Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (224)

Search Parameters:
Keywords = acrylic acid monomer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3357 KB  
Article
Novel Bioinspired Quercetin-Based Polymers for the Sustained Release of Donepezil in Alzheimer’s Disease Therapy
by Elisabete P. Carreiro, Pedro Múria, Diogo Velez, Manuela R. Carrott, Anthony J. Burke and Ana R. Costa
Polymers 2026, 18(2), 234; https://doi.org/10.3390/polym18020234 - 16 Jan 2026
Viewed by 471
Abstract
This work was inspired by quercetin, a natural bioflavonoid with well-known neuroprotective properties. We synthesized a new functional monomer, 3-acryloxy-3′,4′,5,7-tetramethylquercetin 1, and used it to prepare, for the first time, a molecularly imprinted polymer (MIP) selective for donepezil, the main drug used [...] Read more.
This work was inspired by quercetin, a natural bioflavonoid with well-known neuroprotective properties. We synthesized a new functional monomer, 3-acryloxy-3′,4′,5,7-tetramethylquercetin 1, and used it to prepare, for the first time, a molecularly imprinted polymer (MIP) selective for donepezil, the main drug used in Alzheimer’s disease therapy. The polymer was designed to be fluorescent and responsive to pH changes, aiming for controlled drug release. The optimized MIP-4, produced from a 1:1 mixture of the monomer 1 and acrylic acid, was characterized by FTIR-ATR, fluorescence spectroscopy, SEM, and DLS, confirming its chemical composition, morphology, particle size distribution and zeta potential. Adsorption studies showed higher donepezil binding capacity for MIP than for NIP, highlighting the polymer’s selective recognition. In vitro release experiments at pH 3, 5.5, and 7 revealed a pH-dependent behaviour, with nearly 98% cumulative donepezil release at pH 7. The polymer was non-cytotoxic and successfully released donepezil in in vitro assays, enabling effective inhibition of eeAChE. These results provide a proof of concept supporting the potential of quercetin-derived fluorescent molecularly imprinted polymers as selective and stimuli-responsive platforms for donepezil delivery. Full article
(This article belongs to the Special Issue Polymers and Their Role in Drug Delivery, 3rd Edition)
Show Figures

Graphical abstract

22 pages, 5813 KB  
Article
Gel Microparticles Based on Polymeric Sulfonates: Synthesis and Prospects for Biomedical Applications
by Olga D. Iakobson, Elena M. Ivan’kova, Yuliya Nashchekina and Natalia N. Shevchenko
Int. J. Mol. Sci. 2026, 27(1), 538; https://doi.org/10.3390/ijms27010538 - 5 Jan 2026
Viewed by 196
Abstract
Polyelectrolyte microspheres based on a polymer containing sulfonate groups are considered promising drug delivery systems for encapsulating drugs and ensuring their prolonged release. In this study, gel microparticles based on various sulfonate-containing polymers were formed, and their potential as drug delivery systems was [...] Read more.
Polyelectrolyte microspheres based on a polymer containing sulfonate groups are considered promising drug delivery systems for encapsulating drugs and ensuring their prolonged release. In this study, gel microparticles based on various sulfonate-containing polymers were formed, and their potential as drug delivery systems was evaluated, particularly for the controlled administration of the cytotoxic anthracycline antibiotic doxorubicin and the antifungal drug fuchsine. An undeniable advantage of such gel microspheres is the presence in their structure of sulfonate groups localized both in the surface layer and in the volume. The main monomers used were styrene-4-sulfonic acid sodium salt and 3-sulfopropyl methacrylate potassium salt; spherical, porous microparticles were obtained via free-radical reverse suspension polymerization. Microsphere properties (size, porosity, pore structure, electrical surface properties, and swelling) were tailored by changing the nature of the sulfonate, using a comonomer (vinyl acetate or ethyl acrylate), adding a co-solvent, or modulating the crosslinker composition, which influenced drug loading efficiency (doxorubicin, fuchsine). The gel-like structure of the microspheres was confirmed, and the sulfonate groups were found to be distributed throughout both the surface layer and the internal volume of the microspheres. A comparison was also made with non-porous polymer particles containing sulfonate groups. The sorption capacity of the gel microspheres for doxorubicin was 2.2 mmol/g, significantly higher than the 0.4 mmol/g observed for the non-porous reference particles. The obtained values of doxorubicin sorption on gel microspheres are over 60 times higher than the values reported in the literature. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Graphical abstract

25 pages, 3942 KB  
Article
Porphyrin-Based Bio-Sourced Materials for Water Depollution Under Light Exposure
by Fanny Schnetz, Marc Presset, Jean-Pierre Malval, Yamin Leprince-Wang, Isabelle Navizet and Davy-Louis Versace
Polymers 2025, 17(21), 2882; https://doi.org/10.3390/polym17212882 - 29 Oct 2025
Viewed by 789
Abstract
The photoinitiation properties of two porphyrins were evaluated for the free-radical photopolymerization (FRP) of a bio-based acrylated monomer, i.e., soybean oil acrylate (SOA). Their combination with various co-initiators, such as a tertiary amine as electron donor (MDEA), an iodonium salt as electron acceptor [...] Read more.
The photoinitiation properties of two porphyrins were evaluated for the free-radical photopolymerization (FRP) of a bio-based acrylated monomer, i.e., soybean oil acrylate (SOA). Their combination with various co-initiators, such as a tertiary amine as electron donor (MDEA), an iodonium salt as electron acceptor (Iod), as well as two biosourced co-initiators used as H-donors (cysteamine and N-acetylcysteine), makes them highly efficient photoinitiating systems for FRP under visible light irradiation. Electron paramagnetic resonance spin trapping (EPR ST) demonstrated the formation of highly reactive radical species, and fluorescence and laser flash photolysis highlighted the chemical pathways followed by the porphyrin-based systems under light irradiation. High acrylate conversions up to 96% were obtained with these different systems at different irradiation wavelengths (LEDs@385 nm, 405 nm, 455 nm, and 530 nm), in laminate or under air. The final crosslinked and bio-based porphyrin-based materials were used for the full photo-oxidation in water of an azo-dye (acid red 14) and under UV irradiation. These materials have been involved in three successive depollution cycles without any reduction in their efficiency. Full article
(This article belongs to the Special Issue Advances in Photopolymer Materials)
Show Figures

Graphical abstract

12 pages, 5578 KB  
Article
A Zwitterionic Copolymer at High Temperature and High Salinity for Oilfield Fracturing Fluids
by Bo Jing, Yuejun Zhu, Wensen Zhao, Weidong Jiang, Shilun Zhang, Bo Huang and Guangyan Du
Polymers 2025, 17(20), 2733; https://doi.org/10.3390/polym17202733 - 12 Oct 2025
Viewed by 773
Abstract
With the increasing exploration and development of deep shale gas resources, water-based fracturing fluids face multiple challenges, including high-temperature resistance, salt tolerance, and efficient proppant transport. In this study, a zwitterionic polymer (polyAMASV) is synthesized via aqueous two-phase dispersion polymerization, using acrylamide (AM), [...] Read more.
With the increasing exploration and development of deep shale gas resources, water-based fracturing fluids face multiple challenges, including high-temperature resistance, salt tolerance, and efficient proppant transport. In this study, a zwitterionic polymer (polyAMASV) is synthesized via aqueous two-phase dispersion polymerization, using acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), acrylic acid (AA), stearyl methacrylate (SMA), and 4-vinylpyridine propylsulfobetaine (4-VPPS) as monomers. The introduction of hydrophobic alkyl chains effectively adjusts the viscoelasticity of the emulsion, while the incorporation of zwitterionic units provides salt tolerance through their intrinsic anti-polyelectrolyte effect. As a result, the solutions of such copolymers exhibit stable apparent viscosity in both NaCl and CaCl2 solutions and under high temperatures. Meanwhile, polyAMASV outperforms conventional samples across various saline environments, reducing proppant settling rates by approximately 20%. Moreover, the solutions exhibit rapid gel-breaking and low residue characteristics, ensuring effective reservoir protection. These results highlight the promising potential of polyAMASV for deep shale gas fracturing applications. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Graphical abstract

16 pages, 3705 KB  
Article
Anti-Swelling Antibacterial Hydrogels Based on Electrostatic Repulsion and Hydrophobic Interactions for Human Motion Sensing
by Zexing Deng, Litong Shen, Qiwei Cheng, Ying Li, Tianming Du and Xin Zhao
J. Funct. Biomater. 2025, 16(9), 346; https://doi.org/10.3390/jfb16090346 - 14 Sep 2025
Cited by 1 | Viewed by 1279
Abstract
The development of high-performance sensing materials is critical for advancing bioelectronics. Conductive hydrogels, with their unique flexibility, are promising candidates for biomedical sensors. However, traditional conductive hydrogels often suffer from excessive swelling and undesirable antibacterial activity, limiting their practical use. To overcome these [...] Read more.
The development of high-performance sensing materials is critical for advancing bioelectronics. Conductive hydrogels, with their unique flexibility, are promising candidates for biomedical sensors. However, traditional conductive hydrogels often suffer from excessive swelling and undesirable antibacterial activity, limiting their practical use. To overcome these challenges, anti-swelling, antibacterial, and ionically conductive hydrogels were built through free radical polymerization. The preparation was conducted using a monomer mixture comprising acrylic acid (AA), the antibacterial zwitterionic compound [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), and the hydrophobic monomer lauryl methacrylate (LMA). The protonation of SBMA by AA enables electrostatic repulsion, thereby imparting anti-swelling properties to the hydrogel. The introduction of hydrophobic LMA components further enhances the anti-swelling and mechanical performance of hydrogel. The resulting hydrogel exhibits excellent anti-swelling property with a swelling ratio of 59.36% after 120 h and good mechanical performance with a tensile strength of 158 kPa, an elongation at break of 176%, and a compressive strength of 0.37 MPa at 80% strain. In addition, hydrogels possess superior sensing performance for strain sensing with a gauge factor of 1.315 within 40–60% of strain, 330 ms of response time, and 177 ms of recovery time. Furthermore, the hydrogel is capable of monitoring human motion and physiological signals. These attributes make it highly suitable for wearable sensors and biomedical monitoring applications. Full article
Show Figures

Figure 1

17 pages, 5455 KB  
Article
Synthesis and Characterization of Biodegradable Terpolymer Scale Inhibitors
by Fei Gao, Peng Xu, Yongqing Zhang and Hui Zhang
Materials 2025, 18(17), 4163; https://doi.org/10.3390/ma18174163 - 5 Sep 2025
Cited by 1 | Viewed by 1187
Abstract
To address scaling issues in oilfield water injection, a degradable terpolymer scale inhibitor MA-AA-AMPS (terpolymer)was synthesized via aqueous solution polymerization using maleic anhydride, acrylic acid, and 2-acrylamido-2-methylpropanesulfonic acid as monomers. Characterization confirmed the presence of carboxyl, sulfonic, and amide groups in the copolymer [...] Read more.
To address scaling issues in oilfield water injection, a degradable terpolymer scale inhibitor MA-AA-AMPS (terpolymer)was synthesized via aqueous solution polymerization using maleic anhydride, acrylic acid, and 2-acrylamido-2-methylpropanesulfonic acid as monomers. Characterization confirmed the presence of carboxyl, sulfonic, and amide groups in the copolymer with good thermal stability. Scale inhibition tests showed that at 2% dosage, its scale inhibition efficiency exceeded 80%, remaining above 80% in the pH range of 3–8 and over 50% at 150 °C, with excellent tolerance to high-calcium environments. Biodegradation tests revealed BOD5/COD > 0.3, with a biodegradation rate exceeding 50% in 15 days and reaching 83.4% in 30 days, indicating environmental friendliness. This scale inhibitor effectively solves scaling problems in oilfield water injection systems. Full article
(This article belongs to the Special Issue Advances in the Mechanical Behavior of Biopolymer Materials)
Show Figures

Figure 1

15 pages, 8520 KB  
Article
Comparative Study of Continuous-Flow Reactors for Emulsion Polymerization
by Kai-Yen Chin, Angus Shiue, Pei-Yu Lai, Chien-Chen Chu, Shu-Mei Chang and Graham Leggett
Polymers 2025, 17(17), 2289; https://doi.org/10.3390/polym17172289 - 24 Aug 2025
Viewed by 1512
Abstract
Polymer fouling in batch and tubular reactors creates safety hazards from heat buildup and blockages. The continuous Corning Advanced-Flow™ Reactor (AFR) offers enhanced mass and heat transfer, improving safety and efficiency. This study evaluated three reactor systems—a monolithic AFR, an AFR with an [...] Read more.
Polymer fouling in batch and tubular reactors creates safety hazards from heat buildup and blockages. The continuous Corning Advanced-Flow™ Reactor (AFR) offers enhanced mass and heat transfer, improving safety and efficiency. This study evaluated three reactor systems—a monolithic AFR, an AFR with an external pipe, and a conventional tubular reactor—for the mini-emulsion polymerization of styrene and subsequent styrene–acrylic acid copolymerization. The AFR operability under varying monomer concentrations was assessed and investigated, with the residence time’s effects on conversion. For styrene polymerization at 20–35 wt% monomer, the highest conversions achieved were 88.0% in the AFR, 85.8% in the tubular reactor, and 98.9% in the AFR with pipe. Uniform particles were obtained at ≤30 wt%, whereas at 35 wt%, the monolithic AFR experienced clogging and loss of particle uniformity. Similarly, in styrene–acrylic acid copolymerization (15–17.5 wt% monomer), the maximum conversions reached 80.1% in the AFR and 95.4% in the AFR with pipe, while the monolithic AFR again experienced blockage at 17.5 wt%. In conclusion, integrating an external pipe with the AFR, coupled with higher flow rates, significantly improved initiator diffusion, enhanced monomer conversion, and mitigated blockage. This approach enabled the efficient, continuous production of nanoscale, uniformly sized polystyrene and styrene–acrylic acid copolymers even at high monomer concentrations. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

15 pages, 2018 KB  
Article
Study on Preparation and Properties of Super Absorbent Gels of Homogenous Cotton Straw-Acrylic Acid-Acrylamide by Graft Copolymerization
by Jun Guo, Jing Shi, Lisheng Xu, Xingtao Zhang, Fangkai Han and Minwei Xu
Gels 2025, 11(8), 583; https://doi.org/10.3390/gels11080583 - 28 Jul 2025
Viewed by 1061
Abstract
To rationally utilize and develop agricultural waste products, this research involved the synthesis of degradable high water-absorbing resin through the graft copolymerization of cotton straw (CS) with monomers. Among them, acrylic acid (AA) and acrylamide (Am) are used as grafting copolymer monomers, cellulose [...] Read more.
To rationally utilize and develop agricultural waste products, this research involved the synthesis of degradable high water-absorbing resin through the graft copolymerization of cotton straw (CS) with monomers. Among them, acrylic acid (AA) and acrylamide (Am) are used as grafting copolymer monomers, cellulose in the straw serves as the network framework, and MBA acts as the crosslinking agent. 60Co gamma rays as initiators. Different concentrations of alkaline solution were used to dissolve the cellulose in the straw. Single-factor and orthogonal experiments were conducted to optimize the experimental conditions. various analytical methods such as thermogravimetric analysis (TG), X-ray crystallography (XRD), infrared spectroscopy (IR), and scanning electron microscopy (SEM) were employed to characterize the structure and properties of the product. 60Co gamma rays as initiators, can reduce the pollution caused by chemical initiators and lower energy consumption. Through this research, agricultural waste can be effectively utilized, reducing environmental pollution, lowering industrial energy consumption, and synthesizing degradable and environmentally friendly high-absorbent resins. The product can be applied to agricultural water retention agent, fertilizer controlled release agent and other aspects. Full article
(This article belongs to the Special Issue Cellulose-Based Hydrogels for Advanced Applications)
Show Figures

Graphical abstract

14 pages, 4097 KB  
Article
Preparation and Performance Evaluation of Graphene Oxide-Based Self-Healing Gel for Lost Circulation Control
by Wenzhe Li, Pingya Luo and Xudong Wang
Polymers 2025, 17(15), 1999; https://doi.org/10.3390/polym17151999 - 22 Jul 2025
Cited by 1 | Viewed by 819
Abstract
Lost circulation is a major challenge in oil and gas drilling operations, severely restricting drilling efficiency and compromising operational safety. Conventional bridging and plugging materials rely on precise particle-to-fracture size matching, resulting in low success rates. Self-healing gels penetrate loss zones as discrete [...] Read more.
Lost circulation is a major challenge in oil and gas drilling operations, severely restricting drilling efficiency and compromising operational safety. Conventional bridging and plugging materials rely on precise particle-to-fracture size matching, resulting in low success rates. Self-healing gels penetrate loss zones as discrete particles that progressively swell, accumulate, and self-repair in integrated gel masses to effectively seal fracture networks. Self-healing gels effectively overcome the shortcomings of traditional bridging agents including poor adaptability to fractures, uncontrollable gel formation of conventional downhole crosslinking gels, and the low strength of conventional pre-crosslinked gels. This work employs stearyl methacrylate (SMA) as a hydrophobic monomer, acrylamide (AM) and acrylic acid (AA) as hydrophilic monomers, and graphene oxide (GO) as an inorganic dopant to develop a GO-based self-healing organic–inorganic hybrid plugging material (SG gel). The results demonstrate that the incorporation of GO significantly enhances the material’s mechanical and rheological properties, with the SG-1.5 gel exhibiting a rheological strength of 3750 Pa and a tensile fracture stress of 27.1 kPa. GO enhances the crosslinking density of the gel network through physical crosslinking interactions, thereby improving thermal stability and reducing the swelling ratio of the gel. Under conditions of 120 °C and 6 MPa, SG-1.5 gel demonstrated a fluid loss volume of only 34.6 mL in 60–80-mesh sand bed tests. This gel achieves self-healing within fractures through dynamic hydrophobic associations and GO-enabled physical crosslinking interactions, forming a compact plugging layer. It provides an efficient solution for lost circulation control in drilling fluids. Full article
Show Figures

Figure 1

20 pages, 2239 KB  
Article
Synthesis of Biomass Polycarboxylate Superplasticizer and Its Performance on Cement-Based Materials
by Zefeng Kou, Kaijian Huang, Muhua Chen, Hongyan Chu, Linye Zhou and Tianqi Yin
Materials 2025, 18(14), 3416; https://doi.org/10.3390/ma18143416 - 21 Jul 2025
Viewed by 1819
Abstract
Polycarboxylate superplasticizer (PCE) is an important part of improving the overall performance of concrete. However, its synthetic raw materials are overly dependent on petrochemical products, and it also causes problems such as environmental pollution. With the development of the building material industry, the [...] Read more.
Polycarboxylate superplasticizer (PCE) is an important part of improving the overall performance of concrete. However, its synthetic raw materials are overly dependent on petrochemical products, and it also causes problems such as environmental pollution. With the development of the building material industry, the demand for petrochemical resources required for synthetic water-reducing agents will increase rapidly. Therefore, there is an urgent need to transition the synthetic raw materials of PCE from petrochemicals to biomass materials to reduce the consumption of nonrenewable resources as well as the burden on the environment. Biomass materials are inexpensive, readily available and renewable. Utilizing biomass resources to develop good-performing water-reducing agents can reduce the consumption of fossil resources. This is conducive to carbon emission reduction in the concrete material industry. In addition, it promotes the high-value utilization of biomass resources. Therefore, in this study, a biomass polyether monomer, acryloyl hydroxyethyl cellulose (AHEC), was synthesized from cellulose via the reaction route of ethylene oxide (EO) etherification and acrylic acid (AA) esterification. Biomass polycarboxylate superplasticizers (PCE-Cs) were synthesized through free radical polymerization by substituting AHEC for a portion of the frequently utilized polyether monomer isopentenyl polyoxyethylene ether (TPEG). This study primarily focused on the properties of PCE-Cs in relation to cement. The findings of this study indicated that the synthesized PCE-C5 at a dosing of 0.4% (expressed as mass fraction of cement) when the AHEC substitution ratio was 5% achieved good water reduction properties and significant delays. With the same fluidity, PCE-C5 could enhance the mechanical strength of cement mortar by 30% to 40%. This study utilized green and low-carbon biomass resources to develop synthetic raw materials for water-reducing agents, which exhibited effective water-reducing performance and enhanced the utilization rate of biomass resources, demonstrating significant application value. Full article
Show Figures

Figure 1

31 pages, 8222 KB  
Article
Multifunctional 3D-Printable Photocurable Elastomer with Self-Healing Capability Derived from Waste Cooking Oil
by Pengyu Wang, Jiahui Sun, Mengyu Liu, Chuanyang Tang, Yang Yang, Guanzhi Ding, Qing Liu and Shuoping Chen
Molecules 2025, 30(8), 1824; https://doi.org/10.3390/molecules30081824 - 18 Apr 2025
Cited by 2 | Viewed by 1358
Abstract
This study presents a sustainable approach to transform waste cooking oil (WCO) into a multifunctional 3D-printable photocurable elastomer with integrated self-healing capabilities. A linear monomer, WCO-based methacrylate fatty acid ethyl ester (WMFAEE), was synthesized via a sequential strategy of transesterification, epoxidation, and ring-opening [...] Read more.
This study presents a sustainable approach to transform waste cooking oil (WCO) into a multifunctional 3D-printable photocurable elastomer with integrated self-healing capabilities. A linear monomer, WCO-based methacrylate fatty acid ethyl ester (WMFAEE), was synthesized via a sequential strategy of transesterification, epoxidation, and ring-opening esterification. By copolymerizing WMFAEE with hydroxypropyl acrylate (HPA), a novel photocurable elastomer was developed, which could be amenable to molding using an LCD light-curing 3D printer. The resulting WMFAEE-HPA elastomer exhibits exceptional mechanical flexibility (elongation at break: 645.09%) and autonomous room-temperature self-healing properties, achieving 57.82% recovery of elongation after 24 h at 25 °C. Furthermore, the material demonstrates weldability (19.97% retained elongation after 12 h at 80 °C) and physical reprocessability (7.75% elongation retention after initial reprocessing). Additional functionalities include pressure-sensitive adhesion (interfacial toughness: 70.06 J/m2 on glass), thermally triggered shape memory behavior (fixed at −25 °C with reversible deformation/recovery at ambient conditions), and notable biodegradability (13.25% mass loss after 45-day soil burial). Molecular simulations reveal that the unique structure of the WMFAEE monomer enables a dual mechanism of autonomous self-healing at room temperature without external stimuli: chain diffusion and entanglement-driven gap closure, followed by hydrogen bond-mediated network reorganization. Furthermore, the synergy between monomer chain diffusion/entanglement and dynamic hydrogen bond reorganization allows the WMFAEE-HPA system to achieve a balance of multifunctional integration. Moreover, the integration of these multifunctional attributes highlights the potential of this WCO-derived photocurable elastomer for various possible 3D printing applications, such as flexible electronics, adaptive robotics, environmentally benign adhesives, and so on. It also establishes a paradigm for converting low-cost biowastes into high-performance smart materials through precision molecular engineering. Full article
Show Figures

Graphical abstract

26 pages, 3633 KB  
Article
A Comparative Study of Two Synthesis Methods for Poly(Acrylic Acid-Co-Acrylamide) Incorporating a Hyperbranched Star-Shaped Monomer
by Ramses S. Meleán Brito, Agustín Iborra, Juan M. Padró, Cristian Villa-Pérez, Miriam C. Strumia, Facundo Mattea, Juan M. Giussi and Juan M. Milanesio
Polymers 2025, 17(7), 964; https://doi.org/10.3390/polym17070964 - 1 Apr 2025
Cited by 3 | Viewed by 1740
Abstract
The synthesis of poly(acrylic acid-co-acrylamide) was investigated to enhance its rheological properties. Syntheses were conducted in both aqueous and supercritical fluid media, with and without the incorporation of a novel star-shaped macromonomer. The macromonomer, synthesized from a Boltorn H30 core with [...] Read more.
The synthesis of poly(acrylic acid-co-acrylamide) was investigated to enhance its rheological properties. Syntheses were conducted in both aqueous and supercritical fluid media, with and without the incorporation of a novel star-shaped macromonomer. The macromonomer, synthesized from a Boltorn H30 core with PEGMA500 arms and modified to contain a single vinyl group, was copolymerized with acrylic acid and acrylamide. Comprehensive polymer characterization was performed using FTIR, NMR, and SEC-MALS-dRI techniques. Rheological assessments revealed that copolymers containing the star-shaped monomer exhibited significantly higher viscosities than those lacking the hyperbranched component, a result attributed to the inter- and intrachain interactions facilitated by the PEGMA500 arms. Additionally, purification studies demonstrated that dialysis was necessary to remove short-chain polymers, particularly for samples synthesized in supercritical media, to achieve optimal rheological performance. Polymers synthesized in a supercritical CO2–ethyl acetate mixture exhibited higher viscosities compared to their water-synthesized counterparts. The integration of the novel star-shaped macromonomer into HPAM-like polymers offers substantial potential for enhanced oil recovery applications. Full article
(This article belongs to the Special Issue Recent Advances in the Polymers Field for the Energy Industry)
Show Figures

Figure 1

11 pages, 4944 KB  
Article
Synthesis and Characterization of a Superabsorbent Polymer Gel Using a Simultaneous Irradiation Technique on Corn Straw
by Xingkui Tao, Jun Guo, Aihua Wang, Qiang Wang, Yang Yang and Minwei Xu
Gels 2025, 11(4), 244; https://doi.org/10.3390/gels11040244 - 26 Mar 2025
Cited by 2 | Viewed by 1555
Abstract
Utilizing gamma rays as an initiating agent, a simultaneous irradiation method was applied to graft acrylic acid and acrylamide onto corn straw that had been decrystallized using a NaOH/urea solution at a reduced temperature, aiming to fabricate superabsorbent polymer gel (SAPG) capable of [...] Read more.
Utilizing gamma rays as an initiating agent, a simultaneous irradiation method was applied to graft acrylic acid and acrylamide onto corn straw that had been decrystallized using a NaOH/urea solution at a reduced temperature, aiming to fabricate superabsorbent polymer gel (SAPG) capable of absorbing significantly more water. The structural attributes of the corn straw, the decrystallized corn straw, and the SAPG were analyzed via Fourier transform infrared spectroscopy (FTIR), X-ray crystal powder diffraction (XRD), thermogravimetric analysis (TG), and scanning electron microscopy (SEM). To enhance the SAPG’s performance, optimization of various parameters was carried out, such as irradiation dose, dose rate, the ratio of monomer to corn straw, the proportion of acrylic acid (AA) to acrylamide (Am), and the degree of neutralization. The resulting SAPG exhibited distilled water absorption of 1033 g/g and 90 g/g in 0.9 wt.% NaCl solution, with a radiation dose of 5 kGy, a dose rate of 1.5 kGy/h, AA-to-AM mass ratio of 1.2, monomer-to-CS mass ratio of 7, and 90% AA neutralization. Full article
(This article belongs to the Special Issue Functionalized Gels for Environmental Applications (2nd Edition))
Show Figures

Graphical abstract

15 pages, 3144 KB  
Article
Preparation of pH-Sensitive Poly (N-(2-Hydroxyethyl) Acrylamide-co-acrylic Acid) Hydrogels and Their Performance
by Qiang Liu, Ge Xi, Tao Wu, Peining Li, Peng Zhan, Na Liu and Zhiping Wu
Gels 2025, 11(4), 241; https://doi.org/10.3390/gels11040241 - 25 Mar 2025
Cited by 5 | Viewed by 2027
Abstract
Drug-loaded hydrogels are promising for modern medicine due to their physical modifiability. However, most hydrogels suffer from poor swelling, which limits their drug encapsulation and release capabilities. In this study, Poly (N-(2-hydroxyethyl) acrylamide-co-acrylic acid) (Poly (HEAA-co-AA)) hydrogels with high swelling properties are synthesized [...] Read more.
Drug-loaded hydrogels are promising for modern medicine due to their physical modifiability. However, most hydrogels suffer from poor swelling, which limits their drug encapsulation and release capabilities. In this study, Poly (N-(2-hydroxyethyl) acrylamide-co-acrylic acid) (Poly (HEAA-co-AA)) hydrogels with high swelling properties are synthesized via free radical polymerization of neutralized acrylic monomers. The effects of the material ratio and acrylic acid neutralization degree on the swelling properties of hydrogels in water are investigated, and the swelling properties of hydrogels prepared with different monomer ratios in different pH buffer solutions are systematically studied. The results show that the swelling degree is sensitive to the monomer ratio and pH. The maximum equilibrium swelling degree of the hydrogels occurs at an HEAA to AA molar ratio of 2:2, with values of 11.36 g g−1 at pH 1.68 and 112.79 g g−1 at pH 9.18. Finally, the mechanical properties of PHA hydrogels under different HEAA/AA molar ratios are investigated, showing that the mechanical properties of PHA improved compared to those of PAA. The mechanical properties of the hydrogels are best and show good stability in rheological tests when the molar ratio of HEAA to AA is 2:2. This work has major potential applications in drug carrier systems. Full article
Show Figures

Figure 1

26 pages, 4819 KB  
Article
Thermodynamic and Kinetic Characterization of Colloidal Polymers of N-Isopropylacrylamide and Alkyl Acrylic Acids for Optical pH Sensing
by James T. Moulton, David Bruce, Richard A. Bunce, Mariya Kim, Leah Oxenford Snyder, W. Rudolf Seitz and Barry K. Lavine
Molecules 2025, 30(7), 1416; https://doi.org/10.3390/molecules30071416 - 22 Mar 2025
Cited by 1 | Viewed by 915
Abstract
Copolymers of N-isopropylacrylamide (NIPA) and alkyl acrylic acids that swell and shrink in response to pH were prepared by dispersion polymerization at 35 °C using N-isopropylacrylamide (transduction monomer), methylenebisacrylamide (crosslinker), 2-dimethoxy-2-phenyl-acetophenone (initiator), N-tert-butylacrylamide (transition temperature modifier), and acrylic [...] Read more.
Copolymers of N-isopropylacrylamide (NIPA) and alkyl acrylic acids that swell and shrink in response to pH were prepared by dispersion polymerization at 35 °C using N-isopropylacrylamide (transduction monomer), methylenebisacrylamide (crosslinker), 2-dimethoxy-2-phenyl-acetophenone (initiator), N-tert-butylacrylamide (transition temperature modifier), and acrylic acid, methacrylic acid, ethacrylic acid, and propacrylic acid (functional comonomer). The diameter of the microspheres of the copolymer varied between 0.5 µm and 1.0 µm. These microspheres were cast into hydrogel membranes prepared by mixing the pH-sensitive swellable polymer particles with aqueous polyvinyl alcohol solutions followed by crosslinking the polyvinyl alcohol with glutaric dialdehyde for use as pH sensors. Large changes in the turbidity of the polyvinyl alcohol membrane monitored using a Cary 6000 UV–visible absorbance spectrometer were observed as the pH of the buffer solution in contact with the membrane was varied. Polymer swelling was reversible for many of these NIPA-based copolymers. The buffer capacity, ionic strength, pH, and temperature of the buffer solution in contact with the membrane were systematically varied to provide an in-depth pH profile of each copolymer. A unique aspect of this study was the investigation of the response of the NIPA-based polymers to changes in the pH of the solution in contact with the membrane at low buffer concentrations (0.5 mM). The response rate and the reversibility of polymer swelling even at low buffer capacity suggest that NIPA-based copolymers can be coupled to an optical fiber for pH sensing in the environment. We envision using these polymers to monitor rising acidity levels in the ocean due to water that has become enriched in carbon dioxide that endangers shell-building organisms by reducing the amount of carbonate available to them. Full article
Show Figures

Figure 1

Back to TopTop