos Santos, Paulo Roberto Ribeiro de Mesquita and Aníbal de Freitas Santos Júnior
Toxics 2025, 13(4), 268; https://doi.org/10.3390/toxics13040268 - 31 Mar 2025
Cited by 1 | Viewed by 3698
Abstract
Electronic cigarettes (e-cigarettes) are devices designed to vaporize a liquid solution, offering an alternative to traditional tobacco consumption. The identification, detection, and analysis of the compounds present in these devices are crucial for understanding their impacts on health and the environment. Numerous studies [...] Read more.
Electronic cigarettes (e-cigarettes) are devices designed to vaporize a liquid solution, offering an alternative to traditional tobacco consumption. The identification, detection, and analysis of the compounds present in these devices are crucial for understanding their impacts on health and the environment. Numerous studies have identified a diverse range of compounds emitted by e-cigarettes, including well-known substances such as nicotine, thermal degradation products, and other toxicants that may be harmful or carcinogenic. Although e-cigarettes are often considered an alternative to conventional smoking, they are not without risks. Recent research has increasingly focused on assessing the health impacts of e-cigarettes, integrating findings from various scientific disciplines. Two primary analytical approaches are used for the sample preparation, identification, and quantification of these compounds. The first approach focuses on aerosol analysis, utilizing techniques such as headspace static extraction and gas chromatography coupled with mass spectrometry (GC-MS). The second approach is directed towards liquid analysis, employing liquid–liquid extraction techniques and liquid chromatography (LC) systems. Given the constant publication of new research in this area, a comprehensive review that consolidates information on identified compounds, sample preparation methods, and extraction and analysis techniques is necessary to integrate current knowledge and address emerging findings. Full article
Show Figures

Figure 1

18 pages, 1331 KiB  
Article
Bufadienolide Penetration Through the Skin Membrane and Antiaging Properties of Kalanchoe spp. Juices in Dermal Applications
by Anna Hering, Krzysztof Cal, Mariusz Kowalczyk, Alina Kastsevich, Yahor Ivashchanka, J. Renata Ochocka and Justyna Stefanowicz-Hajduk
Molecules 2025, 30(4), 802; https://doi.org/10.3390/molecules30040802 - 9 Feb 2025
Viewed by 1068
Abstract
Skin aging is accelerated by inflammation processes generated by oxidative stress and external factors such as UV radiation. Plants belonging to the genus Kalanchoe that are rich sources of antioxidants could potentially strengthen the skin barrier if used as ingredients in cosmetic formulations. [...] Read more.
Skin aging is accelerated by inflammation processes generated by oxidative stress and external factors such as UV radiation. Plants belonging to the genus Kalanchoe that are rich sources of antioxidants could potentially strengthen the skin barrier if used as ingredients in cosmetic formulations. However, their use is limited due to the contents of bufadienolides, known cardiotoxins. This study aimed to establish a semi-quantitative profile of bufadienolides in the juices of K. blossfeldiana, K. daigremontiana, and K. pinnata using UHPLC combined with charged aerosol detection (CAD) and high-resolution mass spectrometry (HR-MS). Additionally, the study determined the ability of bufadienolides to penetrate the skin barrier using the Bronaugh Diffusion Cell Apparatus and Strat-M membrane. The study also assessed the ferric and molybdenum-reducing powers, as well as the radical scavenging capabilities of these plants juices using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) methods. The in vitro antihyaluronidase and antityrosinase activities and sun protection factor (SPF) were evaluated spectrophotometrically, indicating moderate capability to inhibit the skin enzymes, but low SPF protection for all analyzed juices. The semi-qualitative analysis demonstrated the presence of bufadienolides occurring in two juices from K. daigremontiana and K. pinnata, with the highest contents of 1,3,5-bersaldegenin-orthoacetate, bryophyllin-A/bryotoxin-C, bersaldegenin-acetate/bryophyllin-C, and diagremontianin. After passing through the skin model, no bufadienolide compounds were present in the subcutaneous filtrate. Antiradical and reduction assays revealed the antioxidant potential of K. blossfeldiana and K. pinnata. These results indicate that Kalanchoe juices have antiaging potential and appear safe for dermal applications. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

14 pages, 1625 KiB  
Article
Characterizing Industrial VOC Hotspots in One of Eastern China’s Largest Petrochemical Parks Using Mobile PTR–ToF–MS Measurements
by Jie Fang, Zihang Zhang, Zeye Liang, Ming Wang, Yunjiang Zhang and Xinlei Ge
Atmosphere 2025, 16(1), 104; https://doi.org/10.3390/atmos16010104 - 18 Jan 2025
Viewed by 1102
Abstract
The industrial emissions of volatile organic compounds (VOCs) are a major contributor to air pollution in urban areas. Previous studies on VOC emissions in industrial zones have primarily relied on in situ monitoring techniques, which pose significant challenges in capturing high emissions peaks [...] Read more.
The industrial emissions of volatile organic compounds (VOCs) are a major contributor to air pollution in urban areas. Previous studies on VOC emissions in industrial zones have primarily relied on in situ monitoring techniques, which pose significant challenges in capturing high emissions peaks and near-source measurements on regional scales. In this study, we employed mobile proton transfer reaction–time-of-flight–mass spectrometry (PTR–ToF–MS) to identify and characterize industrial VOC hotspots in a petrochemical park in eastern China, from June to September 2021. The average total VOC concentrations in the industrial zone were 131.5 ± 227.7 ppbv, approximately 48% higher than those in the background area (88.9 ± 63.3 ppbv), reflecting the substantial emissions from industrial hotspots. Oxygenated VOCs were the most abundant components in the industrial zone (83.2 ppbv). The overall OH reactivity, aerosol formation potential, and lifetime cancer risk of the industrial zone were also substantially higher than those in the background zone. These findings emphasize the need for targeted VOC emissions controls in industrial hotspots to mitigate air quality and health risks. Full article
(This article belongs to the Special Issue Industrial Emissions: Characteristics, Impacts and Control)
Show Figures

Figure 1

14 pages, 6302 KiB  
Article
Particulate Matter During Food Preparation on a Barbecue: A Case Study of an Electric Barbecue
by Jan Stefan Bihałowicz, Artur Badyda, Wioletta Rogula-Kozłowska, Kamila Widziewicz-Rzońca, Patrycja Rogula-Kopiec, Dmytro Chyzhykov, Grzegorz Majewski and Mariusz Pecio
Appl. Sci. 2025, 15(2), 498; https://doi.org/10.3390/app15020498 - 7 Jan 2025
Cited by 1 | Viewed by 1936
Abstract
The distribution of mass and the number of particles is a determining factor in the respirable nature of a given particulate matter (PM), and thus in the potential health effects of breathing the air in question. One of the most popular activities during [...] Read more.
The distribution of mass and the number of particles is a determining factor in the respirable nature of a given particulate matter (PM), and thus in the potential health effects of breathing the air in question. One of the most popular activities during the summer months is the preparation of food on a barbecue. Barbecuing represents one of the few sources of combustion particulates during the summer, a period which is otherwise characterised by a lack of heating. The objective of this study is to ascertain the fractional composition of PM emitted during food preparation on an electric barbecue and to compare these values with the measured background. The concentrations of particulate matter (PM) at the barbecue were determined with a Palas AQ Guard optical spectrometer, while the background concentrations were measured with a Palas Fidas 200 optical spectrometer that complies with the EN16450 standard. The contribution of the individual PM fractions measured in the barbecue environment differed from that observed in the ambient air. The background measurements exhibited a relatively well-defined and consistent distribution, with the PM1 fraction representing between 10 and 30% of the PM mass and the PM4−1 fraction accounting for only 10 to 20%. Thus, the mass of the PM4 fraction did not exceed 50% of the total mass of particles. Upon analysis of the particles emitted during the grilling process, it was observed that the PM1 fraction was capable of accounting for a substantial proportion, exceeding 90% of the PM mass. The trend related to the PM4−1 fraction was maintained; however, the limit of the maximum content of this fraction increased to 40% of the PM. The results demonstrate that the barbecue process itself, utilising a barbecue without emission fuel, can exert a notable influence on the contribution of submicron PM. Full article
Show Figures

Figure 1

Back to TopTop