Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (159)

Search Parameters:
Keywords = active alginate films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2000 KiB  
Review
Bionanocomposite Coating Film Technologies for Disease Management in Fruits and Vegetables
by Jonathan M. Sánchez-Silva, Ulises M. López-García, Porfirio Gutierrez-Martinez, Ana Yareli Flores-Ramírez, Surelys Ramos-Bell, Cristina Moreno-Hernández, Tomás Rivas-García and Ramsés Ramón González-Estrada
Horticulturae 2025, 11(7), 832; https://doi.org/10.3390/horticulturae11070832 - 14 Jul 2025
Viewed by 484
Abstract
Fruit and vegetable production is often impacted by microbial pathogens that compromise the quality of produce and lead to significant economic losses at the postharvest stages. Due to their efficacy, agrochemicals are widely applied in disease management; nevertheless, this practice has led to [...] Read more.
Fruit and vegetable production is often impacted by microbial pathogens that compromise the quality of produce and lead to significant economic losses at the postharvest stages. Due to their efficacy, agrochemicals are widely applied in disease management; nevertheless, this practice has led to the appearance of microbial strains resistant to these types of agrochemicals. Additionally, there is growing concern among consumers about the presence of these chemical residues in fruits and the negative impacts they cause on multiple ecosystems. In response, there is a growing need for safe, effective, green, and sustainable disease control technologies. Bionanocomposites, with their unique ability to combine nanomaterials and biopolymers that have attractive properties, represents a promising alternative for postharvest disease control. These technologies allow for the development of functional coatings and films with antimicrobial, antioxidant, and barrier properties, which are critical for extending shelf life and preserving fruit quality. Recent advances have demonstrated that integrating nanoparticles, such as ZnO, TiO2, Ag, and chitosan-based nanosystems, into biopolymeric matrices, like alginate, pectin, starch, or cellulose, can enhance mechanical strength, regulate gas exchange, and control the release of active agents. This review presents systematized information that is focused on the creation of coatings and films based on bionanocomposites for the management of disease in fruits and vegetables. It also discusses the use of diverse biopolymers and nanomaterials and their impact on the quality and shelf life of fruits and vegetables. Full article
(This article belongs to the Special Issue Postharvest Diseases in Horticultural Crops and Their Management)
Show Figures

Figure 1

18 pages, 3019 KiB  
Article
Functional Biopolymer Coatings with Nisin/Na-EDTA as an Active Agent: Enhancing Seafood Preservation
by Wladimir Silva-Vera, Sebastián Escobar-Aguirre, Robert Emilio Mora-Luna and Romina L. Abarca
Foods 2025, 14(12), 2100; https://doi.org/10.3390/foods14122100 - 14 Jun 2025
Viewed by 499
Abstract
The increasing demand for reliable food preservation strategies has driven the development of active biopolymer-based films as alternatives to conventional packaging. This study evaluates Nisin/Na-EDTA-enriched alginate and gelatin films for preserving Dosidicus gigas (jumbo squid) during refrigerated storage. Films were formulated using alginate, [...] Read more.
The increasing demand for reliable food preservation strategies has driven the development of active biopolymer-based films as alternatives to conventional packaging. This study evaluates Nisin/Na-EDTA-enriched alginate and gelatin films for preserving Dosidicus gigas (jumbo squid) during refrigerated storage. Films were formulated using alginate, gelatin 220/280 Bloom, and glycerol, and characterized in terms of their mechanical, optical, and biodegradation properties. Their effectiveness for the preservation of squid fillets was tested, focusing on weight loss and color stability during refrigerated storage. The incorporation of Nisin/Na-EDTA significantly modified the film’s properties: elongation at break increased from 4.95% (alginate control) to 65.13% (gelatin 280 active), while tensile strength decreased from 8.86 MPa to 0.798 MPa (alginate). Transparency was reduced by up to 2.5 times in active agent-incorporated alginate films. All films degraded within 14 days under soil exposure, with polysaccharide-based films degrading faster. In refrigerated storage, squid fillets coated with gelatin–alginate films containing Nisin showed reduced weight loss (24.05%) compared with uncoated controls (66.36%), particularly in skin-on samples. Color parameters and whiteness index were better preserved with gelatin-based coatings. These results demonstrate the potential of gelatin–alginate films with Nisin/Na-EDTA as biodegradable, active packaging to extend the shelf life of high-protein seafood. Full article
(This article belongs to the Special Issue Application of Edible Coating in Food Preservation)
Show Figures

Graphical abstract

23 pages, 999 KiB  
Article
Unravelling the Potential of Seven Microalgae Species: Nutritional, Antioxidant, and Antimicrobial Properties and Application
by Valter F. R. Martins, Ana I. Lopes, Diana Gomes, Celina Parreira, Sara M. Badenes, Luís Costa, Manuela Pintado, Alcina M. M. B. Morais and Rui M. S. C. Morais
Appl. Sci. 2025, 15(12), 6691; https://doi.org/10.3390/app15126691 - 14 Jun 2025
Viewed by 433
Abstract
Microalgae are a rich renewable source of a wide variety of bioactive compounds. This study focuses on seven microalgae—Limnospira sp., Dunaliella sp., Lobosphaera sp., Nannochloropsis sp., Odontella sp., Porphyridium sp., and Tetraselmis sp.— analyzing their nutritional compositions and the potential bioactivity of [...] Read more.
Microalgae are a rich renewable source of a wide variety of bioactive compounds. This study focuses on seven microalgae—Limnospira sp., Dunaliella sp., Lobosphaera sp., Nannochloropsis sp., Odontella sp., Porphyridium sp., and Tetraselmis sp.— analyzing their nutritional compositions and the potential bioactivity of their hydroethanolic extracts obtained via ultrasound-assisted extraction. The total phenolic content (TPC) and antioxidant activity (ABTS, DPPH, and ORAC), as well as the antimicrobial activity of the extracts were determined. The protein content of the microalgae ranged from 22.9 ± 0.1 to 59.8 ± 1.6%, the fat content ranged from 5.3 ± 0.0 to 36.6 ± 0.0%, and the carbohydrates ranged from 24.0 ± 3.0 to 46.1 ± 1.0%. The highest contents of protein, fat, and carbohydrates were found in Limnospira sp., Nannochloropsis sp., and Lobosphaera sp., respectively. The TPC of the extracts varied between 0.53 ± 0.09 and 3.18 ± 0.53 mg GAE/100 mg DW. Antioxidant activity values ranged from 1.09 ± 0.15 and 2.85 ± 0.45 μmol TE/100 mg DW for ABTS, 0.25 ± 0.06 and 2.28 ± 0.06 μmol TE/100 mg DW for DPPH, and 2.37 ± 0.58 and 18.32 ± 1.00 μmol TE/100 mg DW for ORAC. The extract from Limnospira sp. exhibited the highest antioxidant activity and also showed notable antimicrobial effects. Meanwhile, the Nannochloropsis sp. extract demonstrated the strongest antimicrobial activity against most tested bacterial strains. Lipids were successfully extracted from Nannochloropsis sp. Furthermore, alginate and zein films incorporated with bioactive-rich extracts from Limnospira sp. and Nannochloropsis sp., along with the lipid-rich extract from Nannochloropsis sp., were developed. These films showed significant antioxidant activity and effective antimicrobial activity against Listeria monocytogenes. Full article
Show Figures

Figure 1

22 pages, 9118 KiB  
Article
Biomaterials Based on Bee Products and Their Effectiveness in Soft Tissue Regeneration
by Corina Dana Dumitru, Ionela Andreea Neacșu, Ovidiu Cristian Oprea, Ludmila Motelica, Bianca Voicu Balasea, Cornelia-Ioana Ilie, Florica Marinescu, Alexandra Ripszky, Silviu-Mirel Pituru and Ecaterina Andronescu
Materials 2025, 18(12), 2689; https://doi.org/10.3390/ma18122689 - 7 Jun 2025
Cited by 1 | Viewed by 657
Abstract
The increasing prevalence of antibiotic-resistant bacteria has stimulated the search for alternative antimicrobial agents with greater efficacy, low toxicity, and minimal resistance potential. Natural products, such as honey, propolis, and royal jelly, have shown promise due to their biological properties. The integration of [...] Read more.
The increasing prevalence of antibiotic-resistant bacteria has stimulated the search for alternative antimicrobial agents with greater efficacy, low toxicity, and minimal resistance potential. Natural products, such as honey, propolis, and royal jelly, have shown promise due to their biological properties. The integration of natural products like honey and propolis in biomaterials represents a synergistic approach to combat the growing threat of resistant bacterial infections while improving wound care and soft tissue engineering applications. In the present work, we obtained sodium alginate films based on honey, propolis, royal jelly, and their mixture coated with chitosan for soft tissue regeneration. SEM showed that adding bee products altered surface morphology, affecting roughness, porosity, and microstructure. Spectral analysis confirmed specific chemical bonds, while thermal studies indicated a good stability up to 115 °C. The antimicrobial activity was evaluated against Gram-positive (Enterococcus faecalis, Staphylococcus aureus), Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and yeast strains (Candida albicans), with growth inhibition zone diameters up to 12 mm. In vitro cytotoxicity studies, made on human gingival fibroblasts, suggested good biocompatibility. Antimicrobial assays showed that films containing propolis tincture, alone or as a mixture, were most effective against pathogens. Future research will focus on formulation optimization for biomedical use. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

17 pages, 2188 KiB  
Article
Employment of Biodegradable, Short-Life Mulching Film on High-Density Cropping Lettuce in a Mediterranean Environment: Potentials and Prospects
by Marco Pittarello, Maria Teresa Rodinò, Rossana Sidari, Maria Rosaria Panuccio, Francesca Cozzi, Valentino Branca, Beatrix Petrovičová and Antonio Gelsomino
Agriculture 2025, 15(11), 1219; https://doi.org/10.3390/agriculture15111219 - 3 Jun 2025
Viewed by 550
Abstract
Biodegradable mulch films were developed over the last decades to replace polyethylene, but their short durability and higher costs still limit their diffusion. This work aimed to test an innovative composite mulching film constituted by a mixture of carboxylmethyl cellulose, chitosan and sodium [...] Read more.
Biodegradable mulch films were developed over the last decades to replace polyethylene, but their short durability and higher costs still limit their diffusion. This work aimed to test an innovative composite mulching film constituted by a mixture of carboxylmethyl cellulose, chitosan and sodium alginate, enriched or not with an inorganic N- and P-source to help the microbial breakdown in soil. The trial was carried out using outdoor mesocosms cultivated with lettuce plants with high-density planting. Commercial Mater-Bi® and a polyethylene film were taken as control treatments. Air temperature and humidity monitored daily during the 51 d cropping cycle remained within the ideal range for lettuce growth with no mildew or fungi infection. Visible mechanical degradation of the experimental biopolymers occurred after 3 weeks; however, Mater-Bi® and polyethylene remained unaltered until harvest. Chemical soil variables (TOC, TN, CEC, EC) remained unchanged in all theses, whereas the pH varied. The yield, pigments, total phenols, flavonoids and ROS scavenging activity of lettuce were similar among treatments. Despite their shorter life service (~3 weeks), polysaccharide-based mulching films showed their potential to protect lettuce plants at an early stage and provide yield and nutraceutical values similar to conventionally mulched plants, while allowing a reduced environmental impact and disposal operations. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

15 pages, 1752 KiB  
Review
Sodium Alginate: A Green Biopolymer Resource-Based Antimicrobial Edible Coating to Enhance Fruit Shelf-Life: A Review
by Anshika Sharma and Arun K. Singh
Colloids Interfaces 2025, 9(3), 32; https://doi.org/10.3390/colloids9030032 - 19 May 2025
Viewed by 1463
Abstract
Fruits are a significant source of natural nutrition for human health. However, the perishable nature and short shelf life of fruits lead to spoilage, nutrition safety challenges, and other substantial postharvest losses. Edible coatings have emerged as a novel approach in order to [...] Read more.
Fruits are a significant source of natural nutrition for human health. However, the perishable nature and short shelf life of fruits lead to spoilage, nutrition safety challenges, and other substantial postharvest losses. Edible coatings have emerged as a novel approach in order to enhance the shelf life of perishable fruits by forming a protective barrier against adverse environmental conditions and microbial infections. Sodium alginate is recognized as an excellent polysaccharide (derived from algae, seaweed, etc.) in the food industry for edible fruit coatings because of its non-allergic, biodegradable, non-toxic (safe for human health), inexpensive, and efficient gel/film-forming properties. However, the hydrophilicity of the polysaccharides is a significant concern to prevent the growth of mold and yeast. In recent years, various plant extracts (containing multiple bioactive compounds, including polyphenolic acids) and nanoparticles have been applied in sodium alginate-based edible films and fruit coatings to enhance antimicrobial activity. This review study summarized recent advancements in fabricating plant extracts incorporating sodium alginate-based films and coatings to enhance fruit shelf life. In addition, approaches to preparing edible films and the basic mechanism behind the role of coating materials in enhancing fruit shelf life are discussed. Moreover, the limitations associated with sodium alginate-based fruit coatings and films have been highlighted. Full article
(This article belongs to the Special Issue Food Colloids: 3rd Edition)
Show Figures

Graphical abstract

25 pages, 1609 KiB  
Review
Biodegradable Carbohydrate-Based Films for Packaging Agricultural Products—A Review
by Kshanaprava Dhalsamant, Asutosh Dalai, Falguni Pattnaik and Bishnu Acharya
Polymers 2025, 17(10), 1325; https://doi.org/10.3390/polym17101325 - 13 May 2025
Cited by 2 | Viewed by 1378
Abstract
Carbohydrate-based biodegradable films offer an eco-friendly alternative to conventional petroleum-derived packaging for agricultural commodities. Derived from renewable polysaccharides such as starch, cellulose, chitosan, pectin, alginate, pullulan, and xanthan gum, these films exhibit favorable biodegradability, film-forming ability, and compatibility with food systems. This review [...] Read more.
Carbohydrate-based biodegradable films offer an eco-friendly alternative to conventional petroleum-derived packaging for agricultural commodities. Derived from renewable polysaccharides such as starch, cellulose, chitosan, pectin, alginate, pullulan, and xanthan gum, these films exhibit favorable biodegradability, film-forming ability, and compatibility with food systems. This review presents a comprehensive analysis of recent developments in the preparation, functionalization, and application of these polysaccharide-based films for agricultural packaging. Emphasis is placed on emerging fabrication techniques, including electrospinning, extrusion, and layer-by-layer assembly, which have significantly enhanced the mechanical, barrier, and antimicrobial properties of these materials. Furthermore, the incorporation of active compounds such as antioxidants and antimicrobials has improved the performance and shelf-life of packaged goods. Despite notable advancements, key limitations such as moisture sensitivity, poor mechanical durability, and high production costs persist. Strategies including polymer blending, nanofiller incorporation, and surface modification are explored as potential solutions. The applicability of these films in packaging fruits, vegetables, dairy, grains, and meat products is also discussed. By assessing current progress and future prospects, this review underscores the importance of carbohydrate-based films in promoting sustainable agricultural packaging systems, reducing environmental impact through the advancement of circular bioeconomy principles and sustainable development. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

19 pages, 2214 KiB  
Article
Alginate Edible Films Containing Essential Oils: Characterization and Bioactive Potential
by Ana I. Lopes, Adma Melo, Tiago B. Afonso, Sara Silva, Lillian Barros, Freni K. Tavaria and Manuela Pintado
Polymers 2025, 17(9), 1188; https://doi.org/10.3390/polym17091188 - 27 Apr 2025
Cited by 1 | Viewed by 1257
Abstract
Essential oils (EOs) are natural substances rich in phenolic compounds with notable antimicrobial and antioxidant properties. However, they present some limitations, such as low stability and bioavailability. Incorporating EOs into polymeric films offers a novel approach to overcome these challenges while enhancing their [...] Read more.
Essential oils (EOs) are natural substances rich in phenolic compounds with notable antimicrobial and antioxidant properties. However, they present some limitations, such as low stability and bioavailability. Incorporating EOs into polymeric films offers a novel approach to overcome these challenges while enhancing their efficacy. In this study, we produced and thoroughly characterized alginate-based edible films incorporated with five different EOs—rosemary, eucalyptus, oregano, sage, and thyme. This is the first comprehensive investigation to include this diverse range of EOs in alginate films. Their antimicrobial and antioxidant activities were also evaluated. The results demonstrated that alginate films containing EOs exhibited significant bioactive properties. Notably, the film incorporated with oregano EO completely inhibited the growth of all tested bacteria and fungi and showed the highest antioxidant activity. Based on these findings, alginate films containing EOs present promising bioactive potential and could serve as biodegradable alternatives to conventional packaging materials, reducing environmental impact. However, further studies are necessary to assess their safety profile and confirm their viability as replacements for traditional food packaging. Future research should focus on evaluating cytotoxicity, genotoxicity, and the practical application of these films in food matrices. Full article
(This article belongs to the Special Issue Advances in Natural Polymers for Sustainable Food Packaging)
Show Figures

Graphical abstract

21 pages, 1189 KiB  
Article
Biodegradable Films with Polysaccharides, Proteins, and Bioactive Compounds from Lobosphaera sp.: Antioxidant and Antimicrobial Activities
by Valter F. R. Martins, Ana I. Lopes, Manuela Machado, Eduardo M. Costa, Tânia B. Ribeiro, Fátima Poças, Manuela Pintado, Rui M. S. C. Morais and Alcina M. M. B. Morais
Foods 2025, 14(8), 1327; https://doi.org/10.3390/foods14081327 - 11 Apr 2025
Cited by 1 | Viewed by 690
Abstract
Microalgae are a sustainable source of bioactive compounds and nutrients that do not compete with crops for arable land. Lobosphaera sp. was used to produce biodegradable films. Bioactive compounds, polysaccharides, and proteins were extracted from this microalga. The total phenolic content (TPC) and [...] Read more.
Microalgae are a sustainable source of bioactive compounds and nutrients that do not compete with crops for arable land. Lobosphaera sp. was used to produce biodegradable films. Bioactive compounds, polysaccharides, and proteins were extracted from this microalga. The total phenolic content (TPC) and antioxidant activity (ABTS, DPPH, and ORAC) of the bioactive-rich extract were determined, and its composition was analyzed for phenolics using LC-ESI-QqTOF-HRMS and for lipids using GC-FID. The cytotoxicity of this extract on Caco-2 cells was also assessed. Different types of films were produced based on alginate (2%) (film A) and alginate with polysaccharides-rich (PS-rich) extract (0.5%) (film B); PS-rich extract and bioactive-rich extract (0.25%) (film C); protein-rich (P-rich) extract (0.5%) (film D); and P-rich extract and bioactive-rich extract (film E). The antioxidant activity and physical parameters of the films, such as thickness, color, water vapor permeability, solubility, tensile strength (TS), and elongation at break (EAB), were determined. The TPC of the bioactive-rich extract was 1.07 ± 0.05 mg GAE/100 mg DW, and its antioxidant activity was 2.44 ± 0.27, 1.67 ± 0.15, and 11.90 ± 1.22 µmol TE/100 mg DW for ABTS, DPPH, and ORAC, respectively. The extract showed no cytotoxicity to gut cells at concentrations equal to or below 1.0 mg/mL. Film E obtained the best results for the antioxidant activity, 451.06 ± 14.68 and 212.81 ± 39.12 µM TE/mg film for ABTS and DPPH, respectively. In addition, the films enriched with the bioactive-rich extract (films C and E) presented antimicrobial activity against Listeria monocytogenes. These films controlled the mold and yeast growth in strawberries during a four-day storage at 25 °C. All films were completely soluble in water and hydroethanolic solutions but only partially solubilized in acetic acid (3%). TS and EAB were not significantly different among the films. It was possible to produce biodegradable films using microalga Lobosphaera sp. with good bioactivity and physical characteristics. Full article
(This article belongs to the Special Issue High-Value Processing and Utilization of Agro-Food Resources)
Show Figures

Figure 1

36 pages, 17339 KiB  
Article
Next-Generation Edible Packaging: Development of Water-Soluble, Oil-Resistant, and Antioxidant-Loaded Pouches for Use in Noodle Sauces
by Bahar Demircan, David Julian McClements and Yakup Sedat Velioglu
Foods 2025, 14(6), 1061; https://doi.org/10.3390/foods14061061 - 20 Mar 2025
Cited by 3 | Viewed by 1591
Abstract
The development of sustainable biodegradable packaging materials is essential for enhancing food quality and shelf life while reducing plastic waste. This study explored polymer-based monolayer, composite, and bilayer films to produce water-soluble, oil-proof pouches. Single-serving seasoning oil pouches were prepared from bilayer films [...] Read more.
The development of sustainable biodegradable packaging materials is essential for enhancing food quality and shelf life while reducing plastic waste. This study explored polymer-based monolayer, composite, and bilayer films to produce water-soluble, oil-proof pouches. Single-serving seasoning oil pouches were prepared from bilayer films with polyvinyl alcohol (PVA) as the inner and sodium alginate (SA) as the outer layer. The PVA/SA films exhibited excellent UV protection, low oil permeability (0.18 × 10−6 g·mm/mm2·day), hydrophilic surface (water contact angle < 90°), and rapid solubility in hot water (87 ± 2 °C). Incorporating curcumin, a natural antioxidant, into PVA/SA films (Cur-PVA/SA) improved thermal stability, reduced light transmittance, and decreased water vapor permeability (0.28 × 10−10 g/m·Pa·s). Curcumin release followed a biphasic diffusion model, with 94.8% released at 96 h (diffusion coefficient: 1.30 × 10−11 m2/s), ensuring prolonged antioxidant activity. The Cur-PVA/SA pouches delayed lipid oxidation more effectively, with peroxide values of 6.48 and 10.35 meq/kg after 45 days at 35 °C, respectively. The Q10 model, which is commonly used to predict the shelf life of oils based on temperature-dependent oxidation rates, estimated that the oil packaged in Cur-PVA/SA pouches would remain stable for 12 months at 23 °C. This represents a 37% longer shelf life compared to oil packaged in PVA/SA pouches without curcumin. Cur-PVA/SA pouches also reduced noodle moisture migration, limiting weight loss to 2.73% over 14 days compared to 5.80% in controls. These findings highlight their potential as eco-friendly active packaging solutions. Full article
Show Figures

Figure 1

14 pages, 5302 KiB  
Article
Metal–Phenolic Network-Loaded Sodium Alginate-Based Antibacterial and Antioxidant Films Incorporated with Geranium Essential Oil
by Yanming Ren, Shuifang Mao, Xingqian Ye and Jinhu Tian
Polysaccharides 2025, 6(1), 15; https://doi.org/10.3390/polysaccharides6010015 - 26 Feb 2025
Viewed by 682
Abstract
Owing to its natural degradability and excellent film-forming characteristics, sodium alginate (SA) is gaining growing popularity in the field of food packaging. However, the insufficient antioxidant and antibacterial properties hinder its application. In the current research, protocatechuic acid (PCA) and Fe3+ were [...] Read more.
Owing to its natural degradability and excellent film-forming characteristics, sodium alginate (SA) is gaining growing popularity in the field of food packaging. However, the insufficient antioxidant and antibacterial properties hinder its application. In the current research, protocatechuic acid (PCA) and Fe3+ were utilized to fabricate a metal polyphenol network structure. Subsequently, geranium essential oil emulsion (GEOE) was incorporated into the SA matrix, and SA-based films were prepared through the flat-sheet casting method. The impacts of PCA/Fe and various concentrations of GEOE on the physical, structural, as well as functional characteristics of SA-based films were comprehensively examined. The thickness of the prepared SA-based films was between 30 and 50 μm. The results showed that PCA/Fe, GEOE, and SA exhibited good biocompatibility, and the formed films were uniform. The incorporation of PCA/Fe and GEOE significantly improved the UV blocking ability, thermal stability, and antibacterial activity of SA-based films. In addition, PCA/Fe and GEOE enhanced the total antioxidant capacity of SA-based films from 3.5% to 88%. This research could provide some theoretical basis for the utilization of metal polyphenol networks and natural essential oils within the realm of food active packaging films. Full article
Show Figures

Figure 1

16 pages, 4034 KiB  
Article
Ibuprofen-Loaded, Nanocellulose-Based Buccal Films: The Development and Evaluation of Promising Drug Delivery Systems for Special Populations
by Katarina Bolko Seljak, Blaž Grilc, Mirjana Gašperlin and Mirjam Gosenca Matjaž
Gels 2025, 11(3), 163; https://doi.org/10.3390/gels11030163 - 24 Feb 2025
Viewed by 757
Abstract
The objective of this work was to investigate the use of nanocrystalline cellulose (NCC) as a drug-delivery excipient for buccal films. Gel-like dispersions were created by blending either gel or powder NCC (gNCC or pNCC) with natural polymers (alginate, pectin, or chitosan) in [...] Read more.
The objective of this work was to investigate the use of nanocrystalline cellulose (NCC) as a drug-delivery excipient for buccal films. Gel-like dispersions were created by blending either gel or powder NCC (gNCC or pNCC) with natural polymers (alginate, pectin, or chitosan) in water, with glycerol serving as a plasticiser. Ibuprofen (IBU) as an active pharmaceutical ingredient (API) was dissolved in a self-microemulsifying drug delivery system (SMEDDS) to improve its solubility prior to its addition to gel-like dispersions. Dispersions were dried, and resulting films were cut to 3 cm × 1.5 cm size, appropriate for buccal delivery. Rheological measurements revealed that shorter, thinner, and less crystalline nanocellulose fibres are more favourable for stronger gel properties. While overall, weaker gel structure prior to film casting also resulted in shorter disintegration time, this was not the case for NCC–chitosan films; here, the low solubility of chitosan in neutral media proved to be the main obstacle. Nevertheless, the prolonged disintegration of NCC–chitosan films did not impact the dissolution of IBU, as these films exhibited the fastest dissolution rate, followed by NCC–pectin and NCC–alginate. Furthermore, NCC properties significantly influenced the dissolution behaviour of the chitosan formulations, with gNCC favouring faster IBU release due to weaker gel formation prior to film casting. Full article
(This article belongs to the Special Issue Cellulose-Based Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

17 pages, 4122 KiB  
Article
Enhancing Biodegradable Packaging: The Role of Tea Polyphenols in Soybean Oil Body Emulsion Films
by Jie Sun, Luyang Wang, Han Chen and Guoyou Yin
Coatings 2025, 15(2), 162; https://doi.org/10.3390/coatings15020162 - 2 Feb 2025
Cited by 1 | Viewed by 996
Abstract
To address the increasingly diverse demands for biodegradable packaging materials, such as for their physical properties and antioxidant properties, this study incorporated tea polyphenols (TPs) into soybean oil body emulsions (SOBs) and added a certain proportion of sodium alginate (SA) and octenyl succinic [...] Read more.
To address the increasingly diverse demands for biodegradable packaging materials, such as for their physical properties and antioxidant properties, this study incorporated tea polyphenols (TPs) into soybean oil body emulsions (SOBs) and added a certain proportion of sodium alginate (SA) and octenyl succinic starch sodium (SSOS) to prepare a biodegradable soybean oil body–tea polyphenol (ST) emulsion film. The study systematically evaluated the effects of different concentrations of TP (0–6 wt.%) on the structure, physicochemical properties, antioxidant activity, and antibacterial activity of ST films. The results showed that the physical properties, such as tensile strength and elongation at break, of the films increased significantly with the addition of TP, and the antioxidant and antibacterial activity also increased with the increase in TP concentration. When TP concentration was 2.5 wt.%, the barrier properties of the film (ST-2.5) significantly improved (p < 0.05), while water content and water solubility decreased. The Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis results showed that the structure of ST films became tighter at this point. The addition of TP also affected the sensory properties of ST films, such as with an increase in the opacity of the film. Compared with the control, the light transmittance of ST-6.0 decreased by 23.68% at a wavelength of 600 nm, indicating a significant reduction in film transparency. Moreover, the biodegradability test showed that ST films have good degradability. Therefore, the ST film, as a functional edible film, has broad application prospects in the food packaging industry. Full article
Show Figures

Figure 1

13 pages, 918 KiB  
Article
Color, Structure, and Thermal Stability of Alginate Films with Raspberry and/or Black Currant Seed Oils
by Jolanta Kowalonek, Bogna Łukomska and Aleksandra Szydłowska-Czerniak
Molecules 2025, 30(2), 245; https://doi.org/10.3390/molecules30020245 - 9 Jan 2025
Cited by 1 | Viewed by 1119
Abstract
In this study, biodegradable and active films based on sodium alginate incorporated with different concentrations of oils (25% and 50%) from fruit seeds were developed for potential applications in food packaging. The ultraviolet and visible (UV-VIS) spectra of raspberry seed oil (RSO) and [...] Read more.
In this study, biodegradable and active films based on sodium alginate incorporated with different concentrations of oils (25% and 50%) from fruit seeds were developed for potential applications in food packaging. The ultraviolet and visible (UV-VIS) spectra of raspberry seed oil (RSO) and black currant seed oil (BCSO) indicated differences in bioactive compounds, such as tocopherols, phenolic compounds, carotenoids, chlorophyll, and oxidative status (amounts of dienes, trienes, and tetraenes) of active components added to alginate films. The study encompassed the color, structure, and thermal stability analysis of sodium alginate films incorporated with RSO and BCSO and their mixtures. The color of alginate films before and after the addition of oils from both fruit seeds was evaluated by measuring color coordinates in the CIELab color space: L* (lightness), a* (red-green), and b* (yellow-blue). The lightness values ranged between 94.21 and 95.08, and the redness values varied from −2.20 to −2.65, slightly decreasing for the films enriched with oils. In contrast, yellowness values ranged between 2.93 and 5.80 for the obtained active materials, significantly increasing compared to the control alginate film (L* = 95.48, a* = −1.92, and b* = −0.14). Changes in the structure and morphology of the alginate films after incorporating bioactive-rich oils were observed using scanning electron microscopy (SEM). Films with RSO and oil mixtures had more developed surfaces than films with BCSO. Moreover, the cross-sections of the films with RSO showed holes evenly distributed inside the films, indicating traces of volatile compounds. Thermal decomposition of the alginate films loaded with oils showed five separate stages (to 125 °C, 125–300 °C, 310–410 °C, 410–510 °C, and 750–1000 °C, respectively) related to the oil and surfactant decomposition. The shape of the thermogravimetric curves did not depend on the oil type. The added oils reduced the efficiency of alginate decomposition in the first stage. The obtained results showed that new functional and thermally stable food packaging films based on sodium alginate with a visual appearance acceptable to consumers could be produced by utilizing oils from fruit seed residues. Full article
Show Figures

Figure 1

9 pages, 535 KiB  
Proceeding Paper
Edible Films with Protein and Bioactive Compounds from Arthrospira sp.
by Valter F. R. Martins, Fátima Poças, Manuela Pintado, Rui M. S. C. Morais and Alcina M. M. B. Morais
Biol. Life Sci. Forum 2024, 40(1), 6; https://doi.org/10.3390/blsf2024040006 - 2 Jan 2025
Cited by 2 | Viewed by 960
Abstract
Arthrospira sp. is an alternative source of protein in the food chain, but it may also be considered a source of phenolic compounds with interesting properties, such as antioxidant and antimicrobial properties. In active packaging, these two properties are essential. In the present [...] Read more.
Arthrospira sp. is an alternative source of protein in the food chain, but it may also be considered a source of phenolic compounds with interesting properties, such as antioxidant and antimicrobial properties. In active packaging, these two properties are essential. In the present work, two extracts were produced: one extract rich in protein and another in bioactives. These two extracts were used in the production of an edible film composed of alginate (2%) + protein extract (0.5%) + bioactive extract (0.25%) with high antioxidant activity: ABTS of 1537.50 ± 191.87 and DPPH of 190.75 ± 15.53 µM TE/mg film. All the edible films produced had good physical properties, such as 100% solubility in water and ethanolic solutions. The films with alginate and protein-rich extract and or without bioactive-rich extract presented lower water vapor permeability—12.28 ± 3.01 g⋅mm−2⋅day−1⋅kPa−1 and 14.39 ± 3.64 g⋅mm⋅m−2⋅day−1⋅kPa−1, respectively—than the alginate film. In addition, the film with alginate- and protein-rich extract presented an acceptable color. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Foods)
Show Figures

Figure 1

Back to TopTop