Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = aeolian sediment transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3235 KiB  
Article
Research on the Characteristics of the Aeolian Environment in the Coastal Sandy Land of Mulan Bay, Hainan Island
by Zhong Shuai, Qu Jianjun, Zhao Zhizhong and Qiu Penghua
J. Mar. Sci. Eng. 2025, 13(8), 1506; https://doi.org/10.3390/jmse13081506 - 5 Aug 2025
Abstract
The coastal sandy land in northeast Hainan Province is typical for this land type, also exhibiting strong sand activity. This study is based on wind speed, wind direction, and sediment transport data obtained at a field meteorological station using an omnidirectional sand accumulation [...] Read more.
The coastal sandy land in northeast Hainan Province is typical for this land type, also exhibiting strong sand activity. This study is based on wind speed, wind direction, and sediment transport data obtained at a field meteorological station using an omnidirectional sand accumulation instrument from 2020 to 2024, studying the coastal aeolian environment and sediment transport distribution characteristics in the region. Its findings provide a theoretical basis for comprehensively analyzing the evolution of coastal aeolian landforms and the evaluation and control of coastal aeolian hazards. The research results show the following: (1) The annual average threshold wind velocity for sand movement in the study area is 6.84 m/s, and the wind speed frequency (frequency of occurrence) is 51.54%, dominated by easterly (NE, ENE) and southerly (S, SSE) winds. (2) The drift potential (DP) refers to the potential amount of sediment transported within a certain time and spatial range, and the annual drift potential (DP) and resultant drift potential (RDP) of Mulan Bay from 2020 to 2024 were 550.82 VU and 326.88 VU, respectively, indicating a high-energy wind environment. The yearly directional wind variability index (RDP/DP) was 0.59, classified as a medium ratio and indicating blunt bimodal wind conditions. The yearly resultant drift direction (RDD) was 249.45°, corresponding to a WSW direction, indicating that the sand in Mulan Bay is generally transported in the southwest direction. (3) When the measured data extracted from the sand accumulation instrument in the study area from 2020 to 2024 were used for statistical analysis, the results showed that the total sediment transport rate (the annual sediment transport of the observation section) in the study area was 110.87 kg/m·a, with the maximum sediment transport rate in the NE direction being 29.26 kg/m·a. These results suggest that when sand fixation systems are constructed for relevant infrastructure in the region, the construction direction of protective forests and other engineering measures should be perpendicular to the net direction of sand transport. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

21 pages, 13177 KiB  
Article
Links Between the Coastal Climate, Landscape Hydrology, and Beach Dynamics near Cape Vidal, South Africa
by Mark R. Jury
Coasts 2025, 5(3), 25; https://doi.org/10.3390/coasts5030025 - 18 Jul 2025
Viewed by 285
Abstract
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport [...] Read more.
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport by near-shore wind-waves and currents. River-borne sediments, eroded coral substrates, and reworked beach sand are mobilized by frequent storms. Surf-zone currents ~0.4 m/s instill the northward transport of ~6 105 kg/yr/m. An analysis of the mean annual cycle over the period of 1997–2024 indicates a crest of rainfall over the Umfolozi catchment during summer (Oct–Mar), whereas coastal suspended sediment, based on satellite red-band reflectivity, rises in winter (Apr–Sep) due to a deeper mixed layer and larger northward wave heights. Sediment input to the beaches near Cape Vidal exhibit a 3–6-year cycle of southeasterly waves and rainy weather associated with cool La Nina tropical sea temperatures. Beachfront sand dunes are wind-swept and release sediment at ~103 m3/yr/m, which builds tall back-dunes and helps replenish the shoreline, especially during anticyclonic dry spells. A wind event in Nov 2018 is analyzed to quantify aeolian transport, and a flood in Jan–Feb 2025 is studied for river plumes that meet with stormy seas. Management efforts to limit development and recreational access have contributed to a sustainable coastal environment despite rising tides and inland temperatures. Full article
Show Figures

Figure 1

14 pages, 3647 KiB  
Article
The Characteristics of the Aeolian Environment in the Coastal Sandy Land of Boao Jade Belt Beach, Hainan Island
by Shuai Zhong, Jianjun Qu, Zhizhong Zhao and Penghua Qiu
Atmosphere 2025, 16(7), 845; https://doi.org/10.3390/atmos16070845 - 11 Jul 2025
Viewed by 203
Abstract
Boao Jade Beach, on the east coast of Hainan Island, is a typical sandy beach and is one of the areas where typhoons frequently land in Hainan. This study examined wind speed, wind direction, and sediment transport data obtained from field meteorological stations [...] Read more.
Boao Jade Beach, on the east coast of Hainan Island, is a typical sandy beach and is one of the areas where typhoons frequently land in Hainan. This study examined wind speed, wind direction, and sediment transport data obtained from field meteorological stations and omnidirectional sand accumulation instruments from 2020 to 2024 to study the coastal aeolian environment and sediment transport distribution characteristics in the region. The findings provide a theoretical basis for comprehensive analyses of the evolution of coastal aeolian landforms and the evaluation and control of coastal aeolian hazards. The research results showed the following: (1) The annual average threshold wind velocity for sand movement in the study area was 6.13 m/s, and the wind speed frequency was 20.97%, mainly dominated by easterly winds (NNE, NE) and southerly winds (S). (2) The annual drift potential (DP) and resultant drift potential (RDP) of Boao Jade Belt Beach from 2020 to 2024 were 125.99 VU and 29.59 VU, respectively, indicating a low-energy wind environment. The yearly index of directional wind variability (RDP/DP) was 0.23, which is classified as a small ratio and indicates blunt bimodal wind conditions. The yearly resultant drift direction (RDD) was 329.41°, corresponding to the NNW direction, indicating that the sand on Boao Jade Belt Beach is generally transported in the southwest direction. (3) When the measured data from the sand accumulation instrument in the study area from 2020 to 2024 were used for a statistical analysis, the results showed that the total sediment transport rate in the study area was 39.97 kg/m·a, with the maximum sediment transport rate in the S direction being 17.74 kg/m·a. These results suggest that, when sand fixation systems are constructed for relevant infrastructure in the region, the direction of protective forests and other engineering measures should be perpendicular to the net direction of sand transport. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

9 pages, 1772 KiB  
Article
Cliff-Front Dune Development During the Late Pleistocene at Sa Fortalesa (Mallorca, Western Mediterranean)
by Laura del Valle, Federica Perazzotti and Joan J. Fornós
Geosciences 2025, 15(7), 260; https://doi.org/10.3390/geosciences15070260 - 5 Jul 2025
Cited by 1 | Viewed by 302
Abstract
This study presents the first detailed analysis of a Late Pleistocene cliff-front dune in northern Mallorca (Western Mediterranean). The research is based on sedimentological fieldwork conducted in a disused coastal quarry, where stratigraphic columns were recorded and facies were described in detail. Grain [...] Read more.
This study presents the first detailed analysis of a Late Pleistocene cliff-front dune in northern Mallorca (Western Mediterranean). The research is based on sedimentological fieldwork conducted in a disused coastal quarry, where stratigraphic columns were recorded and facies were described in detail. Grain size analysis was performed using image-based measurements from representative samples, and palaeowind conditions were reconstructed through the analysis of cross-bedding orientations and empirical wind transport equations. The dune, corresponding to Unit U4, exhibits three distinct evolutionary stages: initial, intermediate, and final. During the initial stage, sediment mobilisation required wind speeds of approximately 10 m/s from the south-southwest (SSW). The intermediate stage was characterised by variable wind velocities between 5 and 8 m/s from the west-southwest (WSW). In the final stage, average wind speeds reached 7 m/s from the west (W), with intermittent peaks up to 10 m/s. These findings underscore the critical influence of wind regime and topographic constraints on aeolian sedimentation processes. By reconstructing wind dynamics and analysing sedimentary architecture, this work provides key insights into the interplay between climatic drivers and geological context in the development of coastal aeolian systems. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

15 pages, 3877 KiB  
Article
Erosive Wind Characteristics and Aeolian Sediment Transport and Dune Formation in Makran Region of Baluchistan, Iran
by Hamidreza Abbasi, Azadeh Gohardoust, Fazeh Mohammadpour, Mohammad Khosroshahi, Michael Groll and Christian Opp
Atmosphere 2025, 16(6), 650; https://doi.org/10.3390/atmos16060650 - 27 May 2025
Viewed by 456
Abstract
Understanding aeolian sediment transport and wind erosion enhances our knowledge of desert dune formation and sand migration. The Makran region of southern Sistan and Baluchistan is prone to wind-driven erosion alongside frequent sand and dust storms (SDSs). Hourly wind data from two meteorological [...] Read more.
Understanding aeolian sediment transport and wind erosion enhances our knowledge of desert dune formation and sand migration. The Makran region of southern Sistan and Baluchistan is prone to wind-driven erosion alongside frequent sand and dust storms (SDSs). Hourly wind data from two meteorological stations spanning 1994–2020 were analyzed to study erosive winds and sand transport. Wind energy analysis using drift potential (DP) indicated low energy (DP < 200 in vector unit) and minimal spatial variation across the Makran dune fields. The effective winds transporting sand particles were towards the east from November to May, and in the northwestern direction from June to October. The DP showed a gradual decline in the study area from 1990 to 2022, with no significant temporal trends. The sand dune morphology analysis indicates that bimodal wind regimes primarily form linear dunes and sand sheets, while crescentic, transverse, and topographic dunes are also present. Full article
Show Figures

Figure 1

22 pages, 29748 KiB  
Article
An Integrated Method for Inverting Beach Surface Moisture by Fusing Unmanned Aerial Vehicle Orthophoto Brightness with Terrestrial Laser Scanner Intensity
by Jun Zhu, Kai Tan, Feijian Yin, Peng Song and Faming Huang
Remote Sens. 2025, 17(3), 522; https://doi.org/10.3390/rs17030522 - 3 Feb 2025
Viewed by 833
Abstract
Beach surface moisture (BSM) is crucial to studying coastal aeolian sand transport processes. However, traditional measurement techniques fail to accurately monitor moisture distribution with high spatiotemporal resolution. Remote sensing technologies have garnered widespread attention for providing rapid and non-contact moisture measurements, but a [...] Read more.
Beach surface moisture (BSM) is crucial to studying coastal aeolian sand transport processes. However, traditional measurement techniques fail to accurately monitor moisture distribution with high spatiotemporal resolution. Remote sensing technologies have garnered widespread attention for providing rapid and non-contact moisture measurements, but a single method has inherent limitations. Passive remote sensing is challenged by complex beach illumination and sediment grain size variability. Active remote sensing represented by LiDAR (light detection and ranging) exhibits high sensitivity to moisture, but requires cumbersome intensity correction and may leave data holes in high-moisture areas. Using machine learning, this research proposes a BSM inversion method that fuses UAV (unmanned aerial vehicle) orthophoto brightness with intensity recorded by TLSs (terrestrial laser scanners). First, a back propagation (BP) network rapidly corrects original intensity with in situ scanning data. Second, beach sand grain size is estimated based on the characteristics of the grain size distribution. Then, by applying nearest point matching, intensity and brightness data are fused at the point cloud level. Finally, a new BP network coupled with the fusion data and grain size information enables automatic brightness correction and BSM inversion. A field experiment at Baicheng Beach in Xiamen, China, confirms that this multi-source data fusion strategy effectively integrates key features from diverse sources, enhancing the BP network predictive performance. This method demonstrates robust predictive accuracy in complex beach environments, with an RMSE of 2.63% across 40 samples, efficiently producing high-resolution BSM maps that offer values in studying aeolian sand transport mechanisms. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

13 pages, 3943 KiB  
Article
Distribution and Preservation of Total Organic Carbon and Total Inorganic Carbon in Pipahai Lake over the Past Century
by Zhilei Zhen, Lishuai Xu and Wenhao Gao
Water 2024, 16(21), 3064; https://doi.org/10.3390/w16213064 - 25 Oct 2024
Viewed by 1112
Abstract
Carbon burial patterns in lakes and their dynamic changes significantly impact terrestrial carbon sink fluxes and global carbon budgets. In this study, multi-indicator analysis of sediment core samples (P1, P2, and P3) from Pipahai Lake was conducted. Integrating the chronological sequences of 210 [...] Read more.
Carbon burial patterns in lakes and their dynamic changes significantly impact terrestrial carbon sink fluxes and global carbon budgets. In this study, multi-indicator analysis of sediment core samples (P1, P2, and P3) from Pipahai Lake was conducted. Integrating the chronological sequences of 210Pb and 137Cs, we identified the historical changes and spatial characteristics of total organic carbon (TOC) and inorganic carbon (TIC) burial in Pipahai Lake since 1884. The results show that the TOC content was higher than that of the TIC. They exhibited an increasing trend with decreasing depth. Linear regression results indicated that the variation of TOC is less directly affected by precipitation (R = 0.39) and temperature (R = 0.58), while temperature may have a greater impact on TOC. From 1884 to 1995, nutrients were not the primary factor influencing changes in TOC. The synchronous variation in TIC and TOC contents reflects a higher contribution of external inputs to carbon burial in the Pipahai Lake basin. After 1996, nutrients may have begun to affect variations in TOC. The TOC primarily originates from distal aeolian transport or autochthonous sources, though human activity has played a role in its evolution. The TIC content is controlled by the TOC content and autochthonous sources. This study will contribute to the understanding of the carbon cycling dynamics and their influencing mechanisms in a high-altitude lake ecosystem. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

17 pages, 4679 KiB  
Article
Decoupling Distribution of n-Alkanes in Aeolian Sand and Vegetation of the Northern Ulan Buh Desert, China: Insight into Organic Matter Preservation in Arid Regions
by Shangzhe Zhou, Lei Xi, Mengchun Cui, Guipeng Cui, Pan Gao, Jinlei Zhu, Weiyuan Kong, Yufu Jia and Qi Lu
Plants 2024, 13(20), 2898; https://doi.org/10.3390/plants13202898 - 17 Oct 2024
Viewed by 1155
Abstract
Fallen leaves and their decomposition directly deposit leaf wax n-alkanes into sediments, which can be used to identify local flora. These n-alkanes are important for studying past vegetation and climate, but their distribution in sediments must be known. Aeolian sand n [...] Read more.
Fallen leaves and their decomposition directly deposit leaf wax n-alkanes into sediments, which can be used to identify local flora. These n-alkanes are important for studying past vegetation and climate, but their distribution in sediments must be known. Aeolian sand n-alkanes are particularly important for understanding paleoclimates in arid regions, despite the challenges of extraction due to their extremely low abundance. To investigate the preservation of plant leaf wax n-alkanes in deserts, we analyzed n-alkanes in aeolian sands from the Northern Ulan Buh Desert (UBD), China, and compared them to the surrounding vegetation. We calculated the total n-alkane concentration (ΣALK), average chain length (ACL21–35), and carbon preference index (CPI21–35). In the Northern UBD, aeolian sand n-alkanes have lower ΣALK, indicating microbial degradation. The eastern aeolian sand has lower CPI21–35 and ACL21–35 than the adjacent vegetation, whereas the western sand values are consistent with the plants, likely due to the transport of plant-derived materials by wind and water from the nearby mountains. Our study shows that sedimentary n-alkane signatures are not only determined by local vegetation but also influenced by environmental factors like temperature and precipitation. Additionally, local deposition processes play a significant role in determining the properties of these n-alkanes. Full article
Show Figures

Figure 1

23 pages, 1613 KiB  
Article
Enhancing Soil Conditions and Maize Yield Efficiency through Rational Conservation Tillage in Aeolian Semi-Arid Regions: A TOPSIS Analysis
by Zijian Cong, Jian Gu, Chunqian Li, Fei Li and Fengming Li
Water 2024, 16(16), 2228; https://doi.org/10.3390/w16162228 - 7 Aug 2024
Cited by 1 | Viewed by 1576
Abstract
Conservation tillage technology possesses substantial potential to enhance agricultural production efficiency and tackle issues such as wind erosion and land degradation in semi-arid regions. The integration of no-tillage and straw mulching technologies in the conventional aeolian semi-arid agricultural zones of western Liaoning, China, [...] Read more.
Conservation tillage technology possesses substantial potential to enhance agricultural production efficiency and tackle issues such as wind erosion and land degradation in semi-arid regions. The integration of no-tillage and straw mulching technologies in the conventional aeolian semi-arid agricultural zones of western Liaoning, China, has led to notable improvements in crop yield and soil quality. However, a comprehensive assessment of the mechanisms and kinetics involved in soil nutrient variations is yet to be conducted. During a two-year study period, we assessed four tillage systems in the aeolian semi-arid regions of Northern China: no-tillage with full straw mulching (NTFS), no-tillage with half straw mulching (NTHS), no-tillage without straw mulching (NT), and conventional tillage (CT). The investigation focused on examining nutrient conditions, enhancing photosynthetic activity, and increasing maize yield while improving water use efficiency (WUE). Our findings emphasize the beneficial impact of combining no-tillage and straw mulching on enhancing soil water retention, resulting in a notable rise in soil moisture levels during the crucial growth phases of maize. This approach also positively influenced soil nutrient levels, particularly in the 0–20 cm layer, fostering an environment conducive to maize cultivation. In terms of ecological benefits, no-tillage with straw mulching curtailed soil sediment transport and wind erosion, notably at 30–40 cm heights, aiding in the ecological protection of the region. The yield and WUE were substantially higher under NTFS and NTHS than under CT, with NTHS demonstrating the most significant gains in yield (14.5% to 16.6%) and WUE (18.3% to 21.7%) throughout the study period. A TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) analysis confirmed NTHS as the optimal treatment, achieving the highest scores for soil water, nutrient availability, wind erosion control, maize photosynthesis, yield, and WUE, thus emerging as the most effective conservation tillage strategy for sustainable agriculture in aeolian semi-arid regions. Full article
(This article belongs to the Special Issue Agricultural Water-Land-Plant System Engineering)
Show Figures

Figure 1

19 pages, 3814 KiB  
Article
Quantitative Analysis of Aeolian Sand Provenance: A Comprehensive Analysis in the Otindag Dune Field, Central Inner Mongolia, China
by Yingying Cui, Yali Zhou, Ivan Lizaga, Zhibao Dong, Jin Zhang, Aimin Liang, Ping Lü and Tong Feng
Land 2024, 13(8), 1194; https://doi.org/10.3390/land13081194 - 2 Aug 2024
Cited by 2 | Viewed by 1672
Abstract
The identification and quantification of aeolian sand contributions are essential for understanding the formation of dune fields and mechanisms of modern surface processes. In the present study, we take aeolian sand in the Otindag dune field (hereafter, often referred to as, simply, Otindag) [...] Read more.
The identification and quantification of aeolian sand contributions are essential for understanding the formation of dune fields and mechanisms of modern surface processes. In the present study, we take aeolian sand in the Otindag dune field (hereafter, often referred to as, simply, Otindag) as the research object. The dune field’s immediate source is quantitatively identified based on heavy minerals and the Conservativeness Index (CI), Consensus Ranking (CR), and the Consistent Tracer Selection (CTS) method. The primary source area of the aeolian sand was found to be from the northwestern, upwind area of the Otindag (59 ± 14%), followed by the Yinshan Mountain (17 ± 10%) and the lake basin (23 ± 12%). The proposed sediment transport model elucidates that sediments from the upwind of the Otindag are directly transported from the northwest to the Otindag, where they are deposited. Materials from the southern Yinshan Mountains are carried by rivers to the southern edge of the Otindag, where they are subsequently transported by wind and ultimately deposited. The lake deposits within the Otindag also contribute to the aeolian sand supply under the influence of wind. This study demonstrates that the fingerprinting techniques of CI, CR, and CTS serve as successful strategies for conducting quantitative provenance research in dune fields. Full article
(This article belongs to the Special Issue Dynamics of Terrestrial Environmental Systems)
Show Figures

Figure 1

30 pages, 31593 KiB  
Article
Satellite Advanced Spaceborne Thermal Emission and Reflection Radiometer Mineral Maps of Australia Unmixed of Their Green and Dry Vegetation Components: Implications for Mapping (Paleo) Sediment Erosion–Transport–Deposition Processes
by Tom Cudahy and Liam Cudahy
Remote Sens. 2024, 16(10), 1740; https://doi.org/10.3390/rs16101740 - 14 May 2024
Viewed by 2167
Abstract
The 2012 satellite ASTER geoscience maps of Australia were designed to provide public, web-accessible, and spatially comprehensive surface mineralogy for improved mapping and solutions to geoscience challenges. However, a number of the 2012 products were clearly compromised by variable green and/or dry vegetation [...] Read more.
The 2012 satellite ASTER geoscience maps of Australia were designed to provide public, web-accessible, and spatially comprehensive surface mineralogy for improved mapping and solutions to geoscience challenges. However, a number of the 2012 products were clearly compromised by variable green and/or dry vegetation cover. Here, we show a strategy to first estimate and then unmix the contributions of both these vegetation components to leave, as residual, the target surface mineralogy. The success of this unmixing process is validated by (i) visual suppression/removal of the regional climate and/or local fire-scar vegetation patterns; and (ii) pixel values more closely matching field sample data. In this process, we also found that the 2012 spectral indices used to gauge the AlOH content, AlOH composition, and water content can be improved. The updated (new indices and vegetation unmixed) maps reveal new geoscience information, including: (i) regional “wet” and “dry” zones that appear to express “deep” geological characters often expressed through thick regolith cover, with one zone over the Yilgarn Craton spatially anti-correlated with Archaean gold deposits; (ii) a ~1000 km wide circular feature over the Lake Eyre region defined by a rim of abundant “muscovite” that appears to coincide with opal deposits; (iii) a N–S zonation across the western half of the continent defined by abundant muscovite in the south and kaolinite in the north, which appears to reflect opposing E ↔ W aeolian sediment transport directions across the high-pressure belt; (iv) various paleo-drainage networks, including those over aeolian sand covered the “lowlands” of the Canning Basin, which are characterized by low AlOH content, as well as those over eroding “uplands”, such as the Yilgarn Craton, which have complicated compositional patterns; and (v) a chronological history of Miocene barrier shorelines, back-beach lagoons, and alluvial fans across the Eucla Basin, which, to date, had proved elusive to map using other techniques, with potential implications for heavy mineral sand exploration. Here, we explore the latter three issues. Full article
(This article belongs to the Special Issue New Trends on Remote Sensing Applications to Mineral Deposits-II)
Show Figures

Figure 1

22 pages, 3721 KiB  
Review
Review of the Quantification of Aeolian Sediment Transport in Coastal Areas
by Paul Husemann, Frederico Romão, Márcia Lima, Susana Costas and Carlos Coelho
J. Mar. Sci. Eng. 2024, 12(5), 755; https://doi.org/10.3390/jmse12050755 - 30 Apr 2024
Cited by 6 | Viewed by 3366
Abstract
Coastal dunes, formed and shaped by aeolian sediment transport, play a crucial role in ecosystem services and act as natural flood and coastal erosion defenses. This paper delves into theoretical equations and numerical models predicting sediment transport. Numerical models like cellular automata, XBeach-DUNA, [...] Read more.
Coastal dunes, formed and shaped by aeolian sediment transport, play a crucial role in ecosystem services and act as natural flood and coastal erosion defenses. This paper delves into theoretical equations and numerical models predicting sediment transport. Numerical models like cellular automata, XBeach-DUNA, the coastal dune model, and others are analyzed for their ability to simulate dune morphology, erosion processes, and vegetation impacts accurately. Evaluated are field observation and measurement techniques, such as sand traps, impact sensors, and optical sensors, for their precision in quantifying aeolian dynamics. Further examined is the effectiveness of vegetation and fencing in dune stabilization, noting species-specific responses and the influence of fence design on sediment accumulation. These tools offer insights into optimizing aeolian sediment management for coastal protection. By conducting a systematic review and connecting theoretical, empirical, and modeling findings, this study highlights the complex challenge of measuring and managing aeolian sediment transport and proposes integrated strategies for enhancing coastal dune resilience against the backdrop of climate change and erosion. This study’s objectives to bridge gaps in current understanding are met, highlighting the need for a multidisciplinary approach to coastal dune management and conservation, especially combining wind- and wave-driven processes. Full article
Show Figures

Figure 1

15 pages, 5414 KiB  
Article
Multi-Scale Analysis of Grain Size in the Component Structures of Sediments Accumulated along the Desert-Loess Transition Zone of the Tengger Desert and Implications for Sources and Aeolian Dust Transportation
by Xinran Yang, Jun Peng, Bing Liu and Yingna Liu
Atmosphere 2024, 15(2), 239; https://doi.org/10.3390/atmos15020239 - 19 Feb 2024
Cited by 1 | Viewed by 1629
Abstract
Aeolian sediments accumulated along the desert-loess transition zone of the Tengger Desert include heterogeneous textures and complex component structures in their grain-size distributions (GSD). However, the sources of these aeolian sediments have not been resolved due to the lack of large reference GSD [...] Read more.
Aeolian sediments accumulated along the desert-loess transition zone of the Tengger Desert include heterogeneous textures and complex component structures in their grain-size distributions (GSD). However, the sources of these aeolian sediments have not been resolved due to the lack of large reference GSD sample datasets from adjacent regions that contain various types of sediments; such datasets could be used for fingerprinting based on grain-size properties. This lack of knowledge hinders our understanding of the mechanism of aeolian dust releases in these regions and the effects of forcing of atmospheric circulations on the transportation and accumulation of sediments in this region. In this study, we employed a multi-scale grain-size analysis method, i.e., a combination of the single-sample unmixing (SSU) and the parametric end-member modelling (PEMM) techniques, to resolve the component structures of sediments that had accumulated along the desert-loess transition zone of the Tengger Desert. We have also analyzed the component structures of GSDs of various types of sediments, including mobile and fixed sand dunes, lake sediments, and loess sediments from surrounding regions. Our results demonstrate that the patterns observed in coarser fractions of sediments (i.e., sediments with a mode grain size of >100 μm) from the transition zone match well with the patterns of component structures of several types of sediments from the interior of the Tengger Desert, and the patterns seen in the finer fractions (i.e., fine, medium, and coarse silts with a modal size of <63 μm) were broadly consistent with those of loess sediments from the Qilian Mountains. The deflation/erosion of loess from the Qilian Mountains by wind was the most important mechanism underlying the production of these finer grain-size fractions. The East Asia winter monsoon (EAWM) played a key role in transportation of the aeolian dust from these source regions to the desert-loess transition zone of the desert. Full article
Show Figures

Figure 1

22 pages, 21246 KiB  
Article
Field-Measurement of Surface Wind and Sediment Transport Patterns in a Coastal Dune Environment, Case Study of Cala Tirant (Menorca, Spain)
by Miquel Mir-Gual, Guillem X. Pons, Irene Delgado-Fernández and Thomas A. G. Smyth
J. Mar. Sci. Eng. 2023, 11(12), 2361; https://doi.org/10.3390/jmse11122361 - 14 Dec 2023
Cited by 6 | Viewed by 2092
Abstract
Blowouts are integral features of coastal dune fields. Their presence enhances both geomorphological and ecological diversity and enables the movement of sand by wind. Their role as a ‘transport corridor’ may be, however, considered negative from a coastal management perspective in heavily touristic [...] Read more.
Blowouts are integral features of coastal dune fields. Their presence enhances both geomorphological and ecological diversity and enables the movement of sand by wind. Their role as a ‘transport corridor’ may be, however, considered negative from a coastal management perspective in heavily touristic areas, where the existence of blowouts close to the foredune can enhance the loss of sediment from the beach. This paper investigated the relationship between airflow dynamics and patterns of sediment transport from the beach to established dunes through a trough blowout located on the foredune. Seven three-cup anemometers were used to measure wind speed and direction over a 24 h sampling period at a frequency of 1 min under onshore (parallel to the blowout axis) medium and high wind speeds (max of 17.9 ms−1). To measure sediment transport, a total of 12 vertical sand traps were located at three positions along the length of the deflation basin. The results indicated that small amounts of sediments went into the blowout from the beach and that the highest rates of sediment remobilization took place within the deflation basin. These results highlight two processes: (a) flow channelization induced by the blowout topography caused an increase in wind speed and sediment transport toward the depositional lobe, and (b) the presence of embryo dunes and herbaceous vegetation at the beach–blowout boundary effectively reduced the amount of sediment transport from the beach to the landform. The results confirmed the significant role that vegetation plays in controlling sediment movement and conserving the beach–dune system. Full article
(This article belongs to the Special Issue Sustainable Coastal Management)
Show Figures

Figure 1

20 pages, 15398 KiB  
Article
Identification of Sedimentary Environments through Dynamic Image Analysis of the Particle Morphology of Beach Sediments on the East and West Coasts of Hainan Island in South China
by Wufeng Cheng, Shenliang Chen, Xiaojing Zhong and Shaohua Zhao
Water 2023, 15(15), 2680; https://doi.org/10.3390/w15152680 - 25 Jul 2023
Cited by 3 | Viewed by 1955
Abstract
Particle morphology is an important feature of sediments that reflects their transport history and depositional environment. In this study, we used dynamic image analysis (DIA) to measure the size and shape of beach sediments on the east and west coasts of Hainan Island [...] Read more.
Particle morphology is an important feature of sediments that reflects their transport history and depositional environment. In this study, we used dynamic image analysis (DIA) to measure the size and shape of beach sediments on the east and west coasts of Hainan Island in South China Sea. DIA is a fast and accurate method that can capture and analyze a large number of sediment particles in real-time. We extracted morphological descriptors of each particle, such as equivalent diameter, sphericity, aspect ratio and symmetry, and their distributions based on volume and number. We performed multivariate analysis on the particle morphological data, including alpha diversity, statistical analysis and fingerprint techniques. We found that the Shannon index, calculated by the number distribution of sediment particle morphology, can effectively discriminate between the two sites, reflecting different sediment sources, transport processes and depositional conditions. We also established a composite fingerprint based on seven morphological parameters and diversity indices, which can accurately distinguish between aeolian and hydraulic sedimentary environments. Our study demonstrates the potential application of DIA in identifying sedimentary environments and establishing sediment fingerprints. This can help us understand the sediment transport processes and depositional mechanisms in coastal areas. Full article
Show Figures

Figure 1

Back to TopTop