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Abstract: Blowouts are integral features of coastal dune fields. Their presence enhances both geo-
morphological and ecological diversity and enables the movement of sand by wind. Their role as a
‘transport corridor’ may be, however, considered negative from a coastal management perspective
in heavily touristic areas, where the existence of blowouts close to the foredune can enhance the
loss of sediment from the beach. This paper investigated the relationship between airflow dynamics
and patterns of sediment transport from the beach to established dunes through a trough blowout
located on the foredune. Seven three-cup anemometers were used to measure wind speed and
direction over a 24 h sampling period at a frequency of 1 min under onshore (parallel to the blowout
axis) medium and high wind speeds (max of 17.9 ms−1). To measure sediment transport, a total of
12 vertical sand traps were located at three positions along the length of the deflation basin. The
results indicated that small amounts of sediments went into the blowout from the beach and that the
highest rates of sediment remobilization took place within the deflation basin. These results highlight
two processes: (a) flow channelization induced by the blowout topography caused an increase in
wind speed and sediment transport toward the depositional lobe, and (b) the presence of embryo
dunes and herbaceous vegetation at the beach–blowout boundary effectively reduced the amount of
sediment transport from the beach to the landform. The results confirmed the significant role that
vegetation plays in controlling sediment movement and conserving the beach–dune system.

Keywords: blowout; aeolian dynamics; sediment transport; dune system; erosion; management

1. Introduction

There are many definitions of blowouts based on their occurrence and physical charac-
terization [1–7]. In general, blowouts are defined as saucer- or trough-shaped depressions
or hollows formed by wind erosion on a pre-existing sand deposit [8]. The depositional lobe
(downwind sand accumulation) is generally considered part of the blowout, e.g., [7,9,10].
Blowouts have been classified according to their shape and physical features. Smith [11]
and Ritchie [12] defined four types of blowouts: cigar-shaped, v-shaped, scooped hollow,
and cauldron corridor, whereas Cooper [13] and Hesp [2,8] suggested only two, namely
trough and saucer blowouts. More recently, Mir-Gual et al. [7] carried out a preliminary
classification of blowouts in calcareous sands, taking into account their shape and structure,
inner morphometry, and topography, and they included some additional forms, such as
mixed blowouts.

Blowouts may develop naturally during a phase of aridity when the vegetation that
holds the dune together deteriorates, resulting in the mobilization of wind-blown sand.
Dune erosion can also be initiated by strong winds that transport sediment, often associated
with increasing storminess. Blowouts also form when the outer margin of vegetated coastal
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dunes is cut away by the sea during a storm, leaving an unvegetated cliff of loose sand
exposed to onshore wind action [14]. When considering the origin and evolution of
blowouts, several factors must be taken into account. Bate and Ferguson [3] postulated that
blowouts can be formed by various processes of natural or anthropogenic disturbance that
facilitate the penetration of strong winds onto the exposed dune surface. Once initiated,
their further development will depend on the location, type, height, and length of the
dune [15], the vegetation cover type and density [7,16,17], the strength and direction of
local surface winds [18], the orientation of the dune front to the main wind direction [19],
the strength and recurrence of storm waves inundating the emerged beach and foredune
strip, the local topography, and the erosion caused by surface runoff [8]. In addition to
such natural factors, the creation and expansion of blowouts are often related to human
pressure [3] and ineffective management measures [20].

The deflation of blowout sediment can constitute a source of sand supply to inland
dunes [21]. In extreme cases, blowout expansion and coalescence can lead to vast deflation
and the migration of entire dune fields [22,23]. The evolution of a simple blowout can hence
generate more complex structures over time, including the formation of large degraded
areas [7].

Much research has been conducted concerning the effect of wind dynamics on blowout
initiation and evolution. Langsberg and Riley [24] carried out one of the first studies of
wind flow within a blowout. Both airflow and the role of vegetation have been subsequently
studied by many aeolian researchers [2,4,6,22,25–31]. It has not been until recently, however,
that technical and modeling advances have allowed for the detailed exploration of wind
characteristics in a range of dune blowout forms. The complexity of these flow interactions
with the underlying blowout morphology is especially visible at very short time scales
(seconds or minutes), with high-frequency airflow measurements showing complex areas of
airflow steering and reversing within the blowout [6,30]. Despite these significant advances
in the measurement of airflow dynamics, only Smyth et al. [30] have studied sand transport
within blowouts and its relationship with changes in wind characteristics and topography.

This paper studied wind and aeolian transport measurements during a 24 h, medium-
to high-velocity wind event within a trough blowout located on the foredune. The purpose
of this article was to understand the relationship between airflow dynamics and patterns of
sediment transport from the upper beach to the established dunes under medium to high
wind conditions.

2. Study Site
2.1. General Characterization

The blowout was located in the Cala Tirant coastal dune system, in the northern coast
of Menorca (40◦02′39′′ N 4◦06′20′′ E, Balearic Islands, Spain) (Figure 1). The area is subject
to a semi-arid climate, with a mean annual precipitation of 630 mm. The tidal regime is
microtidal with a spring range of <0.25 m. The wave period ranges from 3 to 7 s, and waves
exceeding 1 m occur for approximately 30% of the time. Occasional waves reaching up to
5 m in height are observed only during high-energy winter storm events [32] (based on
data from buoy SIMAR-44 covering the period 1960–2001).

The foredune covers a surface of about 0.02 km2, whilst the dune complex covers a
surface of 1.6 km2 approximately [33] and is limited by a marsh on its southwestern site. In
this site, dunes are highly dynamic due to the strong northerlies prevailing winds called
Tramuntana, with associated wind events exceeding 3.5 ms−1 many days throughout the
year [33]. Although winds from the north are the most significant, winds from the NNE and
NNW strongly affect dune morphologies at Cala Tirant due to the morphology of the coast,
which is able to modify the wind incidence in the dune system (Figure 1). The foredune
reaches a maximum height of 5 m and is characterized by the presence of herbaceous
vegetation, such as Ammophila arenaria (Figure 2). The beach is approximately 350 m long
and 20 to 40 m wide.
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Over many decades, the Cala Tirant beach dune system has been subject to significant 
human pressure and sand over-extraction. Dune erosion is mostly related to human ac-
tivities such as property development, recreational activities, and poor management [20], 
which artificially increased the presence of blowouts along the foredune and dune system. 
Recent management has, however, led to a positive restoration, resulting in the formation 
of embryo dunes and the increase of vegetation cover [20,34]. Currently, mobile and semi-
stabilized dunes cover an area of 0.13 km2, with parabolic and superimposed shapes ex-
tending up to 450 m inland from the coastline [33]. Stabilized dunes were highly affected 
by sand quarries in the past and currently cover an area of only of 2.18 km2, representing 
50% of their original surface. 
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Figure 2. Panoramic view of the embryo dunes along the first line of the dune system and the blowout.

Over many decades, the Cala Tirant beach dune system has been subject to significant
human pressure and sand over-extraction. Dune erosion is mostly related to human
activities such as property development, recreational activities, and poor management [20],
which artificially increased the presence of blowouts along the foredune and dune system.
Recent management has, however, led to a positive restoration, resulting in the formation
of embryo dunes and the increase of vegetation cover [20,34]. Currently, mobile and
semi-stabilized dunes cover an area of 0.13 km2, with parabolic and superimposed shapes
extending up to 450 m inland from the coastline [33]. Stabilized dunes were highly affected
by sand quarries in the past and currently cover an area of only of 2.18 km2, representing
50% of their original surface.

2.2. Blowout Characterization

The experiment was conducted within a trough blowout located within the foredune
at Cala Tirant (Figure 3). The deflation basin was approximately 5.5 m, with deep respect to
the erosional walls. The blowout width ranged from a minimum of 10.6 m in the northern
margin to a maximum of 15.5 m at the center. The axial length was 60 m from the throat
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of the foredune to the depositional lobe, with an orientation NNW-SSE (355◦). The 1.5 m
embryo dune in front of the blowout was slightly degraded but partially recovered over
the last few years due to the growth of Ammophila arenaria (Figure 2). The inner part of the
blowout (deflation basin and lateral walls) and the depositional lobe were free of vegetation
(Figure 4C).
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annotated. (C) Detailed picture of the anemometers deployed on the field.
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Sediment consists of medium- to coarse-grain calcareous sand. Sediment samples
collected in G1, G2, and G3 (Figure 4B) showed small differences in sediment characteristics
within the blowout, with mean sizes of 380.5 µ, 472.5 µ, and 484.4 µ, respectively, after [35].

3. Materials and Methods
3.1. Experiment Setup

The experiment was conducted under high-energy winter winds (maximum wind
speed was 17.9 ms−1) over a period of 24 h. Wind characteristics and sediment transport
were measured within the deflation basin, erosional walls, and depositional lobe of the
blowout. A 3D digital elevation model (DEM) was produced from topographic data
collected every 0.5 m along 46 transects spaced 1.5 m apart using a Leica DGPS. Points
were taken at 0.75 m of resolution along the embryo dune, blowout, and depositional lobe.

3.2. Wind Measurements

Wind data were recorded using seven 2D Davis anemometers. Each anemometer
consisted of three cup speed sensors and one direction vane. Anemometers were deployed
in the outer margin, within, and in the innermost part of blowout (Figure 4A,C). Mean
and maximum wind speeds, mean wind direction, and air temperature were recorded at a
1 min frequency. Anemometers were deployed 0.4 m above the surface facing toward the
geographical north (Figure 4). The anemometers were wireless and transmitted information
directly into a main data logger Davis Envoy8x 1.0. Data processing of wind speed and
direction was carried out using the Data Transfer UtilityTM software package from Davis.
Directions were plotted using Open Rose 0.01TM software.

Wind speeds were grouped into 13 20 min runs (Table 1), coinciding with sediment
transport measurement sampling times (Section 3.3), and were normalized by incident wind
speed recorded at the back beach by A1 (Figure 4A). The speed-up ratio was calculated for
wind runs during the morning, afternoon, and night. The fractional speed ratio (δs) was
calculated after Jackson and Hunt [36] and Hugenholtz and Wolfe [27]:

δs = [uz − Uz]/Uz (1)

where uz is wind speed at height z, and Uz is wind speed at height z on the reference
anemometer (A1) located at the beach–dune boundary. The speed-up ratio provides a
metric for assessing the changes in wind speed relative to airflow entering the blowout.

3.3. Computational Fluid Dynamics Model (CFD)

The simulation and modeling of the wind flow within the blowout were executed
with the open-source CFD modeling software OpenFOAM 2.2.0. following the method-
ology applied by Smyth et al. [6]. The modeling conducted done using two equations
Re-normalized Group (RNG) κ-Epsilon turbulence model. The RNG k-ε model is based
on Reynolds-Averaged Navier–Stokes (RANS) equations, whereby the motion of fluid
is averaged over time. Simulations were run in a parallel computing cluster using forty
2.6 GHz processors and 256 GB of RAM. The computational domain was given a uniform
wall roughness height (Ks) of 0.25 m and a roughness constant (Cs) of 0.4 m. The digital
elevation model (DEM) used to run the wind model was the one described in Section 3.1.

3.4. Sand Transport Measurement

Sediment transport was quantified using a total of twelve vertical traps (Figure 4C)
following the design by Leatherman [37]. These traps were simple to build and deploy and
have been successfully used in previous studies [38–42].
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Table 1. The wind speed (uz) of each anemometer and its respective values of the fractional speed-up ratio (δs) along the 13 runs calculated. Additionally, the mean
(δs χ) and the standard deviation (δs σ) of the fractional speed-up ratio by each sensor and run are provided.

RUN_1
(09:14–09:34)

RUN_2
(10:13–10:33)

RUN_3
(11:12–11:32)

RUN_4
(12:28–12:48)

RUN_5
(14:20–14:40)

RUN_6
(15:16–15:36)

RUN_7
(16:19–16:39)

RUN_8
(17:23–17:43)

RUN_9
(18:25–18:45)

RUN_10
(20:27–20:47)

RUN_11
(22:25–22:45)

RUN_12
(00:26–00:46)

RUN_13
(03:26–03:46)

δs χ δs σ

Lenght uz
Ratio
(δ) uz

Ratio
(δ) uz

Ratio
(δ) uz

Ratio
(δ) uz

Ratio
(δ) uz

Ratio
(δ) uz

Ratio
(δ) uz

Ratio
(δ) uz

Ratio
(δ) uz

Ratio
(δ) uz

Ratio
(δ) uz

Ratio
(δ) uz

Ratio
(δ)

Anem. 1 83 8.8 0.00 8.7 0.00 10.4 0.00 10.7 0.00 10.0 0.00 8.6 0.00 6.9 0.00 5.9 0.00 3.8 0.00 2.7 0.02 1.8 0.00 2.5 0.00 2.5 0.00 0.00 0.00
Anem. 2 73 7.2 −0.18 7.1 −0.18 8.8 −0.15 9.0 −0.16 8.3 −0.17 7.2 −0.16 5.7 −0.17 4.7 −0.20 3.1 −0.18 2.2 −0.19 1.4 −0.22 2.0 −0.20 2.0 −0.20 −0.18 0.02
Anem. 3 55 8.8 0.00 8.7 0.00 10.9 0.05 11.4 0.07 10.3 0.03 8.8 0.02 7.0 0.01 5.8 −0.02 3.8 0.00 2.6 −0.04 1.6 −0.11 2.2 −0.12 2.2 −0.12 −0.02 0.06
Anem. 4 38 9.8 0.11 9.9 0.14 11.3 0.09 11.5 0.07 10.9 0.09 9.1 0.06 7.2 0.04 6.1 0.03 3.7 −0.03 2.7 0.00 1.6 −0.11 2.6 0.04 2.6 0.04 0.04 0.06
Anem. 5 24 6.7 −0.24 6.6 −0.24 8.4 −0.19 8.9 −0.17 7.3 −0.27 6.7 −0.22 5.8 −0.16 4.8 −0.19 4.2 0.11 2.7 0.00 2.1 0.17 1.8 −0.28 1.8 −0.28 −0.15 0.15
Anem. 6 47 10.0 0.14 10.1 0.16 11.3 0.09 11.5 0.07 10.8 0.08 9.1 0.06 7.2 0.04 6.0 0.02 3.2 −0.16 2.2 −0.19 1.0 −0.44 2.3 −0.08 2.3 −0.08 −0.02 0.17
Anem. 7 42 9.5 0.08 9.7 0.11 12.1 0.16 11.2 0.05 12.0 0.20 8.9 0.03 8.1 0.17 5.9 0.00 4.4 0.16 3.2 0.19 2.1 0.17 3.0 0.20 3.0 0.20 0.13 0.07

δs χ −0.06 0.00 0.01 −0.01 −0.01 −0.03 −0.01 −0.05 −0.02 −0.03 −0.08 −0.06 −0.06

δs σ 0.15 0.16 0.13 0.11 0.16 0.11 0.12 0.10 0.13 0.13 0.22 0.16 0.16

Anem. 1 (ref) 8.8 8.7 10.4 10.7 10.0 8.6 6.9 5.9 3.8 2.7 1.8 2.5 2.5
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Following a modification by Cabrera and Alonso [42], the traps consisted of half-
buried PVC tubes, with two longitudinal openings in the sub-aerial part. One of these
openings was covered with a 60 µm screen that retained moving grains. Sediment fell into
a plastic bag fitted inside the trap and was located in the buried part of the trap. The trap
opening had a height of 28.5 cm and a diameter of 4 cm. The traps were divided into three
groups of four traps each, facing towards the north, south, east and west to maximize the
sand trap from most directions. The first group (TA) was located at the back beach, the
second (TB) on the outer margin of the blowout and behind the embryo dunes, and the
third (TC) at the beginning of the depositional lobe (Figure 4A,B).

Sediment transport was sampled over 13 runs of 20 min each (Table 2). Following the
index used by Cabrera and Alonso [42], transport rates were calculated as follows:

Qtrap = [St/d * Ts]/1000 (2)

where St is the sediment trapped (g), d is the diameter of the sand trap (expressed in mm),
and Ts is the sampling time. Transport rates in this article are expressed in kg m−1 min−1.

Table 2. The relationship of averages between wind velocities and sand transport amounts by each
run and group of sand traps. The table was created using data from A1 as a reference for TA, A2 as a
reference for TB, and A5 as a reference for TC. Wind speed is expressed in ms−1 and sand transport
in kg m−1 min−1. The orientation of the traps for each of the RUNS present the following order in
the table: N, S, E, W.

Back Beach Embryo Dunes Depositional Lobe

A1 TA A2 TB A5 TC

Time Speed Transport Speed Transport Speed Transport

R
un

1

9:14 8.3 13.89 6.9 2.915 8.3 112.925
9:15 8.5 0.04 7.3 0.06 8.6 0.225
9:16 9.4 1.825 7.7 0.395 9.2 1.575
9:17 9.1 4.785 7.7 0.575 9.6 50.91

R
un

2

10:13 8.5 23.015 7 2.28 8.4 111.835
10:14 7.7 0.17 6.9 0.015 8.1 0.58
10:15 8.9 0.92 7.2 0.415 9.2 0.67
10:16 8.3 0.41 6.5 0.97 7.8 57.465

R
un

3

11:12 9.7 57.655 7.8 22.79 9.8 113
11:13 9.1 4.395 7.7 1.695 9.3 6.3
11:14 10.2 2.625 8.3 4.26 10.7 2.245
11:15 11.1 1.79 9.4 15.76 12.3 64.285

R
un

4

12:28 9.7 58.29 7.9 30.31 10.4 100.18
12:29 10.3 1.79 8.6 12.195 10.7 3
12:30 10.6 1.195 8.8 2.135 11.6 0.855
12:31 10.6 1.57 9.4 19.455 11.8 64.625

R
un

5

14:20 10.4 21.93 9 6.1 10.8 100.665
14:21 10.5 2.575 8.5 4.225 10.8 7.37
14:22 10.4 0.655 9 0.725 11.1 8.135
14:23 9.9 0.445 8.5 2.68 10.5 71.64

R
un

6

15:16 8.9 2.125 7.8 0.385 9.5 56.75
15:17 9.5 0.425 7.7 2.82 9.8 10.605
15:18 9.7 0.235 8 0.075 10.1 2.64
15:19 8.8 0.055 8 0.22 9.6 42.83
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Table 2. Cont.

Back Beach Embryo Dunes Depositional Lobe

A1 TA A2 TB A5 TC

Time Speed Transport Speed Transport Speed Transport

R
un

7

16:19 7.9 0.05 6.4 0.035 7.4 18.99
16:20 7.2 0.56 6.2 0.5 7.8 1.175
16:21 8 0.005 6.5 0.03 8 0.125
16:22 7.4 0.01 6.6 0.05 7.7 2.15

R
un

8

17:23 7 0.045 5.9 0 6.6 11.745
17:24 6 0.110 5.1 0.145 6.1 0.03
17:25 6.7 0.030 5.6 0 6.4 0.085
17:26 7 0.030 5.5 0.065 6.5 0.13

R
un

9

18:25 4.5 0.030 3.7 0.065 4.5 9.785
18:26 4.1 0.075 3.4 0.085 4.1 0.02
18:27 4.1 0.015 3.2 0 4.1 0.065
18:28 4.4 0.020 3.8 0.04 4.7 0.105

R
un

10

20:27 1.5 0.020 1.5 0.03 1.4 7.095
20:28 1.6 0.055 1.6 0.07 1.8 0.015
20:29 2.4 0.015 1.7 0 2.1 0.045
20:30 2.4 0.015 1.7 0.03 2.3 0.075

R
un

11

22:25 1.9 0.010 1.4 0.005 1.6 2.050
22:26 2 0.005 1.7 0.01 1.8 0.010
22:27 2 0.005 1.5 0 1.9 0.030
22:28 1.8 0.005 1.6 0.015 1.8 0.050

R
un

12

0:26 4.3 0.025 3.5 0.06 3.9 5.87
0:27 3.7 0.005 3.1 0.045 3.7 0.01
0:28 4.2 0.010 3.3 0 3.7 0.035
0:29 3.9 0.015 3.1 0.035 4 0.06

R
un

13

3:26 3.1 0.010 2.5 0.005 3 1
3:27 2.8 0.005 2.2 0.01 2.7 0.005
3:28 2.2 0.005 1.6 0 2.1 0.025
3:29 2.4 0.005 1.8 0.02 2.1 0.04

4. Results
4.1. Wind Characterization
4.1.1. Mean and Maximum Wind Speed

Spatially, winds were strongest (both mean and maximum speeds) in the distal slope
right before the depositional lobe (anem. 4) and lateral walls (anem. 7 and 6). Wind speeds
were lowest in the lee of the embryo dune (anem. 2) and depositional lobe (anem. 5).

Temporally, maximum wind speeds up to 17.9 ms−1 were recorded at approximately
12:02 p.m. by anem. 4. Wind speeds decreased from 02:00 p.m. and reached a minimum
(close to 0 ms−1) between 04:30 and 08:56 a.m. The relative behavior of wind speeds
recorded by different anemometers over time was globally similar (Figure 5), with a
generalized decrease of wind speed from 02:00 p.m.

4.1.2. Wind Direction

Wind direction recorded by each anemometer (Figures 6 and 7) was relatively constant
both in time and space, oscillating between 250◦ and 350◦ (WSW-NNW) throughout most of
the experiment. Wind direction switched to 50–200◦ (NE-SSW) at 05:00 a.m. at all locations,
except for A7, coinciding with the decrease of air temperature and wind speed described in
Section 4.1.1.

Despite relatively constant wind directions, topographic wind steering was visible
within the blowout. Figure 7 summarizes wind direction over the 24 h sampling period
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and shows a relatively constant onshore incoming wind direction from the NW at the back
beach (A1), roughly aligned with the blowout’s throat. Flow was steered towards NNW at
A2, where the presence of vegetation (Ammophila arenaria) at the embryo dune generated
secondary directions from N and NE. Winds were from the NW again at A3 and A4 due
to incident wind direction and significant canalization of the flow following Bernoulli’s
principle or the Venturi effect. Wind direction was relatively constant from the NW at A5,
with secondary directions from NNW and WNW. The largest changes in wind direction
occurred at A6 (E wall) (Figure 7B), with W to SW winds almost perpendicular to the wall
orientation (N-S). Wind direction was constant at A7 (W wall) (Figure 7B) and remained
steady and constantly steered from the N-NW at that location, despite drastic changes in
incoming wind directions during the last hours of the experiment (Figure 6).
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4.1.3. Fractional Speed-Up Ratio

Figure 8 shows the spatial distribution of fractional speed-up ratios (δs) during the
morning (runs 1–5), afternoon (runs 6–10), and night (runs 11–13). Winds were slower in
comparison with incoming wind speeds at the embryo dune (A2; average δsχ = −0.15)
and depositional lobe (A5; average δsχ = −0.2) for all runs (Table 1). The magnitude of
wind speed in the blowout basin was generally closer to incoming wind speeds, but there
were considerable oscillations depending on the moment of the day. At A3, winds were
accelerated in the morning with respect to winds measured in location A1 (δs = 0.07),
similar to incoming wind speeds in the afternoon (δs = 0.00), but significantly slower
during the night (δs = −0.15). Winds at A4 (upper slope of the deflation basin just before
the depositional lobe) were the strongest throughout the majority of the experiment, with
the exception of runs 9–11. Wind speed behavior during these three runs was considerably
different from the rest of the experiment, with wind speeds now being the strongest at the
depositional lobe (A5) and significantly lower at the upper slope of the deflation basin (A4).
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4.1.4. Patterns of Sediment Transport

Figure 9 shows temporal changes of aeolian sediment transport as measured by the
traps during the morning, afternoon, and night. Transport was largest during the morning
(runs 1 to 5), coinciding with the strongest winds (Figure 5). It gradually decreased during
the afternoon (runs 6–10), as the wind speed decreased, and it was lowest at night (runs
11–13) when the winds slowed down (Table 2). The largest transport rates were registered
by TC5 (Q = 46.95 kg m−1 min−1) and the smallest by TA11, TB11, and TA12 (approximately
Q = 0.01 kg m−1 min−1 (Table 3)).

Table 3. Amounts of sediments captured by each group of sand traps deployed along the thirteen
runs carried out on the experiment.

TA TB TC
Run Values in kg m−1 min−1

1 5.14 0.99 41.41
2 6.13 0.92 42.64
3 16.62 11.13 46.46
4 15.71 16.02 42.17
5 6.40 3.43 46.95
6 0.71 0.88 28.21
7 0.16 0.15 5.61
8 0.05 0.07 3.00
9 0.04 0.05 2.49
10 0.03 0.03 1.81
11 0.01 0.01 0.54
12 0.01 0.035 1.494
13 0.006 0.009 0.268
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Mean sediment transport rates during the morning were TA_Q = 10 kg m−1 min−1,
TB_Q = 6.5 kg m−1 min−1, and TC_Q = 43.9 kg m−1 min−1. Maximum transport rates were
during runs 3, 4, and 5 (Table 4). Mean transport rates during the afternoon were lower than
those during the morning, with TA_Q = 0.24 kg m−1 min−1, TB_Q = 0.28 kg m−1 min−1,
and TC_Q = 39.3 kg m−1 min−1. Sediment transport was almost non-existent at night
due to mean wind speeds lower than 3 ms−1, resulting in average transport rates of
TA_Q = 0.014 kg m−1 min−1, TB_Q = 0.021 kg m−1 min−1, and TC_Q = 1.02 kg m−1 min−1.
It is worth noting that small amounts of transport were recorded with wind speeds below
2.5 ms−1 at TC11.
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Figure 8. Time-average wind speeds (fractional speed-up ratios) in the blowout for anemometers
1, 2, 3, 4, and 5 using anemometer 1 as a reference (after Jackson and Hunt [36]; Hugenholtz and
Wolfe [27]). Anemometers 6 and 7 are included in the speed-up ratio (see Table 1) but were not
represented in the figure because they were not deployed in the same axis (see location in Figure 3).
The results were divided into three different times (morning, afternoon, and night) according to the
wind velocities along the experiment.
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Figure 10 shows spatial changes in sediment transport rates for all runs. Transport rates
were consistently larger at TC in the depositional lobe, not at TA where there were relatively
stronger winds (Figure 8; Section 4.1.3). The lowest transport rates were measured by TB.
This spatial pattern was relatively constant over time, although runs 3 and 4 experienced an
increase of sand flux at TA and TB corresponding with increasing wind speeds (Figure 5).



J. Mar. Sci. Eng. 2023, 11, 2361 15 of 21

Table 4. Sand captured by each group of traps along the different sampling times.

Time Run Qtrap (kg m−1 min−1)

Morning

TA1 5.14
TB1 0.99
TC1 41.41

TA2 6.13
TB2 0.92
TC2 42.64

TA3 16.62
TB3 11.13
TC3 46.46

TA4 15.71
TB4 16.02
TC4 42.17

TA5 6.40
TB5 3.43
TC5 46.95

Afternoon

TA6 0.71
TB6 0.88
TC6 28.21

TA7 0.16
TB7 0.15
TC7 5.61

TA8 0.05
TB8 0.07
TC8 3.00

TA9 0.04
TB9 0.05
TC9 2.49

Night

TA10 0.03
TB10 0.03
TC10 1.81

TA11 0.01
TB11 0.01
TC11 0.54

TA12 0.01
TB12 0.035
TC12 1.494

TA13 0.006
TB13 0.009
TC13 0.268

Figure 10B summarizes the spatial-temporal patterns of sediment transport during
the experiment. There were significant differences between TC and TA-TB, especially
during the morning. Transport rates peaked during runs 3, 4, and 5, with values at TC
over 45 kg m−1 min−1. Transport decreased during runs 6 (TC = 28.21 kg m−1 min−1) and
7 (TC = 5.61 kg m−1 min−1) (Table 4), coinciding with decreasing wind speeds (Figure 5).
The total sand collected by traps over 24 h was TA = 51 kg, TB = 33.71 kg, and TC = 263 kg.

Strong winds from 09:00 a.m. to 02:00 p.m., almost perpendicular to the E wall (A6,
Figure 7), were associated with recurrent sand slides that slightly modified the inner
topography of the blowout (Figure 11A). Winds were almost parallel to the W wall (A7,
Figure 7), which, in this case, resulted in the strong erosion and transport of material away
from the wall, preventing sand avalanching (Figure 11B).
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Figure 10. Spatial patterns of sediment transport captured by TA, TB, and TC: (A) sediment transport
occurred in each of the 20 min runs carried out; (B) overview of the spatial differences of sediment
captured over the 24 h of the experiment.
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5. Discussion
5.1. Wind Flow and Topographic Control

In line with previous studies [6,30,31], this research showed that topography exerts an
important control on airflow within blowouts. Winds were stronger at the blowout throat
and deflation basin due to airflow compression following Bernoulli’s principle (Figure 8).
This was followed by flow expansion and divergence at the depositional lobe and a decrease
in wind speed. Different patterns of wind steering within the blowout can lead to different
modes of sediment transport. During the same event, perpendicular winds at the E wall
generated relatively constant sand slides, while parallel winds along the W wall eroded the
sediment and transported it away towards the depositional lobe (Figure 11).

As found by other authors [2,29,30,39], there were significant spatial differences in
wind speeds within the blowout. The strongest winds were measured at the upper slope of
the deflation basin (A7 and A4) as a result of channeled airflows (see location on Figure 4A).

Several studies have noted that airflow behavior is dependent upon blowout form. In
trough blowouts [2,43], the wind accelerates within the blowout throat, whilst, in saucer
and bowl blowouts, a separation zone develops in the lee of the blowout crest, increasing
the airflow complexity [27,31]. In bowl blowouts, unlike in trough blowouts, the flow
expands and decelerates along the deflation basin [27,44]. The results obtained in this study
confirm the strong control that the topography exerts on airflow within a trough blowout,
whereby the presence of steep erosional walls induce wind speed-up and relatively constant
wind directions along the deflation basin because of the static pressure exerted by the lateral
walls of the blowout.

Fractional speed-up ratios [27,36] showed a gradual increase in wind speed with
distance along the deflation basin to a maximum value just before the depositional lobe at
A4 (Section 4.1.3). This increase in wind speed along the deflation basin has been previously
observed in a diversity of blowout environments [6,27,31]. It is worth noting, in this study,
that incoming onshore wind speeds were consistently stronger at the back beach (A1)
than in the lee of the embryo dune located at the opening of the blowout (A2; Figure 8).
While the lower wind speeds at this location demonstrate the effect of the embryo dune
topography on incoming airflow, wind direction was only partially steered at this location,
suggesting that embryo dune morphology and height were not enough to induce airflow
separation and reversal.

5.2. Transport and Supply Limiting Factors

The results obtained from this study show good correspondence between temporal
variations in wind speed and sand transport rates within the blowout. However, spatial
variations in wind speed did not correspond well with measured sand transport rates.
The largest sediment transport rates were recorded at the upper margin of the blowout
(TC), on the depositional lobe, where the wind was slowest (A5, Figure 8). TC and A5
were located in a region of flow expansion and wind speed reduction. Although transport
was not quantified at A3 and A4, visual observations, as Figure 11 shows, permitted the
identification of large amounts of sediment erosion from the deflation basin during strong
winds. Thus, sediment that had been entrained along the deflation basin of the blowout
was being deposited at this location on the depositional lobe. Additionally, and in line with
Hesp and Walker [31], the erosion of the lateral walls and deposition of sediment on the
deflation basin helped increasing the budget of sand available for transport toward the
depositional lobe.

Small sediment fluxes were measured at TA (back beach) under wind speeds that were
considerably higher than TC. With no rain or moisture limiting sediment availability in
this area, the main limiting factor was a short fetch distance due to a narrow beach.

Low sediment transport rates recorded at TB were due to increases of surface rugosity
due to the presence of the foredune and vegetation reducing wind speeds.

However, Figure 10 shows relatively large transport rates in TA and TB during runs
3 and 4, coinciding with the strongest winds (10–12 ms−1) measured at A1 (Figure 5).
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Hence, even in the presence of limiting factors such as short fetch distances and foredune
topographies and vegetation, wind speeds over 10 ms−1 can entrain and transport sediment
from the upper beach into the dune complex.

To date, sand transport patterns within blowouts are still not well understood. Jun-
gerius and van der Meulen [45] observed a decrease in erosive power from a maximum at
the outer margin to lower values within the blowout due to development of transport. Hesp
and Walker [31], however, suggested more complex transport dynamics, with secondary
flow patterns resulting in multi-directional transport within the entire blowout and beyond.
The results presented in this study support findings by Hesp and Walker [31] and suggest
the development of complex transport patterns with avalanching and/or removal from
lateral walls, erosion in the deflation basin, and large deposition despite lower winds at the
depositional lobe.

5.3. Implications for Management

The presence of vegetation along the first line of coastal dunes can play an important
role in the development of dune systems [46–51]. Mir-Gual et al. [7] linked the conservation
state of the first line of dunes in the Balearic Islands with the presence/absence of psammo-
phyte vegetation, where well-preserved foredunes are well-vegetated. Vegetation has an
important role in aeolian sediment dynamics because it decreases the near-surface wind
speed and enhances the sediment deposition. In line with other authors (e.g., [8,46,52]), our
results suggest that the presence of vegetation in the outer margin of the blowout increased
the sand surface rugosity, which decreased wind speed and enhanced sediment deposition
(sensors A2 and TB). The presence of a relatively low, vegetated dune at the beginning
of the throat did not seem to limit the movement of sediment within the blowout under
medium to high wind speeds. While little transport was recorded at TB, the depositional
lobe received large amounts of sediment over 24 h, and active transport was visible in the
blowout walls and deflation basin. Our results suggest that management techniques that
lead to the positive restoration of foredunes in Balearic Islands could perfectly co-exist with
the preservation of un-vegetated, active blowouts in the dune fields. Blowouts intersect-
ing the first line of coastal dunes may lead to an output of sand from the beach into the
blowout through aeolian processes. In the context of the Balearic Islands, this output is
considered ‘negative’ from a management perspective, as the beach is an essential touristic
and economic resource. This has triggered the active restoration of embryo dunes and
foredunes through an increase of vegetation cover over the last few years [20,34]. The
results presented in this paper suggest that, while this restoration leads to a relative closure
of the blowout from the beach (e.g., possible decrease of sediment input to the blowout),
the interaction between wind, topography, and available sediment within the blowout
maintains active transport patterns that result in a very dynamic blowout behavior during
short-term events.

6. Conclusions

This study aimed to increase the knowledge about airflow dynamics and patterns of
sediment transport from the beach to established dunes through a trough blowout. Despite
low sediment transfer from the beach to the blowout due to the presence of an embryo
dune, substantial amounts of sediment transport were measured from the deflation basin
toward the depositional lobe.

In relation to the wind and topography relationship, two features should be taken
into account. First, embryo dunes and herbaceous vegetation (e.g., Ammophila arenaria) in
the outer margin of the blowout increased surface rugosity, which in turn decreased wind
speed and induced flow complexity. Second, the blowout throat generated a channelization
of the air flow along the deflation basin, which, helped by the inner morphometry of
blowout and according to de Venturi’s effect, increased wind speed and consequently
sediment entrainment and transport. Once the airflow reached the upper margin of the
blowout, it expanded and decelerated, which led to sediment deposition.
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The present work demonstrated two different erosion processes, which, depending on
the angle of incidence of wind flow on the lateral walls of the blowout, generated different
sedimentary behaviors. On the east wall, with perpendicular winds, sediment tended to
collapse in the form of small sand slides. Due to the force of gravity, sediment was gradually
deposited on the deflation basin to be later transported by the flow to the innermost section.
In contrast, on the western wall, parallel winds progressively dismantled the wall and
directly transported sand toward the depositional lobe.

The patterns of sediment transport are highly conditioned by: (a) wind characteristics
(speed and direction) and (b) by the topography of the blowout and surrounding areas.
Our results demonstrated how complex the wind–sediment transport relationship is. For
example, the place where the largest sediment transport rates were recorded (at the upper
rim of blowout, in the depositional lobe) did not coincide with the point of highest wind
speeds (deflation channel). While the deflation channel acted as an area of sediment
entrainment and erosion, the depositional lobe acted as an area of sediment accumulation.
Limiting factors, such as fetch distances and increases in roughness rugosity, decreased
aeolian sediment transport at the back beach and behind the foredune, respectively.

Finally, in places like the Balearic Islands, sand output from the beach into coastal
blowouts is considered ‘negative’ from a management perspective, as the beach is an
essential touristic and economic resource. Results in this paper suggest that the restoration
of the first line of dune (foredune strip) could limit the amount of sand blown from the
beach but could still permit dynamic blowout and dune behavior landward of the foredune.

Although the main goal of this study was to focus on the sedimentary behavior under
a medium–high energy episode, it would be interesting for future works to address this
aspect over a longer time scale with the purpose of continuing to advance and improve the
knowledge of the relationship between blowouts and sediment transport patterns.
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