Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = adrenocortical carcinoma cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5071 KiB  
Article
Defactinib in Combination with Mitotane Can Be an Effective Treatment in Human Adrenocortical Carcinoma
by Henriett Butz, Lőrinc Pongor, Lilla Krokker, Borbála Szabó, Katalin Dezső, Titanilla Dankó, Anna Sebestyén, Dániel Sztankovics, József Tóvári, Sára Eszter Surguta, István Likó, Katalin Mészáros, Andrea Deák, Fanni Fekete, Ramóna Vida, László Báthory-Fülöp, Erika Tóth, Péter Igaz and Attila Patócs
Int. J. Mol. Sci. 2025, 26(13), 6539; https://doi.org/10.3390/ijms26136539 - 7 Jul 2025
Viewed by 554
Abstract
Adrenocortical carcinoma (ACC) is an aggressive cancer with a poor prognosis. Mitotane, the only FDA-approved treatment for ACC, targets adrenocortical cells and reduces cortisol levels. Although it remains the cornerstone of systemic therapy, its overall impact on long-term outcomes is still a matter [...] Read more.
Adrenocortical carcinoma (ACC) is an aggressive cancer with a poor prognosis. Mitotane, the only FDA-approved treatment for ACC, targets adrenocortical cells and reduces cortisol levels. Although it remains the cornerstone of systemic therapy, its overall impact on long-term outcomes is still a matter of ongoing clinical debate. Drug repurposing is a cost-effective way to identify new therapies, and defactinib, currently in clinical trials as part of combination therapies for various solid tumours, may enhance ACC treatment. We aimed to assess its efficacy in combination with mitotane. We tested the combination of mitotane and defactinib in H295R, SW13, and mitotane-sensitive and -resistant HAC15 cells, using functional assays, transcriptomic profiling, 2D and 3D cultures, bioprinted tissues, and xenografts. We assessed drug interactions with NMR and toxicity in vivo, as mitotane and defactinib have never been previously administered together. Genomic data from 228 human ACC and 158 normal adrenal samples were also analysed. Transcriptomic analysis revealed dysregulation of focal adhesion along with mitotane-related pathways. Focal adhesion kinase (FAK) signalling was enhanced in ACC compared to normal adrenal glands, with PTK2 (encoding FAK) upregulated in 44% of tumour samples due to copy number alterations. High FAK signature scores correlated with worse survival outcomes. FAK inhibition by defactinib, both alone and in combination with mitotane, showed effective anti-tumour activity in vitro. No toxicity or drug—drug interactions were observed in vivo. Combination treatment significantly reduced tumour volume and the number of macrometastases compared to those in the mitotane and control groups, with defactinib-treated tumours showing increased necrosis in xenografts. Defactinib combined with conventionally used mitotane shows promise as a novel combination therapy for ACC and warrants further investigation. Full article
(This article belongs to the Special Issue Signalling Pathways in Metabolic Diseases and Cancers)
Show Figures

Graphical abstract

16 pages, 4101 KiB  
Article
Bimodal Genomic Approach Predicting Semaphorin 7A (SEMA7A) as Prognostic Biomarker in Adrenocortical Carcinoma
by Anjali Dhall, Daiki Taniyama, Fathi Elloumi, Augustin Luna, Sudhir Varma, Suresh Kumar, Lauren Escobedo, Yilun Sun, Mirit I. Aladjem, Christophe E. Redon, Nitin Roper, William C. Reinhold, Jaydira Del Rivero and Yves Pommier
Cancers 2025, 17(13), 2078; https://doi.org/10.3390/cancers17132078 - 21 Jun 2025
Viewed by 540
Abstract
Background: Adrenocortical carcinoma (ACC) is a rare and aggressive endocrine malignancy with a high mortality and poor prognosis. To elucidate the genetic underpinnings of ACCs, we have analyzed the transcriptome profiles of ACC tumor samples from patients enrolled in the TCGA and NCI [...] Read more.
Background: Adrenocortical carcinoma (ACC) is a rare and aggressive endocrine malignancy with a high mortality and poor prognosis. To elucidate the genetic underpinnings of ACCs, we have analyzed the transcriptome profiles of ACC tumor samples from patients enrolled in the TCGA and NCI cohorts. Methods: We developed a bimodal approach using Gaussian Mixture Models to identify genes with bimodal distribution in ACC samples. Among the 72 bimodally expressed genes that are used to stratify patients into prognostic groups, we focused on SEMA7A, as it encodes a glycosylphosphatidylinositol-anchored membrane glycoprotein (Semaphorin 7a) regulating integrin-mediated signaling, cell migration and immune responses. Results: Our findings reveal that high expression levels of SEMA7A gene are associated with poor prognosis (hazard ratio = 4.27; p-value < 0.001). In hormone-producing ACCs, SEMA7A expression is elevated and positively correlated with genes driving steroidogenesis, aldosterone and cortisol synthesis, including CYP17A1, CYP11A1, INHA, DLK1, NR5A1 and MC2R. Correlation analyses show that SEMA7A is co-expressed with the integrin-β1, FAK (focal adhesion kinase) and MAPK/ERK (mitogen-activated protein kinase/extracellular signal regulated kinases) signaling pathways. Immunohistochemistry (IHC) staining demonstrates the feasibility of evaluating SEMA7A in ACC tissues and shows a significant correlation between gene expression (RNA-Seq) and protein expression (IHC). Conclusions: These findings suggest SEMA7A as a candidate for further research in ACC biology and a candidate for cancer therapy, as well as a potential prognosis biomarker for ACC patients. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

21 pages, 9462 KiB  
Article
A Senescence-Associated Gene Signature for Prognostic Prediction and Therapeutic Targeting in Adrenocortical Carcinoma
by Hangya Peng, Qiujing Chen, Lei Ye and Weiqing Wang
Biomedicines 2025, 13(4), 894; https://doi.org/10.3390/biomedicines13040894 - 8 Apr 2025
Cited by 1 | Viewed by 809
Abstract
Background/Objectives: Cellular senescence plays a critical role in tumorigenesis, immune cell infiltration, and treatment response. Adrenocortical carcinoma (ACC) is a malignant tumor that lacks effective therapies. This study aimed to construct and validate a senescence-related gene signature as an independent prognostic predictor [...] Read more.
Background/Objectives: Cellular senescence plays a critical role in tumorigenesis, immune cell infiltration, and treatment response. Adrenocortical carcinoma (ACC) is a malignant tumor that lacks effective therapies. This study aimed to construct and validate a senescence-related gene signature as an independent prognostic predictor for ACC and explore its impact on the tumor microenvironment, immunotherapy, and chemotherapy response. Methods: Data were collected from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Using Kaplan–Meier survival analysis, LASSO penalized Cox regression and multivariable Cox regression, we identified a prognostic model with four senescence-related genes (HJURP, CDK1, FOXM1, and CHEK1). The model’s prognostic value was validated through survival analysis, risk score curves, and receiver operating characteristic (ROC) curves. Tumor mutation burden was assessed with maftools, and the tumor microenvironment was analyzed using CIBERSORT and ESTIMATE. Immune and chemotherapeutic responses were assessed through Tumor Immune Dysfunction and Exclusion (TIDE) and OncoPredict. Results: The risk score derived from our model showed a strong association with overall survival (OS) in ACC patients (p < 0.001, HR = 2.478). Higher risk scores were correlated with more advanced tumor stages and a greater frequency of somatic mutations. Differentially expressed genes (DEGs) that were downregulated in the high-risk group were significantly enriched in immune-related pathways. Furthermore, high-risk patients were predicted to have reduced sensitivity to immunotherapy (p = 0.02). Bioinformatics analysis identified potential chemotherapeutic agents, including BI-2536 and MIM1, as more effective treatment options for high-risk patients. Conclusions: Our findings indicate that this prognostic model may serve as a valuable tool for predicting overall survival (OS) and treatment responses in ACC patients, including those receiving chemotherapy and immunotherapy. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

25 pages, 9637 KiB  
Article
LCAT in Cancer Biology: Embracing Epigenetic Regulation, Immune Interactions, and Therapeutic Implications
by Manzhi Gao, Wentian Zhang, Xinxin Li, Sumin Li, Wenlan Wang and Peijun Han
Int. J. Mol. Sci. 2025, 26(4), 1453; https://doi.org/10.3390/ijms26041453 - 10 Feb 2025
Cited by 2 | Viewed by 1825
Abstract
Lecithin cholesterol acyltransferase (LCAT) is a crucial enzyme in high-density lipoprotein (HDL) metabolism that is often dysregulated in cancers, affecting tumor growth and therapy response. We extensively studied LCAT expression in various malignancies, linking it to clinical outcomes and genetic/epigenetic alterations. We analyzed [...] Read more.
Lecithin cholesterol acyltransferase (LCAT) is a crucial enzyme in high-density lipoprotein (HDL) metabolism that is often dysregulated in cancers, affecting tumor growth and therapy response. We extensively studied LCAT expression in various malignancies, linking it to clinical outcomes and genetic/epigenetic alterations. We analyzed LCAT expression in multiple cancers and used the Cox regression model to correlate it with patient survival metrics, including overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI). We also examined the copy number variations (CNVs), single-nucleotide variations (SNVs), DNA methylation, and N6-methyladenosine (m6A) modifications of LCAT and their connections to tumor immune responses and drug sensitivity. LCAT expression varies among cancers and correlates with patient outcomes. Low expression is linked to poor prognosis in low-grade glioma (LGG) and liver hepatocellular carcinoma (LIHC), while high expression is associated with better outcomes in adrenocortical carcinoma (ACC) and colon adenocarcinoma (COAD). In kidney renal papillary cell carcinoma (KIRP) and uterine corpus endometrial carcinoma (UCEC), LCAT CNV and methylation levels are prognostic markers. LCAT interacts with m6A modifiers and immune molecules, suggesting a role in immune evasion and as a biomarker for immunotherapy response. LCAT expression correlates with chemotherapeutic drug IC50 values, indicating potential for predicting treatment response. In ACC and COAD, LCAT may promote tumor growth, while in LGG and LIHC, it may inhibit progression. LCAT expression and activity regulation could be a new cancer therapy target. As a key molecule linking lipid metabolism, immune modulation, and tumor progression, the potential of LCAT in cancer therapy is significant. Our findings provide new insights into the role of LCAT in cancer biology and support the development of personalized treatment strategies. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

28 pages, 2173 KiB  
Review
A Review on Mitotane: A Target Therapy in Adrenocortical Carcinoma
by Fabiano Flauto, Maria Cristina De Martino, Chiara Vitiello, Rosario Pivonello, Annamaria Colao and Vincenzo Damiano
Cancers 2024, 16(23), 4061; https://doi.org/10.3390/cancers16234061 - 4 Dec 2024
Cited by 3 | Viewed by 2897
Abstract
Adrenocortical carcinomas (ACCs) are rare and aggressive malignancies of adrenal cortex, associated with largely unknown mechanisms of biological development and poor prognosis. Currently, mitotane is the sole approved drug for treating advanced adrenocortical carcinomas (ACCs) and is being utilized more frequently as postoperative [...] Read more.
Adrenocortical carcinomas (ACCs) are rare and aggressive malignancies of adrenal cortex, associated with largely unknown mechanisms of biological development and poor prognosis. Currently, mitotane is the sole approved drug for treating advanced adrenocortical carcinomas (ACCs) and is being utilized more frequently as postoperative adjuvant therapy. Although it is understood that mitotane targets the adrenal cortex and disrupts steroid production, its precise mechanism of action requires further exploration. Additionally, mitotane affects cytochrome P450 enzymes, causes the depolarization of mitochondrial membranes, and leads to an accumulation of free cholesterol, ultimately resulting in cell death. Many patients treated with mitotane develop disease progression over time, underlying the need to understand the mechanisms of primary and acquired resistance. In this manuscript, we provide an overview on the intracellular mechanisms of action of mitotane, exploring data regarding predictive factors of response and evidence associated with the development of primary and acquired resistance mechanisms. In this discussion, mitotane is considered a real target therapy. Full article
Show Figures

Figure 1

15 pages, 5751 KiB  
Article
Expression Patterns of MOTS-c in Adrenal Tumors: Results from a Preliminary Study
by Kacper Kamiński, Małgorzata Blatkiewicz, Marta Szyszka, Anna Olechnowicz, Hanna Komarowska, Anna Klimont, Tomasz Wierzbicki, Marek Karczewski, Marek Ruchała and Marcin Rucinski
Int. J. Mol. Sci. 2024, 25(16), 8721; https://doi.org/10.3390/ijms25168721 - 9 Aug 2024
Cited by 1 | Viewed by 2218
Abstract
Adrenal tumors, such as adrenocortical carcinoma (ACC), adrenocortical adenoma (ACA), and pheochromocytoma (PCC) are complex diseases with unclear causes and treatments. Mitochondria and mitochondrial-derived peptides (MDPs) are crucial for cancer cell survival. The primary aim of this study was to analyze samples from [...] Read more.
Adrenal tumors, such as adrenocortical carcinoma (ACC), adrenocortical adenoma (ACA), and pheochromocytoma (PCC) are complex diseases with unclear causes and treatments. Mitochondria and mitochondrial-derived peptides (MDPs) are crucial for cancer cell survival. The primary aim of this study was to analyze samples from different adrenal diseases, adrenocortical carcinoma, adrenocortical adenoma, and pheochromocytoma, and compare them with normal adrenal tissue to determine whether the expression levels of the mitochondrial open reading frame of the 12S rRNA type-c (MOTS-c) gene and protein vary between different types of adrenal tumors compared to healthy controls using qPCR, ELISA, and IHC methods. Results showed decreased MOTS-c mRNA expression in all adrenal tumors compared to controls, while serum MOTS-c protein levels increased in ACA and PCC but not in ACC. The local distribution of MOTS-c protein in adrenal tissue was reduced in all tumors. Notably, MOTS-c protein expression declined with ACC progression (stages III and IV) but was unrelated to patient age or sex. Tumor size and testosterone levels positively correlated with MOTS-c mRNA but negatively with serum MOTS-c protein. Additionally, serum MOTS-c protein correlated positively with glucose, total cholesterol, HDL, LDL, and SHGB levels. These findings suggest disrupted expression of MOTS-c in the spectrum of adrenal diseases, which might be caused by mechanisms involving increased mitochondrial dysfunction and structural changes in the tissue associated with disease progression. This study provides a detailed examination of MOTS-c mRNA and protein in adrenal tumors, indicating the potential role of MDPs in tumor biology and progression. Full article
(This article belongs to the Special Issue Advanced Research on the Adrenal Gland and Hormones)
Show Figures

Figure 1

16 pages, 1058 KiB  
Review
Human and Murine Cell Lines for Adrenocortical Carcinoma and Pheochromocytoma
by Edlira Luca, Andrea Abate, Katharina Wang, Stefan Bornstein, Sandra Sigala, Felix Beuschlein, Svenja Nölting and Constanze Hantel
Endocrines 2024, 5(3), 261-276; https://doi.org/10.3390/endocrines5030019 - 5 Jul 2024
Cited by 2 | Viewed by 2712
Abstract
Adrenocortical carcinoma (ACC) and pheochromocytoma (PCC) are malignancies originating from distinct layers of the adrenal gland. ACCs arise from the adrenal cortex, are often detected at advanced stages and are associated with poor prognosis. PCCs are mostly benign, arise from the adrenal medulla [...] Read more.
Adrenocortical carcinoma (ACC) and pheochromocytoma (PCC) are malignancies originating from distinct layers of the adrenal gland. ACCs arise from the adrenal cortex, are often detected at advanced stages and are associated with poor prognosis. PCCs are mostly benign, arise from the adrenal medulla and have a variable prognosis, with 10% of PCCs resulting in metastasis. Genetic background strongly influences metastasis of PCCs, and no reliable biomarkers that predict metastatic behavior exist to date. Current therapeutic strategies for both ACCs and PCCs are overall limited. Thus, novel preclinical models and drug screening approaches need to be established to aid in the identification of more promising drugs and treatment schemes. In this review, we summarize the currently available human and murine cell lines for both tumor entities. Full article
(This article belongs to the Special Issue Feature Papers in Endocrines: 2024)
Show Figures

Figure 1

17 pages, 4095 KiB  
Article
Epithelial Cell Adhesion Molecule (EpCAM) Expression in Human Tumors: A Comparison with Pan-Cytokeratin and TROP2 in 14,832 Tumors
by Anne Menz, Nora Lony, Maximilian Lennartz, Sebastian Dwertmann Rico, Ria Schlichter, Simon Kind, Viktor Reiswich, Florian Viehweger, David Dum, Andreas M. Luebke, Martina Kluth, Natalia Gorbokon, Claudia Hube-Magg, Christian Bernreuther, Ronald Simon, Till S. Clauditz, Guido Sauter, Andrea Hinsch, Frank Jacobsen, Andreas H. Marx, Stefan Steurer, Sarah Minner, Eike Burandt, Till Krech, Patrick Lebok and Sören Weidemannadd Show full author list remove Hide full author list
Diagnostics 2024, 14(10), 1044; https://doi.org/10.3390/diagnostics14101044 - 17 May 2024
Cited by 5 | Viewed by 3212
Abstract
EpCAM is expressed in many epithelial tumors and is used for the distinction of malignant mesotheliomas from adenocarcinomas and as a surrogate pan-epithelial marker. A tissue microarray containing 14,832 samples from 120 different tumor categories was analyzed by immunohistochemistry. EpCAM staining was compared [...] Read more.
EpCAM is expressed in many epithelial tumors and is used for the distinction of malignant mesotheliomas from adenocarcinomas and as a surrogate pan-epithelial marker. A tissue microarray containing 14,832 samples from 120 different tumor categories was analyzed by immunohistochemistry. EpCAM staining was compared with TROP2 and CKpan. EpCAM staining was detectable in 99 tumor categories. Among 78 epithelial tumor types, the EpCAM positivity rate was ≥90% in 60 categories—including adenocarcinomas, neuroendocrine neoplasms, and germ cell tumors. EpCAM staining was the lowest in hepatocellular carcinomas, adrenocortical tumors, renal cell neoplasms, and in poorly differentiated carcinomas. A comparison of EpCAM and CKpan staining identified a high concordance but EpCAM was higher in testicular seminomas and neuroendocrine neoplasms and CKpan in hepatocellular carcinomas, mesotheliomas, and poorly differentiated non-neuroendocrine tumors. A comparison of EpCAM and TROP2 revealed a higher rate of TROP2 positivity in squamous cell carcinomas and lower rates in many gastrointestinal adenocarcinomas, testicular germ cell tumors, neuroendocrine neoplasms, and renal cell tumors. These data confirm EpCAM as a surrogate epithelial marker for adenocarcinomas and its diagnostic utility for the distinction of malignant mesotheliomas. In comparison to CKpan and TROP2 antibodies, EpCAM staining is particularly common in seminomas and in neuroendocrine neoplasms. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

14 pages, 10343 KiB  
Article
Impaired Expression of Humanin during Adrenocortical Carcinoma
by Małgorzata Blatkiewicz, Marta Szyszka, Anna Olechnowicz, Kacper Kamiński, Karol Jopek, Hanna Komarowska, Marianna Tyczewska, Anna Klimont, Tomasz Wierzbicki, Marek Karczewski, Marek Ruchała and Marcin Rucinski
Int. J. Mol. Sci. 2024, 25(2), 1038; https://doi.org/10.3390/ijms25021038 - 15 Jan 2024
Cited by 1 | Viewed by 1823
Abstract
The discovery of mitochondria-derived peptides (MDPs) has provided a new perspective on mitochondrial function. MDPs encoded by mitochondrial DNA (mtDNA) can act as hormone-like peptides, influencing cell survival and proliferation. Among these peptides, humanin has been identified as a crucial factor for maintaining [...] Read more.
The discovery of mitochondria-derived peptides (MDPs) has provided a new perspective on mitochondrial function. MDPs encoded by mitochondrial DNA (mtDNA) can act as hormone-like peptides, influencing cell survival and proliferation. Among these peptides, humanin has been identified as a crucial factor for maintaining cell survival and preventing cell death under various conditions. Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy that results from adrenal hormone dysfunction. This study aimed to investigate humanin expression in the adrenal tissue and serum of patients with ACC. For the first time, our study revealed significant reduction in the mRNA expression of humanin in patients with ACC compared to healthy controls. However, no significant changes were observed in the serum humanin levels. Interestingly, we identified a positive correlation between patient age and serum humanin levels and a negative correlation between tumor size and LDL levels. While the impaired expression of humanin in patients with ACC may be attributed to mitochondrial dysfunction, an alternative explanation could be related to diminished mitochondrial copy number. Further investigations are warranted to elucidate the intricate relationship among humanin, mitochondrial function, and ACC pathology. Full article
Show Figures

Figure 1

24 pages, 4219 KiB  
Article
Comparison of the Effect of BPA and Related Bisphenols on Membrane Integrity, Mitochondrial Activity, and Steroidogenesis of H295R Cells In Vitro
by Nikola Štefunková, Hana Greifová, Tomáš Jambor, Katarína Tokárová, Lucia Zuščíková, Denis Bažány, Peter Massányi, Marcela Capcarová and Norbert Lukáč
Life 2024, 14(1), 3; https://doi.org/10.3390/life14010003 - 19 Dec 2023
Cited by 9 | Viewed by 2627
Abstract
Bisphenol A (BPA) is an endocrine-disruptive chemical that is widely utilized in the production of polycarbonate plastic and epoxy resin, which are used to make a wide range of consumer products, food and drink containers, and medical equipment. When the potential risk of [...] Read more.
Bisphenol A (BPA) is an endocrine-disruptive chemical that is widely utilized in the production of polycarbonate plastic and epoxy resin, which are used to make a wide range of consumer products, food and drink containers, and medical equipment. When the potential risk of BPA emerged, it was substituted by allegedly less harmful substitutes such as bisphenols S, F, B, and AF. However, evidence suggests that all bisphenols can have endocrine-disruptive effects, while the extent of these effects is unknown. This study aimed to determine effect of BPA, BPAF, BPB, BPF, and BPS on viability and steroidogenesis in human adrenocortical carcinoma cell line in vitro. The cytotoxicity of bisphenols was shown to be considerable at higher doses. However, at low concentrations, it improved viability as well as steroid hormone secretion, indicating that bisphenols have a biphasic, hormetic effect in biological systems. The results are consistent with the hypothesis that bisphenols selectively inhibit some steroidogenic enzymes. These findings suggest that bisphenols have the potential to disrupt cellular steroidogenesis in humans, but substantially more detailed and systematic research is needed to gain a better understanding of the risks associated with bisphenols and their endocrine-disrupting effect on humans and wildlife. Full article
(This article belongs to the Section Cell Biology and Tissue Engineering)
Show Figures

Figure 1

14 pages, 4360 KiB  
Article
Albumin/Mitotane Interaction Affects Drug Activity in Adrenocortical Carcinoma Cells: Smoke and Mirrors on Mitotane Effect with Possible Implications for Patients’ Management
by Aurora Schiavon, Laura Saba, Gianluca Catucci, Jessica Petiti, Soraya Puglisi, Chiara Borin, Giuseppe Reimondo, Gianfranco Gilardi, Claudia Giachino, Massimo Terzolo and Marco Lo Iacono
Int. J. Mol. Sci. 2023, 24(23), 16701; https://doi.org/10.3390/ijms242316701 - 24 Nov 2023
Cited by 2 | Viewed by 1801
Abstract
Background: Mitotane is the only drug approved for the treatment of adrenocortical carcinoma (ACC). Although it has been used for many years, its mechanism of action remains elusive. H295R cells are, in ACC, an essential tool to evaluate drug mechanisms, although they often [...] Read more.
Background: Mitotane is the only drug approved for the treatment of adrenocortical carcinoma (ACC). Although it has been used for many years, its mechanism of action remains elusive. H295R cells are, in ACC, an essential tool to evaluate drug mechanisms, although they often lead to conflicting results. Methods: Using different in vitro biomolecular technologies and biochemical/biophysical experiments, we evaluated how the presence of “confounding factors” in culture media and patient sera could reduce the pharmacological effect of mitotane and its metabolites. Results: We discovered that albumin, the most abundant protein in the blood, was able to bind mitotane. This interaction altered the effect of the drug by blocking its biological activity. This blocking effect was independent of the albumin source or methodology used and altered the assessment of drug sensitivity of the cell lines. Conclusions: In conclusion, we have for the first time demonstrated that albumin does not only act as an inert drug carrier when mitotane or its metabolites are present. Indeed, our experiments clearly indicated that both albumin and human serum were able to suppress the pharmacological effect of mitotane in vitro. These experiments could represent a first step towards the individualization of mitotane treatment in this rare tumor. Full article
(This article belongs to the Special Issue Molecular Aspects of Adrenal Diseases and Carcinoma)
Show Figures

Figure 1

13 pages, 1973 KiB  
Article
High Filamin a Expression in Adrenocortical Carcinomas Is Associated with a Favourable Tumour Behaviour: A European Multicentric Study
by Rosa Catalano, Barbara Altieri, Anna Angelousi, Maura Arosio, Francesca Bravi, Letizia Canu, Giorgio A. Croci, Mario Detomas, Emanuela Esposito, Emanuele Ferrante, Stefano Ferrero, Carmina T. Fuss, Gregory Kaltsas, Otilia Kimpel, Laura-Sophie Landwehr, Michaela Luconi, Valentina Morelli, Gabriella Nesi, Emma Nozza, Silviu Sbiera, Andreea L. Serban, Cristina L. Ronchi, Giovanna Mantovani and Erika Peverelliadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2023, 24(23), 16573; https://doi.org/10.3390/ijms242316573 - 21 Nov 2023
Cited by 2 | Viewed by 1931
Abstract
The insulin-like growth factor 2 (IGF2) promotes cell growth by overactivating the IGF system in an autocrine loop in adrenocortical carcinomas (ACCs). The cytoskeleton protein filamin A (FLNA) acts as a repressor of IGF2 mitogenic signalling in ACC cells. The aims of this [...] Read more.
The insulin-like growth factor 2 (IGF2) promotes cell growth by overactivating the IGF system in an autocrine loop in adrenocortical carcinomas (ACCs). The cytoskeleton protein filamin A (FLNA) acts as a repressor of IGF2 mitogenic signalling in ACC cells. The aims of this study were to test FLNA expression by immunohistochemistry in 119 ACCs and 26 adrenocortical adenomas (ACAs) and to evaluate its relationship with clinicopathological features and outcome in ACCs. We found that 71.4% of ACCs did not express FLNA, whereas FLNA absence was a rare event in ACAs (15.4%, p < 0.001 vs. ACCs). In addition, the expression of FLNA was associated with a less aggressive tumour behaviour in ACCs. Indeed, the subgroup of ACCs with high FLNA showed a lower ENSAT stage, Weiss score, and S-GRAS score compared to ACCs with low FLNA expression (p < 0.05). Moreover, patients with high FLNA had a longer overall survival than those with low FLNA (p < 0.05). In conclusion, our data suggest that FLNA may represent a “protective” factor in ACCs, and the integration of FLNA immunohistochemical expression in ACC tissues along with other clinical and molecular markers could be helpful to improve diagnostic accuracy and prognosis prediction in ACCs. Full article
(This article belongs to the Special Issue Advanced Molecular Research in Tumors)
Show Figures

Figure 1

20 pages, 7522 KiB  
Article
Identification of Molecular Subtypes and Prognostic Characteristics of Adrenocortical Carcinoma Based on Unsupervised Clustering
by Yuan Zhang, Cong Zhang, Kangjie Li, Jielian Deng, Hui Liu, Guichuan Lai, Biao Xie and Xiaoni Zhong
Int. J. Mol. Sci. 2023, 24(20), 15465; https://doi.org/10.3390/ijms242015465 - 23 Oct 2023
Cited by 2 | Viewed by 2350
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis. Increasing evidence highlights the significant role of immune-related genes (IRGs) in ACC progression and immunotherapy, but the research is still limited. Based on the Cancer Genome Atlas (TCGA) database, immune-related molecular [...] Read more.
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis. Increasing evidence highlights the significant role of immune-related genes (IRGs) in ACC progression and immunotherapy, but the research is still limited. Based on the Cancer Genome Atlas (TCGA) database, immune-related molecular subtypes were identified by unsupervised consensus clustering. Univariate Cox analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression were employed to further establish immune-related gene signatures (IRGS). An evaluation of immune cell infiltration, biological function, tumor mutation burden (TMB), predicted immunotherapy response, and drug sensitivity in ACC patients was conducted to elucidate the applicative efficacy of IRGS in precision therapy. ACC patients were divided into two molecular subtypes through consistent clustering. Furthermore, the 3-gene signature (including PRKCA, LTBP1, and BIRC5) based on two molecular subtypes demonstrated consistent prognostic efficacy across the TCGA and GEO datasets and emerged as an independent prognostic factor. The low-risk group exhibited heightened immune cell infiltration, TMB, and immune checkpoint inhibitors (ICIs), associated with a favorable prognosis. Pathways associated with drug metabolism, hormone regulation, and metabolism were activated in the low-risk group. In conclusion, our findings suggest IRGS can be used as an independent prognostic biomarker, providing a foundation for shaping future ACC immunotherapy strategies. Full article
Show Figures

Figure 1

3 pages, 735 KiB  
Correction
Correction: Sigala et al. A Comprehensive Investigation of Steroidogenic Signaling in Classical and New Experimental Cell Models of Adrenocortical Carcinoma. Cells 2022, 11, 1439
by Sandra Sigala, Christina Bothou, David Penton, Andrea Abate, Mirko Peitzsch, Deborah Cosentini, Guido A. M. Tiberio, Stefan R. Bornstein, Alfredo Berruti and Constanze Hantel
Cells 2023, 12(18), 2274; https://doi.org/10.3390/cells12182274 - 14 Sep 2023
Viewed by 1052
Abstract
The authors made the following changes to their paper [...] Full article
(This article belongs to the Section Cell Signaling)
22 pages, 13584 KiB  
Article
Targeting Oncogenic Wnt/β-Catenin Signaling in Adrenocortical Carcinoma Disrupts ECM Expression and Impairs Tumor Growth
by Morgan K. Penny, Antonio M. Lerario, Kaitlin J. Basham, Sahiti Chukkapalli, Dipika R. Mohan, Chris LaPensee, Kimber Converso-Baran, Mark J. Hoenerhoff, Laura Suárez-Fernández, Carmen González del Rey, Thomas J. Giordano, Ruolan Han, Erika A. Newman and Gary D. Hammer
Cancers 2023, 15(14), 3559; https://doi.org/10.3390/cancers15143559 - 10 Jul 2023
Cited by 12 | Viewed by 2877
Abstract
Adrenocortical carcinoma (ACC) is a rare but highly aggressive cancer with limited treatment options and poor survival for patients with advanced disease. An improved understanding of the transcriptional programs engaged in ACC will help direct rational, targeted therapies. Whereas activating mutations in Wnt/β-catenin [...] Read more.
Adrenocortical carcinoma (ACC) is a rare but highly aggressive cancer with limited treatment options and poor survival for patients with advanced disease. An improved understanding of the transcriptional programs engaged in ACC will help direct rational, targeted therapies. Whereas activating mutations in Wnt/β-catenin signaling are frequently observed, the β-catenin-dependent transcriptional targets that promote tumor progression are poorly understood. To address this question, we analyzed ACC transcriptome data and identified a novel Wnt/β-catenin-associated signature in ACC enriched for the extracellular matrix (ECM) and predictive of poor survival. This suggested an oncogenic role for Wnt/β-catenin in regulating the ACC microenvironment. We further investigated the minor fibrillar collagen, collagen XI alpha 1 (COL11A1), and found that COL11A1 expression originates specifically from cancer cells and is strongly correlated with both Wnt/β-catenin activation and poor patient survival. Inhibition of constitutively active Wnt/β-catenin signaling in the human ACC cell line, NCI-H295R, significantly reduced the expression of COL11A1 and other ECM components and decreased cancer cell viability. To investigate the preclinical potential of Wnt/β-catenin inhibition in the adrenal microenvironment, we developed a minimally invasive orthotopic xenograft model of ACC and demonstrated that treatment with the newly developed Wnt/β-catenin:TBL1 inhibitor Tegavivint significantly reduced tumor growth. Together, our data support that the inhibition of aberrantly active Wnt/β-catenin disrupts transcriptional reprogramming of the microenvironment and reduces ACC growth and survival. Furthermore, this β-catenin-dependent oncogenic program can be therapeutically targeted with a newly developed Wnt/β-catenin inhibitor. These results show promise for the further clinical development of Wnt/β-catenin inhibitors in ACC and unveil a novel Wnt/β-catenin-regulated transcriptome. Full article
Show Figures

Figure 1

Back to TopTop