Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (609)

Search Parameters:
Keywords = adaptive neuro fuzzy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5161 KB  
Article
Non-Destructive Classification of Sweetness and Firmness in Oranges Using ANFIS and a Novel CCI–GLCM Image Descriptor
by David Granados-Lieberman, Alejandro Israel Barranco-Gutiérrez, Adolfo R. Lopez, Horacio Rostro-Gonzalez, Miroslava Cano-Lara, Carlos Gustavo Manriquez-Padilla and Marcos J. Villaseñor-Aguilar
Appl. Sci. 2025, 15(19), 10464; https://doi.org/10.3390/app151910464 - 26 Sep 2025
Abstract
This study introduces a non-destructive computer vision method for estimating postharvest quality parameters of oranges, including maturity index, soluble solid content (expressed in degrees Brix), and firmness. A novel image-based descriptor, termed Citrus Color Index—Gray Level Co-occurrence Matrix Texture Features (CCI–GLCM-TF), was developed [...] Read more.
This study introduces a non-destructive computer vision method for estimating postharvest quality parameters of oranges, including maturity index, soluble solid content (expressed in degrees Brix), and firmness. A novel image-based descriptor, termed Citrus Color Index—Gray Level Co-occurrence Matrix Texture Features (CCI–GLCM-TF), was developed by integrating the Citrus Color Index (CCI) with texture features derived from the Gray Level Co-occurrence Matrix (GLCM). By combining contrast, correlation, energy, and homogeneity across multiscale regions of interest and applying geometric calibration to correct image acquisition distortions, the descriptor effectively captures both chromatic and structural information from RGB images. These features served as input to an Adaptive Neuro-Fuzzy Inference System (ANFIS), selected for its ability to model nonlinear relationships and gradual transitions in citrus ripening. The proposed ANFIS models achieved R-squared values greater than or equal to 0.81 and root mean square error values less than or equal to 1.1 across all quality parameters, confirming their predictive robustness. Notably, representative models (ANFIS 2, 4, 6, and 8) demonstrated superior performance, supporting the extension of this approach to full-surface exploration of citrus fruits. The results outperform methods relying solely on color features, underscoring the importance of combining spectral and textural descriptors. This work highlights the potential of the CCI–GLCM-TF descriptor, in conjunction with ANFIS, for accurate, real-time, and non-invasive assessment of citrus quality, with practical implications for automated classification, postharvest process optimization, and cost reduction in the citrus industry. Full article
(This article belongs to the Special Issue Sensory Evaluation and Flavor Analysis in Food Science)
Show Figures

Figure 1

25 pages, 8468 KB  
Article
Robust Backstepping Super-Twisting MPPT Controller for Photovoltaic Systems Under Dynamic Shading Conditions
by Kamran Ali, Shafaat Ullah and Eliseo Clementini
Energies 2025, 18(19), 5134; https://doi.org/10.3390/en18195134 - 26 Sep 2025
Abstract
In this research article, a fast and efficient hybrid Maximum Power Point Tracking (MPPT) control technique is proposed for photovoltaic (PV) systems. The method combines two phases—offline and online—to estimate the appropriate duty cycle for operating the converter at the maximum power point [...] Read more.
In this research article, a fast and efficient hybrid Maximum Power Point Tracking (MPPT) control technique is proposed for photovoltaic (PV) systems. The method combines two phases—offline and online—to estimate the appropriate duty cycle for operating the converter at the maximum power point (MPP). In the offline phase, temperature and irradiance inputs are used to compute the real-time reference peak power voltage through an Adaptive Neuro-Fuzzy Inference System (ANFIS). This estimated reference is then utilized in the online phase, where the Robust Backstepping Super-Twisting (RBST) controller treats it as a set-point to generate the control signal and continuously adjust the converter’s duty cycle, driving the PV system to operate near the MPP. The proposed RBST control scheme offers a fast transient response, reduced rise and settling times, low tracking error, enhanced voltage stability, and quick adaptation to changing environmental conditions. The technique is tested in MATLAB/Simulink under three different scenarios: continuous variation in meteorological parameters, sudden step changes, and partial shading. To demonstrate the superiority of the RBST method, its performance is compared with classical backstepping and integral backstepping controllers. The results show that the RBST-based MPPT controller achieves the minimum rise time of 0.018s, the lowest squared error of 0.3015V, the minimum steady-state error of 0.29%, and the highest efficiency of 99.16%. Full article
(This article belongs to the Special Issue Experimental and Numerical Analysis of Photovoltaic Inverters)
Show Figures

Figure 1

19 pages, 2445 KB  
Article
Prediction of Multi-Hole Copper Electrodes’ Influence on Form Tolerance and Machinability Using Grey Relational Analysis and Adaptive Neuro-Fuzzy Inference System in Electrode Discharge Machining Process
by Sandeep Kumar, Subramanian Dhanabalan, Wilma Polini and Andrea Corrado
Appl. Sci. 2025, 15(19), 10445; https://doi.org/10.3390/app151910445 - 26 Sep 2025
Abstract
Electric discharge machining processes are prominent in the fastest-growing industries because of their accuracy, achievable complex workpiece shapes, and cost-effectiveness. Furthermore, the machining of high-quality difficult-to-machine alloys is becoming critical in the aerospace, manufacturing, and defence industries. While the optimisation of EDM parameters [...] Read more.
Electric discharge machining processes are prominent in the fastest-growing industries because of their accuracy, achievable complex workpiece shapes, and cost-effectiveness. Furthermore, the machining of high-quality difficult-to-machine alloys is becoming critical in the aerospace, manufacturing, and defence industries. While the optimisation of EDM parameters is essential for improving machining outcomes, it is also important to consider the trade-offs between different performances metrics, such as material removal rate and part accuracy. Part accuracy in terms of dimensional and geometric deviations from nominal values was rarely considered in the literature, if not by the authors. Balancing these factors remains a challenge in the field of EDM. Therefore, this work aims to carry out a multi-objective optimisation of both MRR and part accuracy. A Ni-based alloy (Inconel-625) was used that is widely used in creep-resistant turbine blades and vanes and turbine disks in gas turbine engines for aerospace and defence industries. Four performance indices were optimised simultaneously: two related to the performance of the EDM process and two connected with the form deviations of the manufactured surfaces. Multi-hole copper electrodes having different diameters and three process parameters were varied during the experimental tests. Grey relational analysis and the Adaptive Neuro-Fuzzy Inference System method were used for optimisation. Grey relational analysis found that the following values of the process parameter—0.16 mm of multi-hole electrode diameter, 12 Amperes of Peak current, 200 µs of pulse on time and 0.2 kg/m2 as dielectric pressure—produce the optimal performance, i.e., a material removal rate of 0.099 mm3/min, an electrode wear rate of 0.0002 g/min, a circularity deviation of 0.0043 mm and a cylindricity deviation of 0.027 mm. From the experimental examination using multi-hole electrodes, it is concluded that the material removal rate increases and the electrode wear rate decreases because of the availability of higher spark discharge areas between the electrode and work material interface. The Adaptive Neuro-Fuzzy Inference System models showed minimum mean percentage error and, therefore, better performance in comparison with regression models. Full article
Show Figures

Figure 1

22 pages, 4398 KB  
Article
Abrasive Waterjet Machining of r-GO Infused Mg Fiber Metal Laminates: ANFIS Modelling and Optimization Through Antlion Optimizer Algorithm
by Devaraj Rajamani, Mahalingam Siva Kumar and Arulvalavan Tamilarasan
Materials 2025, 18(19), 4480; https://doi.org/10.3390/ma18194480 - 25 Sep 2025
Abstract
This research proposes an intelligent modeling and optimization strategy for abrasive waterjet machining (AWJM) of magnesium-based fiber metal laminates (FMLs) reinforced with reduced graphene oxide (r-GO). Experiments were designed using the Box–Behnken method, considering waterjet pressure, stand-off distance, traverse speed, and r-GO content [...] Read more.
This research proposes an intelligent modeling and optimization strategy for abrasive waterjet machining (AWJM) of magnesium-based fiber metal laminates (FMLs) reinforced with reduced graphene oxide (r-GO). Experiments were designed using the Box–Behnken method, considering waterjet pressure, stand-off distance, traverse speed, and r-GO content as inputs, while kerf taper (Kt), surface roughness (Ra), and material removal rate (MRR) were evaluated as outputs. Adaptive Neuro-Fuzzy Inference System (ANFIS) models were developed for each response, with their critical optimized hyperparameters such as cluster radius, quash factor, and training data split through the dragonfly optimization (DFO) algorithm. The optimized ANFIS networks yielded a high predictive accuracy, with low RMSE and MAPE values and close agreement between predicted and measured results. Four metaheuristic algorithms including particle swarm optimization (PSO), salp swarm optimization (SSO), whale optimization algorithm (WOA), and the antlion optimizer (ALO) were applied for simultaneous optimization, using a TOPSIS-based single-objective formulation. ALO outperformed the others, identifying 325 MPa waterjet pressure, 2.5 mm stand-off, 800 mm/min traverse speed, and 0.00602 wt% r-GO addition in FMLs as optimal conditions. These settings produced a kerf taper of 2.595°, surface roughness of 8.9897 µm, and material removal rate of 138.13 g/min. The proposed ANFIS-ALO framework demonstrates strong potential for achieving precision and productivity in AWJM of hybrid laminates. Full article
Show Figures

Figure 1

36 pages, 5224 KB  
Article
Adaptive Robust Optimal Control for UAV Taxiing Systems with Uncertainties
by Erdong Wu, Peng Wang and Zheng Guo
Drones 2025, 9(10), 668; https://doi.org/10.3390/drones9100668 - 23 Sep 2025
Viewed by 137
Abstract
The ground taxiing phase is a crucial stage for the autonomous takeoff and landing of fixed-wing unmanned aerial vehicles (UAVs), and its trajectory tracking accuracy and stability directly determine the success of the UAV’s autonomous takeoff and landing. Therefore, researching the adaptive robust [...] Read more.
The ground taxiing phase is a crucial stage for the autonomous takeoff and landing of fixed-wing unmanned aerial vehicles (UAVs), and its trajectory tracking accuracy and stability directly determine the success of the UAV’s autonomous takeoff and landing. Therefore, researching the adaptive robust optimal control technology for UAV taxiing is of great significance for enhancing the autonomy and environmental adaptability of UAVs. This study integrates the linear quadratic regulator (LQR) with sliding mode control (SMC). A compensation control signal is generated by the SMC to mitigate the potential effects of uncertain parameters and random external disturbances, which is then added onto the LQR output to achieve a robust optimal controller. On this basis, through ANFIS (Adaptive Neuro-Fuzzy Inference System), the nonlinear mapping relationship between multiple state parameters such as speed, lateral/heading deviation and the weight matrix of the LQR controller is learned, realizing a data-driven adaptive adjustment mechanism for controller parameters to improve the tracking accuracy and anti-interference stability of the UAV’s taxiing trajectory. Full article
Show Figures

Figure 1

30 pages, 4822 KB  
Article
Combining Deep Learning Architectures with Fuzzy Logic for Robust Pneumonia Detection in Chest X-Rays
by Azeddine Mjahad and Alfredo Rosado-Muñoz
Appl. Sci. 2025, 15(19), 10321; https://doi.org/10.3390/app151910321 - 23 Sep 2025
Viewed by 186
Abstract
Early and accurate detection of pneumonia from chest X-ray images is essential for improving treatment and clinical outcomes. Medical imaging datasets often exhibit class imbalance and uncertainty in feature extraction, which complicates conventional classification methods and motivates the use of advanced approaches combining [...] Read more.
Early and accurate detection of pneumonia from chest X-ray images is essential for improving treatment and clinical outcomes. Medical imaging datasets often exhibit class imbalance and uncertainty in feature extraction, which complicates conventional classification methods and motivates the use of advanced approaches combining deep learning and fuzzy logic. This study proposes a hybrid approach that combines deep learning architectures (VGG16, EfficientNetV2, MobileNetV2, ResNet50) for feature extraction with fuzzy logic-based classifiers, including Fuzzy C-Means, Fuzzy Decision Tree, Fuzzy KNN, Fuzzy SVM, and ANFIS (Adaptive Neuro-Fuzzy Inference System). Feature selection techniques were also applied to enhance the discriminative power of the extracted features. The best-performing model, ANFIS with MobileNetV2 features and Gaussian membership functions, achieved an overall accuracy of 98.52%, with Normal class precision of 97.07%, recall of 97.48%, and F1-score of 97.27%, and Pneumonia class precision of 99.06%, recall of 98.91%, and F1-score of 98.99%. Among the fuzzy classifiers, Fuzzy SVM and Fuzzy KNN also showed strong performance with accuracy above 96%, while Fuzzy Decision Tree and Fuzzy C-Means achieved moderate results. These findings demonstrate that integrating deep feature extraction with neuro-fuzzy reasoning significantly improves diagnostic accuracy and robustness, providing a reliable tool for clinical decision support. Future research will focus on optimizing model efficiency, interpretability, and real-time applicability. Full article
(This article belongs to the Special Issue Machine Learning-Based Feature Extraction and Selection: 2nd Edition)
Show Figures

Figure 1

33 pages, 4143 KB  
Article
An Approach for Sustainable Supplier Segmentation Using Adaptive Network-Based Fuzzy Inference Systems
by Ricardo Antonio Saugo, Francisco Rodrigues Lima Junior, Luiz Cesar Ribeiro Carpinetti, Ana Paula Duarte and Jurandir Peinado
Mathematics 2025, 13(19), 3058; https://doi.org/10.3390/math13193058 - 23 Sep 2025
Viewed by 198
Abstract
Due to the globalization of supply chains and the resulting increase in the quantity and diversity of suppliers, the segmentation of suppliers has become fundamental to improving relationship management and supplier performance. Moreover, given the need to incorporate sustainability into supply chain management, [...] Read more.
Due to the globalization of supply chains and the resulting increase in the quantity and diversity of suppliers, the segmentation of suppliers has become fundamental to improving relationship management and supplier performance. Moreover, given the need to incorporate sustainability into supply chain management, criteria based on economic, environmental, and social performance have been adopted for evaluating suppliers. However, few studies present sustainable supplier segmentation models in the literature, and none of them make it possible to predict individual supplier performance for each TBL dimension in a non-compensatory manner. Moreover, none of them permits the use of historical performance data to adapt the model to the usage environment. Given this, this study aims to propose a decision-making model for sustainable supplier segmentation using an adaptive network-based fuzzy inference system (ANFIS). Our approach combines three ANFIS computational models in a tridimensional quadratic matrix, based on diverse criteria associated with the triple bottom line (TBL) dimensions. A pilot application of this model in a sugarcane mill was performed. We implemented 108 candidate topologies using the Neuro-Fuzzy Designer of the MATLAB® software (R2014a). The cross-validation method was applied to select the best topologies. The accuracy of the selected topologies was confirmed using statistical tests. The proposed model can be adopted for supplier segmentation processes in companies that wish to monitor and/or improve the sustainability performance of their suppliers. This study may also be helpful to researchers in developing computational solutions for segmenting suppliers, mainly regarding ANFIS modeling and providing appropriate topological parameters to obtain accurate results. Full article
(This article belongs to the Special Issue Advances in Fuzzy Logic and Artificial Neural Networks, 2nd Edition)
Show Figures

Figure 1

43 pages, 2944 KB  
Article
A Novel Approach to SPAM Detection in Social Networks-Light-ANFIS: Integrating Gradient-Based One-Sided Sampling and Random Forest-Based Feature Clustering Techniques with Adaptive Neuro-Fuzzy Inference Systems
by Oğuzhan Çıtlak, İsmail Atacak and İbrahim Alper Doğru
Appl. Sci. 2025, 15(18), 10049; https://doi.org/10.3390/app151810049 - 14 Sep 2025
Viewed by 415
Abstract
With today’s technological advancements and the widespread use of the Internet, social networking platforms that allow users to interact with each other are increasing rapidly. The popular social network X (formerly Twitter) has become a target for malicious actors, and spam is one [...] Read more.
With today’s technological advancements and the widespread use of the Internet, social networking platforms that allow users to interact with each other are increasing rapidly. The popular social network X (formerly Twitter) has become a target for malicious actors, and spam is one of its biggest challenges. The filters employed by such platforms to protect users struggle to keep up with evolving spam techniques, the diverse behaviors of platform users, the dynamic tactics of spam accounts, and the need for updates in spam detection algorithms. The literature shows that many effective solutions rely on computationally expensive methods that are limited by dataset constraints. This study addresses the spam challenges of social networks by proposing a novel detection framework, Light-ANFIS, which combines ANFIS with gradient-based one-side sampling (GOSS) and random forest-based clustering (RFBFC) techniques. The proposed approach employs the RFBFC technique to achieve efficient feature reduction, yielding an ANFIS model with reduced input requirements. This optimized ANFIS structure enables a simpler system configuration by minimizing parameter usage. In this context, dimensionality reduction enables a faster ANFIS training. The GOSS technique further accelerates ANFIS training by reducing the sample size without sacrificing accuracy. The proposed Light-ANFIS architecture was evaluated using three datasets: two public benchmarks and one custom dataset. To demonstrate the impact of GOSS, its performance was benchmarked against that of RFBFC-ANFIS, which relies solely on RFBFC. Experiments comparing the training durations of the Light-ANFIS and RFBFC-ANFIS architectures revealed that the GOSS technique improved the training time efficiency by 38.77% (Dataset 1), 40.86% (Dataset 2), and 38.79% (Dataset 3). The Light-ANFIS architecture has also achieved successful results in terms of accuracy, precision, recall, F1-score, and AUC performance metrics. The proposed architecture has obtained scores of 0.98748, 0.98821, 0.99091, 0.98956, and 0.98664 in Dataset 1; 0.98225, 0.97412, 0.99043, 0.98221, and 0.98233 in Dataset 2; and 0.98552, 0.98915, 0.98720, 0.98818, and 0.98503 in Dataset 3 for these performance metrics, respectively. The Light-ANFIS architecture has been observed to demonstrate performance above existing methods when compared with methods in studies using similar datasets and methodologies based on the literature. Even in Dataset 1 and Dataset 3, it achieved a slightly better performance in terms of confusion matrix metrics compared to current deep learning (DL)-based hybrid and fusion methods, which are known as high-performance complex models in this field. Additionally, the proposed model not only exhibits high performance but also features a simpler configuration than structurally equivalent models, providing it with a competitive edge. This makes it a valuable for safeguarding social media users from harmful content. Full article
Show Figures

Figure 1

42 pages, 11496 KB  
Article
Research on Energy Management Strategy for Marine Methanol–Electric Hybrid Propulsion System Based on DP-ANFIS Algorithm
by Zhao Li, Wuqiang Long, Wenliang Lu and Hua Tian
Energies 2025, 18(18), 4879; https://doi.org/10.3390/en18184879 - 13 Sep 2025
Viewed by 406
Abstract
To address the challenges of high fuel consumption and emissions in traditional diesel-powered inland law enforcement vessels, this study proposes a methanol–electric hybrid propulsion system retrofitted with a novel energy management strategy (EMS) based on the integration of Dynamic Programming (DP) and Adaptive [...] Read more.
To address the challenges of high fuel consumption and emissions in traditional diesel-powered inland law enforcement vessels, this study proposes a methanol–electric hybrid propulsion system retrofitted with a novel energy management strategy (EMS) based on the integration of Dynamic Programming (DP) and Adaptive Neuro-Fuzzy Inference System (ANFIS). The DP-ANFIS algorithm combines the global optimization capability of DP with the real-time adaptability of ANFIS to achieve efficient power distribution. A high-fidelity simulation model of the hybrid system was developed using methanol engine bench test data and integrated with models of other powertrain components. The DP algorithm was used offline to generate an optimal control sequence, which was then learned online by ANFIS to enable real-time energy allocation. Simulation results demonstrate that the DP-ANFIS strategy reduces total energy consumption by 78.53%, increases battery state of charge (SOC) by 3.24%, decreases methanol consumption by 64.95%, and significantly reduces emissions of CO, HC, NOx, and CO2 compared to a rule-based strategy. Hardware-in-the-loop tests confirm the practical feasibility of the proposed approach, offering a promising solution for intelligent energy management in marine hybrid propulsion systems. Full article
Show Figures

Figure 1

22 pages, 4234 KB  
Article
Speaker Recognition Based on the Combination of SincNet and Neuro-Fuzzy for Intelligent Home Service Robots
by Seo-Hyun Kim, Tae-Wan Kim and Keun-Chang Kwak
Electronics 2025, 14(18), 3581; https://doi.org/10.3390/electronics14183581 - 9 Sep 2025
Viewed by 391
Abstract
Speaker recognition has become a critical component of human–robot interaction (HRI), enabling personalized services based on user identity, as the demand for home service robots increases. In contrast to conventional speech recognition tasks, recognition in home service robot environments is affected by varying [...] Read more.
Speaker recognition has become a critical component of human–robot interaction (HRI), enabling personalized services based on user identity, as the demand for home service robots increases. In contrast to conventional speech recognition tasks, recognition in home service robot environments is affected by varying speaker–robot distances and background noises, which can significantly reduce accuracy. Traditional approaches rely on hand-crafted features, which may lose essential speaker-specific information during extraction like mel-frequency cepstral coefficients (MFCCs). To address this, we propose a novel speaker recognition technique for intelligent robots that combines SincNet-based raw waveform processing with an adaptive neuro-fuzzy inference system (ANFIS). SincNet extracts relevant frequency features by learning low- and high-cutoff frequencies in its convolutional filters, reducing parameter complexity while retaining discriminative power. To improve interpretability and handle non-linearity, ANFIS is used as the classifier, leveraging fuzzy rules generated by fuzzy c-means (FCM) clustering. The model is evaluated on a custom dataset collected in a realistic home environment with background noise, including TV sounds and mechanical noise from robot motion. Our results show that the proposed model outperforms existing CNN, CNN-ANFIS, and SincNet models in terms of accuracy. This approach offers robust performance and enhanced model transparency, making it well-suited for intelligent home robot systems. Full article
(This article belongs to the Special Issue Control and Design of Intelligent Robots)
Show Figures

Figure 1

14 pages, 1938 KB  
Article
Daily Reservoir Evaporation Estimation Using MLP and ANFIS: A Comparative Study for Sustainable Water Management
by Funda Dökmen, Çiğdem Coşkun Dilcan and Yeşim Ahi
Water 2025, 17(17), 2623; https://doi.org/10.3390/w17172623 - 5 Sep 2025
Viewed by 800
Abstract
Reservoir evaporation is a vital component of the hydrological cycle and presents considerable challenges for sustainable water management, especially in arid and semi-arid regions. This study assesses the effectiveness of two Artificial Intelligence (AI) methods: Multilayer Perceptron (MLP) and Adaptive Neuro-Fuzzy Inference System [...] Read more.
Reservoir evaporation is a vital component of the hydrological cycle and presents considerable challenges for sustainable water management, especially in arid and semi-arid regions. This study assesses the effectiveness of two Artificial Intelligence (AI) methods: Multilayer Perceptron (MLP) and Adaptive Neuro-Fuzzy Inference System (ANFIS), a combination ANN with fuzzy logic, in estimating daily evaporation from a large reservoir in a semi-arid region. Using eight years of hydrometeorological data from a nearby station, the study employed the ReliefF algorithm as a feature selection method for relevant input variables. The dataset was divided into training, validation, and testing subsets with 5% and 10% validation ratios, using four train–test splits of 70:30, 75:25, 80:20, and 85:15. Various training algorithms (e.g., Levenberg–Marquardt) and membership functions (e.g., generalized bell-shaped functions) were tested for both models. MLP consistently outperformed ANFIS on the test sets, showing higher R2 and lower RMSE values. In the best-performing 70:30 split, MLP achieved an R2 of 0.8069 and RMSE of 0.0923, compared to ANFIS with an R2 of 0.3192 and RMSE of 0.2254. The findings highlight the AI-based approaches’ potential to support improved evaporation forecasting and integration into decision support tools for water resource planning amid changing climatic conditions. Full article
(This article belongs to the Special Issue Machine Learning Applications in the Water Domain)
Show Figures

Figure 1

20 pages, 3333 KB  
Article
A New Hybrid Intelligent System for Predicting Bottom-Hole Pressure in Vertical Oil Wells: A Case Study
by Kheireddine Redouane and Ashkan Jahanbani Ghahfarokhi
Algorithms 2025, 18(9), 549; https://doi.org/10.3390/a18090549 - 1 Sep 2025
Viewed by 477
Abstract
The evaluation of pressure drops across the length of production wells is a crucial task, as it influences both the cost-effective selection of tubing and the development of an efficient production strategy, both of which are vital for maximizing oil recovery while minimizing [...] Read more.
The evaluation of pressure drops across the length of production wells is a crucial task, as it influences both the cost-effective selection of tubing and the development of an efficient production strategy, both of which are vital for maximizing oil recovery while minimizing operational expenses. To address this, our study proposes an innovative hybrid intelligent system designed to predict bottom-hole flowing pressure in vertical multiphase conditions with superior accuracy compared to existing methods using a data set of 150 field measurements amassed from Algerian fields. In this work, the applied hybrid framework is the Adaptive Neuro-Fuzzy Inference System (ANFIS), which integrates artificial neural networks (ANN) with fuzzy logic (FL). The ANFIS model was constructed using a subtractive clustering technique after data filtering, and then its outcomes were evaluated against the most widely utilized correlations and mechanistic models. Graphical inspection and error statistics confirmed that ANFIS consistently outperformed all other approaches in terms of precision, reliability, and effectiveness. For further improvement of the ANFIS performance, a particle swarm optimization (PSO) algorithm is employed to refine the model and optimize the design of the antecedent Gaussian memberships along with the consequent linear coefficient vector. The results achieved by the hybrid ANFIS-PSO model demonstrated greater accuracy in bottom-hole pressure estimation than the conventional hybrid approach. Full article
(This article belongs to the Special Issue AI and Computational Methods in Engineering and Science)
Show Figures

Figure 1

25 pages, 2187 KB  
Review
Review of Fuzzy Methods Application in IIoT Security—Challenges and Perspectives
by Emanuel Krzysztoń, Dariusz Mikołajewski and Piotr Prokopowicz
Electronics 2025, 14(17), 3475; https://doi.org/10.3390/electronics14173475 - 29 Aug 2025
Viewed by 535
Abstract
Traditional methods often fail when confronted with data characterised by uncertainty, incompleteness, and dynamically evolving threats within the Industrial Internet of Things (IIoT) environment. This paper presents the role of fuzzy set methods as a response to these challenges in ensuring IIoT security. [...] Read more.
Traditional methods often fail when confronted with data characterised by uncertainty, incompleteness, and dynamically evolving threats within the Industrial Internet of Things (IIoT) environment. This paper presents the role of fuzzy set methods as a response to these challenges in ensuring IIoT security. A systematic literature review reveals how fuzzy set methods contribute to supporting and enabling actions ranging from anomaly detection to risk analysis. The work focuses on fuzzy systems such as the Fuzzy Inference System (FIS) and the Adaptive Neuro-Fuzzy Inference System (ANFIS), highlighting their strengths, including their resilience to imperfect data and the intuitiveness of their rules. It also identifies challenges related to optimisation and scalability. The article outlines directions for further research, indicating the potential of fuzzy methods as a cornerstone of future, intelligent IIoT cyber defence systems, capable of effectively responding to complex and changing attack scenarios. Full article
Show Figures

Graphical abstract

29 pages, 4733 KB  
Article
Water Quality Index (WQI) Forecasting and Analysis Based on Neuro-Fuzzy and Statistical Methods
by Amar Lokman, Wan Zakiah Wan Ismail, Nor Azlina Ab Aziz and Anith Khairunnisa Ghazali
Appl. Sci. 2025, 15(17), 9364; https://doi.org/10.3390/app15179364 - 26 Aug 2025
Viewed by 801
Abstract
Water quality is crucial to the economy and ecology because a healthy aquatic eco-system supports human survival and biodiversity. We have developed the Neuro-Adapt Fuzzy Strategist (NAFS) to improve water quality index (WQI) forecasting accuracy. The objective of the developed model is to [...] Read more.
Water quality is crucial to the economy and ecology because a healthy aquatic eco-system supports human survival and biodiversity. We have developed the Neuro-Adapt Fuzzy Strategist (NAFS) to improve water quality index (WQI) forecasting accuracy. The objective of the developed model is to achieve a balance by improving prediction accuracy while preserving high interpretability and computational efficiency. Neural networks and fuzzy logic improve the NAFS model’s flexibility and prediction accuracy, while its optimized backward pass improves training convergence speed and parameter update effectiveness, contributing to better learning performance. The normalized and partial derivative computations are refined to improve the model. NAFS is compared with ANN, Adaptive Neuro-Fuzzy Inference System (ANFIS), and current machine learning (ML) models such as LSTM, GRU, and Transformer based on performance evaluation metrics. NAFS outperforms ANFIS and ANN, with MSE of 1.678. NAFS predicts water quality better than ANFIS and ANN, with RMSE of 1.295. NAFS captures complicated water quality parameter interdependencies better than ANN and ANFIS using principal component analysis (PCA) and Pearson correlation. The performance comparison shows that NAFS outperforms all baseline models with the lowest MAE, MSE, RMSE and MAPE, and the highest R2, confirming its superior accuracy. PCA is employed to reduce data dimensionality and identify the most influential water quality parameters. It reveals that two principal components account for 72% of the total variance, highlighting key contributors to WQI and supporting feature prioritization in the NAFS model. The Breusch–Pagan test reveals heteroscedasticity in residuals, justifying the use of non-linear models over linear methods. The Shapiro–Wilk test indicates non-normality in residuals. This shows that the NAFS model can handle complex, non-linear environmental variables better than previous water quality prediction research. NAFS not only can predict water quality index values but also enhance WQI estimation. Full article
(This article belongs to the Special Issue AI in Wastewater Treatment)
Show Figures

Figure 1

32 pages, 7668 KB  
Article
Hybrid CNN-Fuzzy Approach for Automatic Identification of Ventricular Fibrillation and Tachycardia
by Azeddine Mjahad and Alfredo Rosado-Muñoz
Appl. Sci. 2025, 15(17), 9289; https://doi.org/10.3390/app15179289 - 24 Aug 2025
Cited by 1 | Viewed by 520
Abstract
Ventricular arrhythmias such as ventricular fibrillation (VF) and ventricular tachycardia (VT) are among the leading causes of sudden cardiac death worldwide, making their timely and accurate detection a critical task in modern cardiology. This study presents an advanced framework for the automatic detection [...] Read more.
Ventricular arrhythmias such as ventricular fibrillation (VF) and ventricular tachycardia (VT) are among the leading causes of sudden cardiac death worldwide, making their timely and accurate detection a critical task in modern cardiology. This study presents an advanced framework for the automatic detection of critical cardiac arrhythmias—specifically ventricular fibrillation (VF) and ventricular tachycardia (VT)—by integrating deep learning techniques with neuro-fuzzy systems. Electrocardiogram (ECG) signals from the MIT-BIH and AHA databases were preprocessed through denoising, alignment, and segmentation. Convolutional neural networks (CNNs) were employed for deep feature extraction, and the resulting features were used as input for various fuzzy classifiers, including Fuzzy ARTMAP and the Adaptive Neuro-Fuzzy Inference System (ANFIS). Among these classifiers, ANFIS demonstrated the best overall performance. The combination of CNN-based feature extraction with ANFIS yielded the highest classification accuracy across multiple cardiac rhythm types. The classification performance metrics for each rhythm type were as follows: for Normal Sinus Rhythm, precision was 99.09%, sensitivity 98.70%, specificity 98.89%, and F1-score 98.89%. For VF, precision was 95.49%, sensitivity 96.69%, specificity 99.10%, and F1-score 96.09%. For VT, precision was 94.03%, sensitivity 94.26%, specificity 99.54%, and F1-score 94.14%. Finally, for Other Rhythms, precision was 97.74%, sensitivity 97.74%, specificity 99.40%, and F1-score 97.74%. These results demonstrate the strong generalization capability and precision of the proposed architecture, suggesting its potential applicability in real-time biomedical systems such as Automated External Defibrillators (AEDs), Implantable Cardioverter Defibrillators (ICDs), and advanced cardiac monitoring technologies. Full article
Show Figures

Figure 1

Back to TopTop