Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = acoustic reflector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3031 KiB  
Article
Influence and Potential of Additive Manufactured Reference Geometries for Ultrasonic Testing
by Stefan Keuler, Anne Jüngert, Martin Werz and Stefan Weihe
J. Manuf. Mater. Process. 2025, 9(7), 224; https://doi.org/10.3390/jmmp9070224 - 1 Jul 2025
Viewed by 509
Abstract
This study researches and discusses the impact of different manufacturing-induced effects of additive manufacturing (AM), such as anisotropy on sound propagation and attenuation, on the production of test specimens for ultrasonic testing (UT). It was shown that a linear, alternating hatching pattern led [...] Read more.
This study researches and discusses the impact of different manufacturing-induced effects of additive manufacturing (AM), such as anisotropy on sound propagation and attenuation, on the production of test specimens for ultrasonic testing (UT). It was shown that a linear, alternating hatching pattern led to strong anisotropy in sound velocity and attenuation, with a deviation in sound velocity and gain of over 840 m/s and 9 dB, depending on the measuring direction. Furthermore, it was demonstrated that the build direction exhibits distinct acoustic properties. The influence of surface roughness on both the reflector and coupling surfaces was analyzed. It was demonstrated that post-processing of the reflector surface is not necessary, as varying roughness levels did not significantly change the signal amplitude. However, for high frequencies, pre-treatment of the coupling surface can improve sound transmission up to 6 dB at 20 MHz. Finally, the reflection properties of flat bottom holes (FBH) in reference blocks produced by AM and electrical discharge machining (EDM) were compared. The equivalent reflector size (ERS) of the FBH, which refers to the size of an idealized defect with the same ultrasonic reflection behavior as the measured defect, was determined using the distance gain size (DGS) method—a method that uses the relationship between reflector size, scanning depth, and echo amplitude to evaluate defects. The findings suggest that printed FBHs achieve an improved match between the ERS and the actual manufactured reflector size with a deviation of less than 13%, thereby demonstrating the potential for producing standardized test blocks through additive manufacturing. Full article
Show Figures

Figure 1

21 pages, 4522 KiB  
Article
Research on the Elastic Loss Characteristics of Acoustic Echoes from Underwater Corner Reflector
by Yi Luo, Dawei Xiao, Jingzhuo Zhang and Zuqiu Li
Sensors 2025, 25(12), 3776; https://doi.org/10.3390/s25123776 - 17 Jun 2025
Viewed by 338
Abstract
The underwater corner reflector is a “concave” elastic structure, and its acoustic echo exhibits large elastic loss, which affects its practical use. To study the acoustic echo elastic loss characteristics of underwater corner reflectors, based on the characteristics of small concave elastic structures [...] Read more.
The underwater corner reflector is a “concave” elastic structure, and its acoustic echo exhibits large elastic loss, which affects its practical use. To study the acoustic echo elastic loss characteristics of underwater corner reflectors, based on the characteristics of small concave elastic structures of underwater corner reflectors, theoretical calculations were performed using the method of a combination of finite element and boundary element. Taking the underwater rigid corner reflector as the benchmark, the acoustic echo differences between similar types of underwater elastic corner reflectors were compared. The regular acoustic echo elastic loss of underwater corner reflectors was analyzed, and verified through pool experiments. The results show that, whether single-grid or multi-grid corner reflector, the actual acoustic echoes of underwater corner reflectors conform to the characteristics of elastic bodies, which differ significantly from rigid bodies and exhibit obvious elastic loss. The elastic loss mainly manifests as reduced target strength (TS), narrower directional pattern width, and poorer frequency stability of target strength, which is detrimental to practical use. This study provides assistance in proposing targeted methods to suppress elastic loss. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

13 pages, 2748 KiB  
Article
Experimental Demonstration of Nanoscale Pillar Phononic Crystal-Based Reflector for Surface Acoustic Wave Devices
by Temesgen Bailie Workie, Lingqin Zhang, Junyao Shen, Jianli Jiang, Wenfeng Yao, Quhuan Shen, Jingfu Bao and Ken-ya Hashimoto
Micromachines 2025, 16(6), 663; https://doi.org/10.3390/mi16060663 - 31 May 2025
Viewed by 477
Abstract
This article presents an investigation into the use of nanoscale phononic crystals (PnCs) as reflectors for surface acoustic wave (SAW) resonators, with a focus on pillar-based PnCs. Finite element analysis was employed to simulate the phononic dispersion characteristics and to study the effects [...] Read more.
This article presents an investigation into the use of nanoscale phononic crystals (PnCs) as reflectors for surface acoustic wave (SAW) resonators, with a focus on pillar-based PnCs. Finite element analysis was employed to simulate the phononic dispersion characteristics and to study the effects of the pillar shape, material and geometric dimensions on achievable acoustic bandgap. To validate our concept, we fabricated SAW resonators and filters incorporating the proposed pillar-based PnC reflectors. The PnC-based reflector shows promising performance, even with smaller number of PnC arrays. In this regard, with a PnC array reflector consisting of 20 lattice periods, the SAW resonator exhibits a maximum bode-Q of about 1600, which can be considered to be a reasonably high value for SAW resonators on bulk 42° Y-X lithium tantalate (42° Y-X LiTaO3) substrate. Furthermore, we implemented SAW filters using pillar-based PnC reflectors, resulting in a minimum insertion loss of less than 3 dB and out-of-band attenuation exceeding 35 dB. The authors believe that there is still a long way to go in making it fit for mass production, especially due to issues related with the accuracy of fabrication. But, upon its successful implementation, this approach of using PnCs as SAW reflectors could lead to reducing the foot-print of SAW devices, particularly for SAW-based sensors and filters. Full article
(This article belongs to the Special Issue Recent Progress in RF MEMS Devices and Applications)
Show Figures

Graphical abstract

23 pages, 7660 KiB  
Article
Research on the Acoustic Scattering Characteristics of Underwater Corner Reflector Linear Arrays
by Dawei Xiao, Jingzhuo Zhang, Zichao Chu and Yi Luo
Sensors 2025, 25(7), 2129; https://doi.org/10.3390/s25072129 - 27 Mar 2025
Viewed by 443
Abstract
This manuscript aims to optimize the acoustic scattering characteristics of underwater corner reflector linear arrays through simulation analysis and experimental validation, thereby enhancing their application efficiency in underwater acoustic countermeasures, particularly in terms of increasing acoustic echo intensity and reducing reflection blind spots. [...] Read more.
This manuscript aims to optimize the acoustic scattering characteristics of underwater corner reflector linear arrays through simulation analysis and experimental validation, thereby enhancing their application efficiency in underwater acoustic countermeasures, particularly in terms of increasing acoustic echo intensity and reducing reflection blind spots. The acoustic scattering characteristics of submerged corner reflectors were meticulously simulated using the finite element method–boundary element method coupling technique, and the simulation results were rigorously verified through tank experiments. The study focused on the impact of the number of corner reflectors and their deployment angles on acoustic echo characteristics. Simulation and experimental results revealed that increasing the number of corner reflectors significantly enhances the overall target strength, with a dual corner reflector array achieving an approximately 5 decibels higher target strength than a single corner reflector. Moreover, the interaction of scattered acoustic waves among corner reflectors in the linear array generates noticeable fluctuations in the target strength curve, with these fluctuations increasing in frequency as the number of corner reflectors rises. By judiciously adjusting the deployment angles of the corner reflectors to achieve complementarity between strong and weak reflection angles, the issue of reduced target strength near 5° and 85° can be effectively mitigated, thereby significantly reducing reflection blind spots. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

16 pages, 1813 KiB  
Article
Innovative Regression Model for Frequency-Dependent Acoustic Source Strength in the Aquatic Environment: Bridging Scientific Insight and Practical Applications
by Moshe Greenberg, Uri Kushnir and Vladimir Frid
Sensors 2025, 25(5), 1560; https://doi.org/10.3390/s25051560 - 3 Mar 2025
Cited by 1 | Viewed by 1150
Abstract
This study addresses the challenge of predicting acoustic source strength in freshwater environments, focusing on frequencies between 100–400 kHz. Acoustic signal attenuation is inherently frequency-dependent and influenced by water properties as well as the total propagation path of the acoustic wave, complicating the [...] Read more.
This study addresses the challenge of predicting acoustic source strength in freshwater environments, focusing on frequencies between 100–400 kHz. Acoustic signal attenuation is inherently frequency-dependent and influenced by water properties as well as the total propagation path of the acoustic wave, complicating the accurate determination of source strength. To address this challenge, we developed a non-linear regression model for solving the inverse problem of attenuation correction in reflected signals from typical aquatic reflectors, addressing the current absence of robust correction tools in this frequency range. The novelty of our approach lies in designing a non-linear regression framework that incorporates key physical parameters—signal energy, propagation distance, and frequency—enabling accurate source strength prediction. Using an experimental setup comprising ultrasonic transducers and a signal generator under controlled conditions, we collected a comprehensive dataset of 366 samples. The results demonstrate that our proposed model achieves reliable source strength prediction by simplifying Thorpe’s equation for freshwater environments. This research represents a significant advancement in underwater acoustics, providing a practical and reliable tool for source strength estimation in freshwater systems. The developed methodology may have broad applications across sonar technology, environmental monitoring, and aquatic research domains. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 9419 KiB  
Article
Development of Deployable Reflector Antenna for the SAR-Satellite, Part 3: Environmental Test of Structural-Thermal Model
by Hyun-Guk Kim, Dong-Geon Kim, Ryoon-Ho Do, Min-Ju Kwak, Kyung-Rae Koo and Youngjoon Yu
Appl. Sci. 2025, 15(3), 1436; https://doi.org/10.3390/app15031436 - 30 Jan 2025
Viewed by 1051
Abstract
The concept of synthetic aperture radar (SAR) has the advantage of being able to obtain high-quality images even when the target area is at night or covered with obstacles such as clouds or fog. These imaging capabilities have led to a rapid increase [...] Read more.
The concept of synthetic aperture radar (SAR) has the advantage of being able to obtain high-quality images even when the target area is at night or covered with obstacles such as clouds or fog. These imaging capabilities have led to a rapid increase in demand for space SAR imagery across a variety of sectors, including government, military, and commercial sectors. The SAR-based deployable reflector antenna was developed in this series of paper. The satellite performance is influenced by the aperture size of an antenna. To improve the image acquisition performance, the SAR antenna has the configuration of several foldable CFRP reflectors. In this paper, the experimental investigation of the Structural-thermal model deployable reflector antenna is performed. During the launch condition, the satellite and payload are subjected to the dynamic load. In the STM phase, the acoustic test was conducted to evaluate the structural stability of the deployable reflector antenna within the acoustic environment. The sinusoidal vibration test was implemented to investigate the fundamental frequency for inplane/normal directions and evaluate the structural stability of reflector antenna. By using experimental data obtained from the thermal-balance test, the well-correlated thermal analysis model was established to execute the orbital thermal analysis. The experimental results of the environmental test in STM phase show that the deployable reflector antenna has structural stability for the structural/thermal environments. The configuration of the deployable reflector antenna determined in STM phase can be applied to the qualification model. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

13 pages, 7956 KiB  
Article
Design and Investigation of a High-Performance Quartz-Based SAW Temperature Sensor
by Jianfei Jiang
Micromachines 2024, 15(11), 1349; https://doi.org/10.3390/mi15111349 - 31 Oct 2024
Cited by 1 | Viewed by 1272
Abstract
In this work, a surface acoustic wave (SAW) temperature sensor based on a quartz substrate was designed and investigated. Employing the Coupling-of-Modes (COM) model, a detailed analysis was conducted on the effects of the number of interdigital transducers (IDTs), the number of reflectors, [...] Read more.
In this work, a surface acoustic wave (SAW) temperature sensor based on a quartz substrate was designed and investigated. Employing the Coupling-of-Modes (COM) model, a detailed analysis was conducted on the effects of the number of interdigital transducers (IDTs), the number of reflectors, and their spacing on the performance of the SAW device. The impact of the transversal mode of quartz SAWs on the device was subsequently examined using the finite element method (FEM). The simulation results indicate that optimizing these structural parameters significantly enhances the sensor’s sensitivity and frequency stability. SAW devices with optimal structural parameters were fabricated, and their resonant frequencies were tested across a temperature range of 25–150 °C. Experimental results demonstrate that the SAW temperature sensor maintains high performance stability and data reliability throughout the entire temperature range, achieving a Bode-Q of 7700. Furthermore, the sensor exhibits excellent linearity and repeatability. An analysis of the sensor’s response under varying temperature conditions reveals a significant temperature dependency on its Temperature Coefficient of Frequency (TCF). This feature suggests that the sensor possesses potential advantages for applications in industrial process control and environmental monitoring. Full article
Show Figures

Figure 1

12 pages, 5227 KiB  
Article
Honeycomb-Shaped Phononic Crystals on 42°Y-X LiTaO3/SiO2/Poly-Si/Si Substrate for Improved Performance and Miniaturization
by Panliang Tang, Hongzhi Pan, Temesgen Bailie Workie, Jia Mi, Jingfu Bao and Ken-ya Hashimoto
Micromachines 2024, 15(10), 1256; https://doi.org/10.3390/mi15101256 - 14 Oct 2024
Cited by 4 | Viewed by 3425
Abstract
A SAW device with a multi-layered piezoelectric substrate has excellent performance due to its high Q value. A multi-layer piezoelectric substrate combined with phononic crystal structures capable of acoustic wave reflection with a very small array can achieve miniaturization and high performance. In [...] Read more.
A SAW device with a multi-layered piezoelectric substrate has excellent performance due to its high Q value. A multi-layer piezoelectric substrate combined with phononic crystal structures capable of acoustic wave reflection with a very small array can achieve miniaturization and high performance. In this paper, a honeycomb-shaped phononic crystal structure based on 42°Y-X LT/SiO2/poly-Si/Si-layered substrate is proposed. The analysis of the bandgap distribution under various filling fractions was carried out using dispersion and transmission characteristics. In order to study the application of PnCs in SAW devices, one-port resonators with different reflectors were compared and analyzed. Based on the frequency response curves and Bode-Q value curves, it was found that when the HC-PnC structure is used as a reflector, it can not only improve the transmission loss of the resonator but also reduce the size of the device. Full article
Show Figures

Figure 1

8 pages, 3631 KiB  
Communication
Low-Voltage High-Frequency Lamb-Wave-Driven Micromotors
by Zhaoxun Wang, Wei Wei, Menglun Zhang, Xuexin Duan, Quanning Li, Xuejiao Chen, Qingrui Yang and Wei Pang
Micromachines 2024, 15(6), 716; https://doi.org/10.3390/mi15060716 - 29 May 2024
Viewed by 3657
Abstract
By leveraging the benefits of a high energy density, miniaturization and integration, acoustic-wave-driven micromotors have recently emerged as powerful tools for microfluidic actuation. In this study, a Lamb-wave-driven micromotor is proposed for the first time. This motor consists of a ring-shaped Lamb wave [...] Read more.
By leveraging the benefits of a high energy density, miniaturization and integration, acoustic-wave-driven micromotors have recently emerged as powerful tools for microfluidic actuation. In this study, a Lamb-wave-driven micromotor is proposed for the first time. This motor consists of a ring-shaped Lamb wave actuator array with a rotor and a fluid coupling layer in between. On a driving mechanism level, high-frequency Lamb waves of 380 MHz generate strong acoustic streaming effects over an extremely short distance; on a mechanical design level, each Lamb wave actuator incorporates a reflector on one side of the actuator, while an acoustic opening is incorporated on the other side to limit wave energy leakage; and on electrical design level, the electrodes placed on the two sides of the film enhance the capacitance in the vertical direction, which facilitates impedance matching within a smaller area. As a result, the Lamb-wave-driven solution features a much lower driving voltage and a smaller size compared with conventional surface acoustic-wave-driven solutions. For an improved motor performance, actuator array configurations, rotor sizes, and liquid coupling layer thicknesses are examined via simulations and experiments. The results show the micromotor with a rotor with a diameter of 5 mm can achieve a maximum angular velocity of 250 rpm with an input voltage of 6 V. The proposed micromotor is a new prototype for acoustic-wave-driven actuators and demonstrates potential for lab-on-a-chip applications. Full article
Show Figures

Figure 1

12 pages, 5410 KiB  
Article
Rational Design of a Surface Acoustic Wave Device for Wearable Body Temperature Monitoring
by Yudi Xie, Minglong Deng, Jinkai Chen, Yue Duan, Jikai Zhang, Danyu Mu, Shurong Dong, Jikui Luo, Hao Jin and Shoji Kakio
Micromachines 2024, 15(5), 555; https://doi.org/10.3390/mi15050555 - 23 Apr 2024
Cited by 2 | Viewed by 2216
Abstract
Continuous monitoring of vital signs based on advanced sensing technologies has attracted extensive attention due to the ravages of COVID-19. A maintenance-free and low-cost passive wireless sensing system based on surface acoustic wave (SAW) device can be used to continuously monitor temperature. However, [...] Read more.
Continuous monitoring of vital signs based on advanced sensing technologies has attracted extensive attention due to the ravages of COVID-19. A maintenance-free and low-cost passive wireless sensing system based on surface acoustic wave (SAW) device can be used to continuously monitor temperature. However, the current SAW-based passive sensing system is mostly designed at a low frequency around 433 MHz, which leads to the relatively large size of SAW devices and antenna, hindering their application in wearable devices. In this paper, SAW devices with a resonant frequency distributed in the 870 MHz to 960 MHz range are rationally designed and fabricated. Based on the finite-element method (FEM) and coupling-of-modes (COM) model, the device parameters, including interdigital transducer (IDT) pairs, aperture size, and reflector pairs, are systematically optimized, and the theoretical and experimental results show high consistency. Finally, SAW temperature sensors with a quality factor greater than 2200 are obtained for real-time temperature monitoring ranging from 20 to 50 °C. Benefitting from the higher operating frequency, the size of the sensing system can be reduced for human body temperature monitoring, showing its potential to be used as a wearable monitoring device in the future. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices)
Show Figures

Figure 1

18 pages, 5812 KiB  
Article
Design of an Ultrasound Sensing System for Estimation of the Porosity of Agricultural Soils
by Stuart Bradley and Chandra Ghimire
Sensors 2024, 24(7), 2266; https://doi.org/10.3390/s24072266 - 2 Apr 2024
Cited by 4 | Viewed by 2504
Abstract
The design of a readily useable technology for routine paddock-scale soil porosity estimation is described. The method is non-contact (proximal) and typically from “on-the-go” sensors mounted on a small farm vehicle around 1 m above the soil surface. This ultrasonic sensing method is [...] Read more.
The design of a readily useable technology for routine paddock-scale soil porosity estimation is described. The method is non-contact (proximal) and typically from “on-the-go” sensors mounted on a small farm vehicle around 1 m above the soil surface. This ultrasonic sensing method is unique in providing estimates of porosity by a non-invasive, cost-effective, and relatively simple method. Challenges arise from the need to have a compact low-power rigid structure and to allow for pasture cover and surface roughness. The high-frequency regime for acoustic reflections from a porous material is a function of the porosity ϕ, the tortuosity α, and the angle of incidence θ. There is no dependence on frequency, so measurements must be conducted at two or more angles of incidence θ to obtain two or more equations in the unknown soil properties ϕ and α. Sensing and correcting for scattering of ultrasound from a rough soil surface requires measurements at three or more angles of incidence. A system requiring a single transmitter/receiver pair to be moved from one angle to another is not viable for rapid sampling. Therefore, the design includes at least three transmitter/reflector pairs placed at identical distances from the ground so that they would respond identically to power reflected from a perfectly reflecting surface. A single 25 kHz frequency is a compromise which allows for the frequency-dependent signal loss from a natural rough agricultural soil surface. Multiple-transmitter and multiple-microphone arrays are described which give a good signal-to-noise ratio while maintaining a compact system design. The resulting arrays have a diameter of 100 mm. Pulsed ultrasound is used so that the reflected sound can be separated from sound travelling directly through the air horizontally from transmitter to receiver. The average porosity estimated for soil samples in the laboratory and in the field is found to be within around 0.04 of the porosity measured independently. This level of variation is consistent with uncertainties in setting the angle of incidence, although assumptions made in modelling the interaction of ultrasound with the rough surface no doubt also contribute. Although the method is applicable to all soil types, the current design has only been tested on dry, vegetation-free soils for which the sampled area does not contain large animal footprints or rocks. Full article
(This article belongs to the Special Issue Sensor-Based Crop and Soil Monitoring in Precise Agriculture)
Show Figures

Graphical abstract

12 pages, 3947 KiB  
Article
An Impedance-Loaded Surface Acoustic Wave Corrosion Sensor for Infrastructure Monitoring
by Jagannath Devkota, David W. Greve, Nathan Diemler, Richard Pingree and Ruishu Wright
Sensors 2024, 24(3), 789; https://doi.org/10.3390/s24030789 - 25 Jan 2024
Viewed by 2256
Abstract
Passive surface acoustic wave (SAW) devices are attractive candidates for continuous wireless monitoring of corrosion in large infrastructures. However, acoustic loss in the aqueous medium and limited read range usually create challenges in their widespread use for monitoring large systems such as oil [...] Read more.
Passive surface acoustic wave (SAW) devices are attractive candidates for continuous wireless monitoring of corrosion in large infrastructures. However, acoustic loss in the aqueous medium and limited read range usually create challenges in their widespread use for monitoring large systems such as oil and gas (O&G) pipelines, aircraft, and processing plants. This paper presents the investigation of impedance-loaded reflective delay line (IL-RDL) SAW devices for monitoring metal corrosion under O&G pipeline-relevant conditions. Specifically, we studied the effect of change in resistivity of a reflector on the backscattered signal of an RDL and investigated an optimal range through simulation. This was followed by the experimental demonstrations of real-time monitoring of Fe film corrosion in pressurized (550 psi) humid CO2 conditions. Additionally, remote monitoring of Fe film corrosion in an acidic solution inside a 70 m carbon steel pipe was demonstrated using guided waves. This paper also suggests potential ways to improve the sensing response of IL-RDLs. Full article
Show Figures

Figure 1

11 pages, 3072 KiB  
Article
High Electromechanical Coupling Coefficient of Longitudinally Excited Shear Wave Resonator Based on Optimized Bragg Structure
by Zhiheng Zhang, Weipeng Xuan, Hong Jiang, Weilun Xie, Zhaoling Li, Shurong Dong, Hao Jin and Jikui Luo
Micromachines 2023, 14(11), 2086; https://doi.org/10.3390/mi14112086 - 11 Nov 2023
Cited by 1 | Viewed by 1831
Abstract
In this work, a longitudinally excited shear-wave resonator (YBAR) based on single-crystalline lithium tantalate (LiTaO3, LT) thin film is proposed. The YBAR has a 200 nm X-cut thin film and molybdenum electrode. A high effective electromechanical coupling coefficient (k2eff [...] Read more.
In this work, a longitudinally excited shear-wave resonator (YBAR) based on single-crystalline lithium tantalate (LiTaO3, LT) thin film is proposed. The YBAR has a 200 nm X-cut thin film and molybdenum electrode. A high effective electromechanical coupling coefficient (k2eff) of up to 19% for the suspension-type structure was obtained. Furthermore, a Bragg reflector (SiO2/Pt) with optimized layer thickness ratio was employed to improve the performance of the YBAR. Compared to the acoustic wave resonators with the conventional quarter-wave (λ/4) Bragg reflector, the proposed YBAR with an optimized Bragg reflector can reflect both the longitudinal and shear waves efficiently, and resonators with spurious-free response and high quality (Q) value were achieved. This work provides a potential solution to enabling high coupling micro-acoustic resonators with high Q factor in the 5G/6G communication system. Full article
(This article belongs to the Special Issue Acoustic Micro/Nano Manipulation and Its Applications)
Show Figures

Figure 1

16 pages, 24539 KiB  
Article
Anchor Loss Reduction in Micro-Electro Mechanical Systems Flexural Beam Resonators Using Trench Hole Array Reflectors
by Mohammad Kazemi, Seyedfakhreddin Nabavi, Mathieu Gratuze and Frederic Nabki
Micromachines 2023, 14(11), 2036; https://doi.org/10.3390/mi14112036 - 31 Oct 2023
Cited by 4 | Viewed by 2121
Abstract
The quality factor of microelectromechanical resonators is a crucial performance metric and has thus been the subject of numerous studies aimed at maximizing its value by minimizing the anchor loss. This work presents a study on the effect of elastic wave reflectors on [...] Read more.
The quality factor of microelectromechanical resonators is a crucial performance metric and has thus been the subject of numerous studies aimed at maximizing its value by minimizing the anchor loss. This work presents a study on the effect of elastic wave reflectors on the quality factor of MEMS clamped–clamped flexural beam resonators. The elastic wave reflectors are a series of holes created by trenches in the silicon substrate of the resonators. In this regard, four different shapes of arrayed holes are considered, i.e., two sizes of squares and two half circles with different directions are positioned in proximity to the anchors. The impact of these shapes on the quality factor is examined through both numerical simulations and experimental analysis. A 2D in-plane wave propagation model with a low-reflecting fixed boundary condition was used in the numerical simulation to predict the behavior, and the MEMS resonator prototypes were fabricated using a commercially available micro-fabrication process to validate the findings. Notably, the research identifies that half-circle-shaped holes with their curved sides facing the anchors yield the most promising results. With these reflectors, the quality factor of the resonator is increased by a factor of 1.70× in air or 1.72× in vacuum. Full article
Show Figures

Figure 1

14 pages, 9457 KiB  
Article
Measurement of the Acoustic Relaxation Absorption Spectrum of CO2 Using a Distributed Bragg Reflector Fiber Laser
by Kun Shen, Jixian Yuan, Min Li, Xiaoyan Wen and Haifei Lu
Sensors 2023, 23(10), 4740; https://doi.org/10.3390/s23104740 - 14 May 2023
Cited by 3 | Viewed by 1904
Abstract
Reconstruction of the acoustic relaxation absorption curve is a powerful approach to ultrasonic gas sensing, but it requires knowledge of a series of ultrasonic absorptions at various frequencies around the effective relaxation frequency. An ultrasonic transducer is the most widely deployed sensor for [...] Read more.
Reconstruction of the acoustic relaxation absorption curve is a powerful approach to ultrasonic gas sensing, but it requires knowledge of a series of ultrasonic absorptions at various frequencies around the effective relaxation frequency. An ultrasonic transducer is the most widely deployed sensor for ultrasonic wave propagation measurement and works only at a fixed frequency or in a specific environment like water, so a large number of ultrasonic transducers operating at various frequencies are required to recover an acoustic absorption curve with a relative large bandwidth, which cannot suit large-scale practical applications. This paper proposes a wideband ultrasonic sensor using a distributed Bragg reflector (DBR) fiber laser for gas concentration detection through acoustic relaxation absorption curve reconstruction. With a relative wide and flat frequency response, the DBR fiber laser sensor measures and restores a full acoustic relaxation absorption spectrum of CO2 using a decompression gas chamber between 0.1 and 1 atm to accommodate the main molecular relaxation processes, and interrogates with a non-equilibrium Mach-Zehnder interferometer (NE-MZI) to gain a sound pressure sensitivity of −45.4 dB. The measurement error of the acoustic relaxation absorption spectrum is less than 1.32%. Full article
Show Figures

Figure 1

Back to TopTop