Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = active and passive BCI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2133 KiB  
Article
Real-Time Mobile Robot Obstacles Detection and Avoidance Through EEG Signals
by Karameldeen Omer, Francesco Ferracuti, Alessandro Freddi, Sabrina Iarlori, Francesco Vella and Andrea Monteriù
Brain Sci. 2025, 15(4), 359; https://doi.org/10.3390/brainsci15040359 - 30 Mar 2025
Viewed by 1878
Abstract
Background/Objectives: The study explores the integration of human feedback into the control loop of mobile robots for real-time obstacle detection and avoidance using EEG brain–computer interface (BCI) methods. The goal is to assess the possible paradigms applicable to the most current navigation system [...] Read more.
Background/Objectives: The study explores the integration of human feedback into the control loop of mobile robots for real-time obstacle detection and avoidance using EEG brain–computer interface (BCI) methods. The goal is to assess the possible paradigms applicable to the most current navigation system to enhance safety and interaction between humans and robots. Methods: The research explores passive and active brain–computer interface (BCI) technologies to enhance a wheelchair-mobile robot’s navigation. In the passive approach, error-related potentials (ErrPs), neural signals triggered when users comment or perceive errors, enable automatic correction of the robot navigation mistakes without direct input or command from the user. In contrast, the active approach leverages steady-state visually evoked potentials (SSVEPs), where users focus on flickering stimuli to control the robot’s movements directly. This study evaluates both paradigms to determine the most effective method for integrating human feedback into assistive robotic navigation. This study involves experimental setups where participants control a robot through a simulated environment, and their brain signals are recorded and analyzed to measure the system’s responsiveness and the user’s mental workload. Results: The results show that a passive BCI requires lower mental effort but suffers from lower engagement, with a classification accuracy of 72.9%, whereas an active BCI demands more cognitive effort but achieves 84.9% accuracy. Despite this, task achievement accuracy is higher in the passive method (e.g., 71% vs. 43% for subject S2) as a single correct ErrP classification enables autonomous obstacle avoidance, whereas SSVEP requires multiple accurate commands. Conclusions: This research highlights the trade-offs between accuracy, mental load, and engagement in BCI-based robot control. The findings support the development of more intuitive assistive robotics, particularly for disabled and elderly users. Full article
(This article belongs to the Special Issue Multisensory Perception of the Body and Its Movement)
Show Figures

Figure 1

19 pages, 3157 KiB  
Review
EOG-Based Human–Computer Interface: 2000–2020 Review
by Chama Belkhiria, Atlal Boudir, Christophe Hurter and Vsevolod Peysakhovich
Sensors 2022, 22(13), 4914; https://doi.org/10.3390/s22134914 - 29 Jun 2022
Cited by 24 | Viewed by 7909
Abstract
Electro-oculography (EOG)-based brain–computer interface (BCI) is a relevant technology influencing physical medicine, daily life, gaming and even the aeronautics field. EOG-based BCI systems record activity related to users’ intention, perception and motor decisions. It converts the bio-physiological signals into commands for external hardware, [...] Read more.
Electro-oculography (EOG)-based brain–computer interface (BCI) is a relevant technology influencing physical medicine, daily life, gaming and even the aeronautics field. EOG-based BCI systems record activity related to users’ intention, perception and motor decisions. It converts the bio-physiological signals into commands for external hardware, and it executes the operation expected by the user through the output device. EOG signal is used for identifying and classifying eye movements through active or passive interaction. Both types of interaction have the potential for controlling the output device by performing the user’s communication with the environment. In the aeronautical field, investigations of EOG-BCI systems are being explored as a relevant tool to replace the manual command and as a communicative tool dedicated to accelerating the user’s intention. This paper reviews the last two decades of EOG-based BCI studies and provides a structured design space with a large set of representative papers. Our purpose is to introduce the existing BCI systems based on EOG signals and to inspire the design of new ones. First, we highlight the basic components of EOG-based BCI studies, including EOG signal acquisition, EOG device particularity, extracted features, translation algorithms, and interaction commands. Second, we provide an overview of EOG-based BCI applications in the real and virtual environment along with the aeronautical application. We conclude with a discussion of the actual limits of EOG devices regarding existing systems. Finally, we provide suggestions to gain insight for future design inquiries. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

13 pages, 3322 KiB  
Article
Effect of a Brain–Computer Interface Based on Pedaling Motor Imagery on Cortical Excitability and Connectivity
by Vivianne Flávia Cardoso, Denis Delisle-Rodriguez, Maria Alejandra Romero-Laiseca, Flávia A. Loterio, Dharmendra Gurve, Alan Floriano, Carlos Valadão, Leticia Silva, Sridhar Krishnan, Anselmo Frizera-Neto and Teodiano Freire Bastos-Filho
Sensors 2021, 21(6), 2020; https://doi.org/10.3390/s21062020 - 12 Mar 2021
Cited by 17 | Viewed by 4867
Abstract
Recently, studies on cycling-based brain–computer interfaces (BCIs) have been standing out due to their potential for lower-limb recovery. In this scenario, the behaviors of the sensory motor rhythms and the brain connectivity present themselves as sources of information that can contribute to interpreting [...] Read more.
Recently, studies on cycling-based brain–computer interfaces (BCIs) have been standing out due to their potential for lower-limb recovery. In this scenario, the behaviors of the sensory motor rhythms and the brain connectivity present themselves as sources of information that can contribute to interpreting the cortical effect of these technologies. This study aims to analyze how sensory motor rhythms and cortical connectivity behave when volunteers command reactive motor imagery (MI) BCI that provides passive pedaling feedback. We studied 8 healthy subjects who performed pedaling MI to command an electroencephalography (EEG)-based BCI with a motorized pedal to receive passive movements as feedback. The EEG data were analyzed under the following four conditions: resting, MI calibration, MI online, and receiving passive pedaling (on-line phase). Most subjects produced, over the foot area, significant event-related desynchronization (ERD) patterns around Cz when performing MI and receiving passive pedaling. The sharpest decrease was found for the low beta band. The connectivity results revealed an exchange of information between the supplementary motor area (SMA) and parietal regions during MI and passive pedaling. Our findings point to the primary motor cortex activation for most participants and the connectivity between SMA and parietal regions during pedaling MI and passive pedaling. Full article
(This article belongs to the Special Issue Sensors Technology for Medical Robotics)
Show Figures

Figure 1

12 pages, 2390 KiB  
Article
Prediction of Individual User’s Dynamic Ranges of EEG Features from Resting-State EEG Data for Evaluating Their Suitability for Passive Brain–Computer Interface Applications
by Ho-Seung Cha, Chang-Hee Han and Chang-Hwan Im
Sensors 2020, 20(4), 988; https://doi.org/10.3390/s20040988 - 12 Feb 2020
Cited by 7 | Viewed by 3866
Abstract
With the recent development of low-cost wearable electroencephalogram (EEG) recording systems, passive brain–computer interface (pBCI) applications are being actively studied for a variety of application areas, such as education, entertainment, and healthcare. Various EEG features have been employed for the implementation of pBCI [...] Read more.
With the recent development of low-cost wearable electroencephalogram (EEG) recording systems, passive brain–computer interface (pBCI) applications are being actively studied for a variety of application areas, such as education, entertainment, and healthcare. Various EEG features have been employed for the implementation of pBCI applications; however, it is frequently reported that some individuals have difficulty fully enjoying the pBCI applications because the dynamic ranges of their EEG features (i.e., its amplitude variability over time) were too small to be used in the practical applications. Conducting preliminary experiments to search for the individualized EEG features associated with different mental states can partly circumvent this issue; however, these time-consuming experiments were not necessary for the majority of users whose dynamic ranges of EEG features are large enough to be used for pBCI applications. In this study, we tried to predict an individual user’s dynamic ranges of the EEG features that are most widely employed for pBCI applications from resting-state EEG (RS-EEG), with the ultimate goal of identifying individuals who might need additional calibration to become suitable for the pBCI applications. We employed a machine learning-based regression model to predict the dynamic ranges of three widely used EEG features known to be associated with the brain states of valence, relaxation, and concentration. Our results showed that the dynamic ranges of EEG features could be predicted with normalized root mean squared errors of 0.2323, 0.1820, and 0.1562, respectively, demonstrating the possibility of predicting the dynamic ranges of the EEG features for pBCI applications using short resting EEG data. Full article
(This article belongs to the Special Issue Novel Approaches to EEG Signal Processing)
Show Figures

Figure 1

13 pages, 1582 KiB  
Article
Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced Brain-Computer Interface
by Mads Jochumsen, Sylvain Cremoux, Lucien Robinault, Jimmy Lauber, Juan Carlos Arceo, Muhammad Samran Navid, Rasmus Wiberg Nedergaard, Usman Rashid, Heidi Haavik and Imran Khan Niazi
Sensors 2018, 18(11), 3761; https://doi.org/10.3390/s18113761 - 3 Nov 2018
Cited by 19 | Viewed by 4088
Abstract
Brain-computer interfaces (BCIs) can be used to induce neural plasticity in the human nervous system by pairing motor cortical activity with relevant afferent feedback, which can be used in neurorehabilitation. The aim of this study was to identify the optimal type or combination [...] Read more.
Brain-computer interfaces (BCIs) can be used to induce neural plasticity in the human nervous system by pairing motor cortical activity with relevant afferent feedback, which can be used in neurorehabilitation. The aim of this study was to identify the optimal type or combination of afferent feedback modalities to increase cortical excitability in a BCI training intervention. In three experimental sessions, 12 healthy participants imagined a dorsiflexion that was decoded by a BCI which activated relevant afferent feedback: (1) electrical nerve stimulation (ES) (peroneal nerve—innervating tibialis anterior), (2) passive movement (PM) of the ankle joint, or (3) combined electrical stimulation and passive movement (Comb). The cortical excitability was assessed with transcranial magnetic stimulation determining motor evoked potentials (MEPs) in tibialis anterior before, immediately after and 30 min after the BCI training. Linear mixed regression models were used to assess the changes in MEPs. The three interventions led to a significant (p < 0.05) increase in MEP amplitudes immediately and 30 min after the training. The effect sizes of Comb paradigm were larger than ES and PM, although, these differences were not statistically significant (p > 0.05). These results indicate that the timing of movement imagery and afferent feedback is the main determinant of induced cortical plasticity whereas the specific type of feedback has a moderate impact. These findings can be important for the translation of such a BCI protocol to the clinical practice where by combining the BCI with the already available equipment cortical plasticity can be effectively induced. The findings in the current study need to be validated in stroke populations. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

Back to TopTop