Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = acoustic diode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2246 KiB  
Article
Cost-Effective Photoacoustic Imaging Using High-Power Light-Emitting Diodes Driven by an Avalanche Oscillator
by Alberto Prud’homme and Frederic Nabki
Sensors 2025, 25(6), 1643; https://doi.org/10.3390/s25061643 - 7 Mar 2025
Cited by 1 | Viewed by 1132
Abstract
Photoacoustic imaging (PAI) is an emerging modality that merges optical and ultrasound imaging to provide high-resolution and functional insights into biological tissues. This technique leverages the photoacoustic effect, where tissue absorbs pulsed laser light, generating acoustic waves that are captured to reconstruct images. [...] Read more.
Photoacoustic imaging (PAI) is an emerging modality that merges optical and ultrasound imaging to provide high-resolution and functional insights into biological tissues. This technique leverages the photoacoustic effect, where tissue absorbs pulsed laser light, generating acoustic waves that are captured to reconstruct images. While lasers have traditionally been the light source for PAI, their high cost and complexity drive interest towards alternative sources like light-emitting diodes (LEDs). This study evaluates the feasibility of using an avalanche oscillator to drive high-power LEDs in a basic photoacoustic imaging system. An avalanche oscillator, utilizing semiconductor avalanche breakdown to produce high-voltage pulses, powers LEDs to generate short, high-intensity light pulses. The system incorporates an LED array, an ultrasonic transducer, and an amplifier for signal detection. Key findings include the successful generation of short light pulses with sufficient intensity to excite materials and the system’s capability to produce detectable photoacoustic signals in both air and water environments. While LEDs demonstrate cost-effectiveness and portability advantages, challenges such as lower power and broader spectral bandwidth compared to lasers are noted. The results affirm that LED-based photoacoustic systems, though currently less advanced than laser-based systems, present a promising direction for affordable and portable imaging technologies. Full article
(This article belongs to the Special Issue Photonics for Advanced Spectroscopy and Sensing)
Show Figures

Figure 1

19 pages, 3225 KiB  
Review
Protection Circuit Design for Ultrasound Transducers
by Hojong Choi
Appl. Sci. 2025, 15(4), 2141; https://doi.org/10.3390/app15042141 - 18 Feb 2025
Viewed by 1030
Abstract
In ultrasound systems, a protection circuit must be used to protect the receiver electronics from the high-voltage pulses generated by the transmitter and to minimize the signal loss and distortion of the low-voltage echoes generated by the transducer. Especially for certain ultrasound applications, [...] Read more.
In ultrasound systems, a protection circuit must be used to protect the receiver electronics from the high-voltage pulses generated by the transmitter and to minimize the signal loss and distortion of the low-voltage echoes generated by the transducer. Especially for certain ultrasound applications, such as intravascular ultrasound, particle manipulation, and cell stimulation, proper performance of the ultrasound transducers is desirable due to their low sensitivity. As the operating frequency of the ultrasound transducer increases, the size of the transducer decreases, increasing the amplitude of the transmitted signals to achieve proper acoustic performance. In such environments, a protection circuit can be used to protect the receiver electronics in ultrasound systems. To design suitable protection circuits, transistors, resistors, capacitors, and inductors are used, and the parameters of insertion loss, noise, total harmonic distortion, and recovery time of the protection circuits must be carefully considered. Various approaches have been developed to protect circuits such as transmission lines, transformers, bridge diodes, and metal-oxide-semiconductor field-effect transistor devices. Certain protection circuits are beneficial for impedance matching and area reduction. Other protection circuits have been designed to increase bandwidth, reduce insertion loss, or improve the signal-to-noise ratio for different ultrasound applications. Therefore, this review article may be useful for academic ultrasound researchers or circuit designers in selecting appropriate protection circuit types for specific ultrasound transducer applications. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

14 pages, 7528 KiB  
Article
Fine-Tuning of Optical Resonance Wavelength of Surface-Micromachined Optical Ultrasound Transducer Arrays for Single-Wavelength Light Source Readout
by Zhiyu Yan, Cheng Fang and Jun Zou
Micromachines 2024, 15(9), 1111; https://doi.org/10.3390/mi15091111 - 31 Aug 2024
Cited by 1 | Viewed by 1920
Abstract
This article reports the fine-tuning of the optical resonance wavelength (ORW) of surface-micromachined optical ultrasound transducer (SMOUT) arrays to enable ultrasound data readout with non-tunable interrogation light sources for photoacoustic computed tomography (PACT). Permanent ORW tuning is achieved by material deposition onto or [...] Read more.
This article reports the fine-tuning of the optical resonance wavelength (ORW) of surface-micromachined optical ultrasound transducer (SMOUT) arrays to enable ultrasound data readout with non-tunable interrogation light sources for photoacoustic computed tomography (PACT). Permanent ORW tuning is achieved by material deposition onto or subtraction from the top diaphragm of each element with sub-nanometer resolution. For demonstration, a SMOUT array is first fabricated, and its ORW is tuned for readout with an 808 nm laser diode (LD). Experiments are conducted to characterize the optical and acoustic performances of the elements within the center region of the SMOUT array. Two-dimensional and three-dimensional PACT (photoacoustic computed tomography) is also performed to evaluate the imaging performance of the ORW-tuned SMOUT array. The results show that the ORW tuning does not degrade the optical, acoustic, and overall imaging performances of the SMOUT elements. As a result, the fine-tuning method enables new SMOUT-based PACT systems that are low cost, compact, powerful, and even higher speed, with parallel readout capability. Full article
Show Figures

Figure 1

17 pages, 4827 KiB  
Communication
Coverage Performance of Non-Lambertian Underwater Wireless Optical Communications for 6G Internet of Things
by Jupeng Ding, Chih-Lin I, Jintao Wang and Jian Song
Inventions 2024, 9(3), 49; https://doi.org/10.3390/inventions9030049 - 28 Apr 2024
Cited by 3 | Viewed by 1872
Abstract
In medium- and short-range underwater application scenarios, thanks to the superior performance in transmission bandwidth, link latency, and security, underwater wireless optical communication (UWOC) is growing to be a promising complement to the mature underwater acoustic communication technique. In order to extend the [...] Read more.
In medium- and short-range underwater application scenarios, thanks to the superior performance in transmission bandwidth, link latency, and security, underwater wireless optical communication (UWOC) is growing to be a promising complement to the mature underwater acoustic communication technique. In order to extend the future 6G Internet of Things (IOT) to various challenging and valuable underwater scenarios, the underwater spatial coverage and transmission performance has been actively discussed in typical seawater environments. However, almost all current works focus on underwater scenarios including light-emitting diode (LED) transmitters with well-known Lambertian optical beams and fail to characterize the scenarios adopting LED transmitters with distinctive non-Lambertian beam patterns. For addressing this limitation, in this article, the coverage performance of non-Lambertian UWOC for 6G is analyzed and illustrated. Furthermore, the switchable optical beam configuration scheme is proposed and estimated for UWOC. Numerical results illustrate that, compared with about 15.42 dB signal-to-noise ratio (SNR) fluctuation amplitude for UWOC with baseline Lambertian optical beam configuration, the corresponding SNR fluctuation amplitudes of UWOC based with two typical non-Lambertian optical beams are 8.71 dB and 24.60 dB. Furthermore, once the receiver depth is increased to 6.0 m, the SNR fluctuation amplitude for the above three UWOC coverage with distinct beam configuration could be reduced to 5.61 dB, 1.58 dB, and 10.33 dB, respectively. Full article
Show Figures

Figure 1

13 pages, 4222 KiB  
Article
A Miniaturized 3D-Printed Quartz-Enhanced Photoacoustic Spectroscopy Sensor for Methane Detection with a High-Power Diode Laser
by Yanjun Chen, Tiantian Liang, Shunda Qiao and Yufei Ma
Sensors 2023, 23(8), 4034; https://doi.org/10.3390/s23084034 - 17 Apr 2023
Cited by 10 | Viewed by 2815
Abstract
In this invited paper, a highly sensitive methane (CH4) trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) technique using a high-power diode laser and a miniaturized 3D-printed acoustic detection unit (ADU) is demonstrated for the first time. A high-power diode [...] Read more.
In this invited paper, a highly sensitive methane (CH4) trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) technique using a high-power diode laser and a miniaturized 3D-printed acoustic detection unit (ADU) is demonstrated for the first time. A high-power diode laser emitting at 6057.10 cm−1 (1650.96 nm), with the optical power up to 38 mW, was selected as the excitation source to provide a strong excitation. A 3D-printed ADU, including the optical and photoacoustic detection elements, had a dimension of 42 mm, 27 mm, and 8 mm in length, width, and height, respectively. The total weight of this 3D-printed ADU, including all elements, was 6 g. A quartz tuning fork (QTF) with a resonant frequency and Q factor of 32.749 kHz and 10,598, respectively, was used as an acoustic transducer. The performance of the high-power diode laser-based CH4–QEPAS sensor, with 3D-printed ADU, was investigated in detail. The optimum laser wavelength modulation depth was found to be 0.302 cm−1. The concentration response of this CH4–QEPAS sensor was researched when the CH4 gas sample, with different concentration samples, was adopted. The obtained results showed that this CH4–QEPAS sensor had an outstanding linear concentration response. The minimum detection limit (MDL) was found to be 14.93 ppm. The normalized noise equivalent absorption (NNEA) coefficient was obtained as 2.20 × 10−7 cm−1W/Hz−1/2. A highly sensitive CH4–QEPAS sensor, with a small volume and light weight of ADU, is advantageous for the real applications. It can be portable and carried on some platforms, such as an unmanned aerial vehicle (UAV) and a balloon. Full article
(This article belongs to the Special Issue Important Achievements in Optical Measurements in China 2022–2023)
Show Figures

Figure 1

10 pages, 3168 KiB  
Article
High-Quality AlN Grown on Si(111) Substrate by Epitaxial Lateral Overgrowth
by Yingnan Huang, Jianxun Liu, Xiujian Sun, Xiaoning Zhan, Qian Sun, Hongwei Gao, Meixin Feng, Yu Zhou and Hui Yang
Crystals 2023, 13(3), 454; https://doi.org/10.3390/cryst13030454 - 5 Mar 2023
Cited by 10 | Viewed by 3784
Abstract
We report on the epitaxial lateral overgrowth (ELO) of high-quality AlN on stripe-patterned Si(111) substrates with various trench widths. By narrowing down the trench and ridge widths of patterned Si substrates, crack-free, 6-micrometer-thick, high-quality AlN films on Si substrates were produced. The full-width-at-half-maximum [...] Read more.
We report on the epitaxial lateral overgrowth (ELO) of high-quality AlN on stripe-patterned Si(111) substrates with various trench widths. By narrowing down the trench and ridge widths of patterned Si substrates, crack-free, 6-micrometer-thick, high-quality AlN films on Si substrates were produced. The full-width-at-half-maximum values of the X-ray-diffraction rocking curves for the AlN (0002) and (101¯2) planes were as low as 260 and 374 arcsec, respectively, corresponding to a record low dislocation density of 1.3 × 109 cm−2. Through the combination of a micro-Raman study and the X-ray diffraction analysis, it was found that narrowing the stripe width from 5 μm to 3 μm can reduce the vertical growth thickness before coalescence, resulting in a large decrease in the internal tensile stress and tilt angle, and, therefore, better suppression in the cracks and dislocations of the ELO–AlN. This work paves the way for the fabrication of high-performance Al(Ga)N-based thin-film devices such as ultraviolet light-emitting diodes and AlN bulk acoustic resonators grown on Si. Full article
(This article belongs to the Special Issue Epitaxial Growth of Crystalline Semiconductors)
Show Figures

Figure 1

31 pages, 13738 KiB  
Review
Two Dimensional Heterostructures for Optoelectronics: Current Status and Future Perspective
by Zaheer Ud Din Babar, Ali Raza, Antonio Cassinese and Vincenzo Iannotti
Molecules 2023, 28(5), 2275; https://doi.org/10.3390/molecules28052275 - 28 Feb 2023
Cited by 16 | Viewed by 5491
Abstract
Researchers have found various families of two-dimensional (2D) materials and associated heterostructures through detailed theoretical work and experimental efforts. Such primitive studies provide a framework to investigate novel physical/chemical characteristics and technological aspects from micro to nano and pico scale. Two-dimensional van der [...] Read more.
Researchers have found various families of two-dimensional (2D) materials and associated heterostructures through detailed theoretical work and experimental efforts. Such primitive studies provide a framework to investigate novel physical/chemical characteristics and technological aspects from micro to nano and pico scale. Two-dimensional van der Waals (vdW) materials and their heterostructures can be obtained to enable high-frequency broadband through a sophisticated combination of stacking order, orientation, and interlayer interactions. These heterostructures have been the focus of much recent research due to their potential applications in optoelectronics. Growing the layers of one kind of 2D material over the other, controlling absorption spectra via external bias, and external doping proposes an additional degree of freedom to modulate the properties of such materials. This mini review focuses on current state-of-the-art material design, manufacturing techniques, and strategies to design novel heterostructures. In addition to a discussion of fabrication techniques, it includes a comprehensive analysis of the electrical and optical properties of vdW heterostructures (vdWHs), particularly emphasizing the energy-band alignment. In the following sections, we discuss specific optoelectronic devices, such as light-emitting diodes (LEDs), photovoltaics, acoustic cavities, and biomedical photodetectors. Furthermore, this also includes a discussion of four different 2D-based photodetector configurations according to their stacking order. Moreover, we discuss the challenges that remain to be addressed in order to realize the full potential of these materials for optoelectronics applications. Finally, as future perspectives, we present some key directions and express our subjective assessment of upcoming trends in the field. Full article
Show Figures

Figure 1

10 pages, 1532 KiB  
Article
Surface Acoustic Wave Propagation of GaN/Sapphire Integrated with a Gold Guiding Layer
by Muhammad Musoddiq Jaafar, Mohd Farhanulhakim Mohd Razip Wee, Hoang-Tan-Ngoc Nguyen, Le Trung Hieu, Rahul Rai, Ashish Kumar Sahoo, Chang Fu Dee, Edward Yi Chang, Burhanuddin Yeop Majlis and Clarence Augustine TH Tee
Sensors 2023, 23(5), 2464; https://doi.org/10.3390/s23052464 - 23 Feb 2023
Cited by 2 | Viewed by 2776
Abstract
Gallium nitride (GaN), widely known as a wide bandgap semiconductor material, has been mostly employed in high power devices, light emitting diodes (LED), and optoelectronic applications. However, it could be exploited differently due to its piezoelectric properties, such as its higher SAW velocity [...] Read more.
Gallium nitride (GaN), widely known as a wide bandgap semiconductor material, has been mostly employed in high power devices, light emitting diodes (LED), and optoelectronic applications. However, it could be exploited differently due to its piezoelectric properties, such as its higher SAW velocity and strong electromechanical coupling. In this study, we investigated the affect of the presence of a guiding layer made from titanium/gold on the surface acoustic wave propagation of the GaN/sapphire substrate. By fixing the minimum thickness of the guiding layer at 200 nm, we could observe a slight frequency shift compared to the sample without a guiding layer, with the presence of different types of surface mode waves (Rayleigh and Sezawa). This thin guiding layer could be efficient in transforming the propagation modes, acting as a sensing layer for the binding of biomolecules to the gold layer, and influencing the output signal in terms of frequency or velocity. The proposed GaN/sapphire device integrated with a guiding layer could possibly be used as a biosensor and in wireless telecommunication applications. Full article
(This article belongs to the Special Issue Sensors and Actuators for Wearable and Implantable Devices)
Show Figures

Figure 1

14 pages, 3294 KiB  
Article
Class-C Pulsed Power Amplifier with Voltage Divider Integrated with High-Voltage Transistor and Switching Diodes for Handheld Ultrasound Instruments
by Hojong Choi
Energies 2022, 15(21), 7836; https://doi.org/10.3390/en15217836 - 22 Oct 2022
Cited by 2 | Viewed by 1887
Abstract
A novel Class-C pulsed power amplifier with a voltage divider integrated with a high-voltage transistor and switching diodes is proposed to reduce DC power consumption and increase the maximum output power for handheld ultrasound instruments. Ultrasonic transducers in ultrasound instruments are devices that [...] Read more.
A novel Class-C pulsed power amplifier with a voltage divider integrated with a high-voltage transistor and switching diodes is proposed to reduce DC power consumption and increase the maximum output power for handheld ultrasound instruments. Ultrasonic transducers in ultrasound instruments are devices that convert electrical power into acoustic power or vice versa, which are triggered by power amplifiers. Efficient power conversion is also very important to avoid thermal issues in handheld ultrasound instruments owing to limited battery power and excessive heat generation caused by the enclosed structures of the handheld ultrasound instruments. Consequently, higher output power and lower DC power consumption are desirable for a power amplifier. Therefore, a circuit to control power amplifiers was developed. The measured output power (94.66 W) and DC power consumption (2.12 W) when using the proposed circuit are better than those when using the existing Class-C pulsed power amplifier (74.90 W and 2.77 W, respectively). In the pulse-echo measurement mode, the echo amplitude (12.34 mVp-p) and bandwidth (27.74%) of the proposed Class-C pulsed power amplifier were superior to those of the existing Class-C pulsed power amplifier (4.38 mVp-p and 23.25%, respectively). Therefore, the proposed structure can improve the performance of handheld ultrasound instruments. Full article
(This article belongs to the Special Issue Pulsed Power Science and High Voltage)
Show Figures

Figure 1

11 pages, 2215 KiB  
Article
Low-Frequency Vibration Sensor with Dual-Fiber Fabry–Perot Interferometer Using a Low-Coherence LED
by Mu-Chun Wang, Shou-Yen Chao, Chun-Yeon Lin, Cheng-Hsun-Tony Chang and Wen-How Lan
Crystals 2022, 12(8), 1079; https://doi.org/10.3390/cryst12081079 - 1 Aug 2022
Cited by 12 | Viewed by 4588
Abstract
In this paper, we propose a dual-fiberoptic Fabry–Perot interferometer (FFPI) sensing system integrated with a low-cost and low-coherence light-emitting diode (LED) as a light source to detect dynamic vibration caused by acoustic waves with a cut-off frequency of 200 Hz. When the acoustic [...] Read more.
In this paper, we propose a dual-fiberoptic Fabry–Perot interferometer (FFPI) sensing system integrated with a low-cost and low-coherence light-emitting diode (LED) as a light source to detect dynamic vibration caused by acoustic waves with a cut-off frequency of 200 Hz. When the acoustic signals are applied, the sensing FFPI on a Styrofoam sheet provides the function of partially transforming the longitudinal energy as the transverse energy generates a phase shift in the sensing FFPI cavity. The light reflected from the sensor is demodulated by the reference FFPI to extract the measurand. The low-power (sub-nW) optical signals are transferred into electrical signals, processed by a designed optical receiver, and recorded for data analysis. Full article
(This article belongs to the Special Issue Optoelectronics and Photonics in Crystals)
Show Figures

Figure 1

19 pages, 6135 KiB  
Article
Vertical and Lateral Etch Survey of Ferroelectric AlN/Al1−xScxN in Aqueous KOH Solutions
by Zichen Tang, Giovanni Esteves, Jeffrey Zheng and Roy H. Olsson
Micromachines 2022, 13(7), 1066; https://doi.org/10.3390/mi13071066 - 2 Jul 2022
Cited by 10 | Viewed by 5433
Abstract
Due to their favorable electromechanical properties, such as high sound velocity, low dielectric permittivity and high electromechanical coupling, Aluminum Nitride (AlN) and Aluminum Scandium Nitride (Al1−xScxN) thin films have achieved widespread application in radio frequency (RF) acoustic devices. The [...] Read more.
Due to their favorable electromechanical properties, such as high sound velocity, low dielectric permittivity and high electromechanical coupling, Aluminum Nitride (AlN) and Aluminum Scandium Nitride (Al1−xScxN) thin films have achieved widespread application in radio frequency (RF) acoustic devices. The resistance to etching at high scandium alloying, however, has inhibited the realization of devices able to exploit the highest electromechanical coupling coefficients. In this work, we investigated the vertical and lateral etch rates of sputtered AlN and Al1−xScxN with Sc concentration x ranging from 0 to 0.42 in aqueous potassium hydroxide (KOH). Etch rates and the sidewall angles were reported at different temperatures and KOH concentrations. We found that the trends of the etch rate were unanimous: while the vertical etch rate decreases with increasing Sc alloying, the lateral etch rate exhibits a V-shaped transition with a minimum etch rate at x = 0.125. By performing an etch on an 800 nm thick Al0.875Sc0.125N film with 10 wt% KOH at 65 °C for 20 min, a vertical sidewall was formed by exploiting the ratio of the 1011¯ planes and 11¯00 planes etch rates. This method does not require preliminary processing and is potentially beneficial for the fabrication of lamb wave resonators (LWRs) or other microelectromechanical systems (MEMS) structures, laser mirrors and Ultraviolet Light-Emitting Diodes (UV-LEDs). It was demonstrated that the sidewall angle tracks the trajectory that follows the 1¯212¯ of the hexagonal crystal structure when different c/a ratios were considered for elevated Sc alloying levels, which may be used as a convenient tool for structure/composition analysis. Full article
Show Figures

Figure 1

21 pages, 5679 KiB  
Review
Overview of the MEMS Pirani Sensors
by Shaohang Xu, Na Zhou, Meng Shi, Chenchen Zhang, Dapeng Chen and Haiyang Mao
Micromachines 2022, 13(6), 945; https://doi.org/10.3390/mi13060945 - 14 Jun 2022
Cited by 12 | Viewed by 4715
Abstract
Vacuum equipment has a wide range of applications, and vacuum monitoring in such equipment is necessary in order to meet practical applications. Pirani sensors work by using the effect of air density on the heat conduction of the gas to cause temperature changes [...] Read more.
Vacuum equipment has a wide range of applications, and vacuum monitoring in such equipment is necessary in order to meet practical applications. Pirani sensors work by using the effect of air density on the heat conduction of the gas to cause temperature changes in sensitive structures, thus detecting the pressure in the surrounding environment and thus vacuum monitoring. In past decades, MEMS Pirani sensors have received considerable attention and practical applications because of their advances in simple structures, long service life, wide measurement range and high sensitivity. This review systematically summarizes and compares different types of MEMS Pirani sensors. The configuration, material, mechanism, and performance of different types of MEMS Pirani sensors are discussed, including the ones based on thermistors, thermocouples, diodes and surface acoustic wave. Further, the development status of novel Pirani sensors based on functional materials such as nanoporous materials, carbon nanotubes and graphene are investigated, and the possible future development directions for MEMS Pirani sensors are discussed. This review is with the purpose to focus on a generalized knowledge of MEMS Pirani sensors, thus inspiring the investigations on their practical applications. Full article
Show Figures

Figure 1

22 pages, 3669 KiB  
Article
A Compact Fiber-Coupled NIR/MIR Laser Absorption Instrument for the Simultaneous Measurement of Gas-Phase Temperature and CO, CO2, and H2O Concentration
by Lin Shi, Torsten Endres, Jay B. Jeffries, Thomas Dreier and Christof Schulz
Sensors 2022, 22(3), 1286; https://doi.org/10.3390/s22031286 - 8 Feb 2022
Cited by 5 | Viewed by 3246
Abstract
A fiber-coupled, compact, remotely operated laser absorption instrument is developed for CO, CO2, and H2O measurements in reactive flows at the elevated temperatures and pressures expected in gas turbine combustor test rigs with target pressures from 1–25 bar and [...] Read more.
A fiber-coupled, compact, remotely operated laser absorption instrument is developed for CO, CO2, and H2O measurements in reactive flows at the elevated temperatures and pressures expected in gas turbine combustor test rigs with target pressures from 1–25 bar and temperatures of up to 2000 K. The optical engineering for solutions of the significant challenges from the ambient acoustic noise (~120 dB) and ambient test rig temperatures (60 °C) are discussed in detail. The sensor delivers wavelength-multiplexed light in a single optical fiber from a set of solid-state lasers ranging from diodes in the near-infrared (~1300 nm) to quantum cascade lasers in the mid-infrared (~4900 nm). Wavelength-multiplexing systems using a single optical fiber have not previously spanned such a wide range of laser wavelengths. Gas temperature is inferred from the ratio of two water vapor transitions. Here, the design of the sensor, the optical engineering required for simultaneous fiber delivery of a wide range of laser wavelengths on a single optical line-of-sight, the engineering required for sensor survival in the harsh ambient environment, and laboratory testing of sensor performance in the exhaust gas of a flat flame burner are presented. Full article
(This article belongs to the Special Issue Optical Gas Sensing: Media, Mechanisms and Applications)
Show Figures

Figure 1

18 pages, 6120 KiB  
Article
Highly Sensitive Sphere-Tube Coupled Photoacoustic Cell Suitable for Detection of a Variety of Trace Gases: NO2 as an Example
by Zhengang Li, Ganshang Si, Zhiqiang Ning, Jiaxiang Liu, Yonghua Fang, Beibei Si, Zhen Cheng and Changping Yang
Sensors 2022, 22(1), 281; https://doi.org/10.3390/s22010281 - 30 Dec 2021
Cited by 27 | Viewed by 3282
Abstract
The concentration of trace gases in the atmospheric environment is extremely low, but it has a great impact on the living environment of organisms. Photoacoustic spectroscopy has attracted extensive attention in the field of trace gas detection because of its high sensitivity, good [...] Read more.
The concentration of trace gases in the atmospheric environment is extremely low, but it has a great impact on the living environment of organisms. Photoacoustic spectroscopy has attracted extensive attention in the field of trace gas detection because of its high sensitivity, good selectivity, and fast response. As the core of a photoacoustic detection setup, the photoacoustic cell has a significant impact on detection performance. To improve detection sensitivity, a sphere-tube coupled photoacoustic cell (STPAC) was developed, which was mainly composed of a diffuse-reflective sphere and an acoustic resonance tube. Modulated light was reflected multiple times in the sphere to increase optical path, and photoacoustic (PA) signals were further amplified by the tube. Based on STPAC, a PA gas detection setup was built with a laser diode (LD) at 450 nm as the light source. The experimental results showed that the minimum detection limit (noise equivalent concentration, NEC) of NO2 was ~0.7 parts per billion (ppb). Compared with the T-type PA cell (TPAC) in which the modulated light passed through the sphere, the signal-to-noise ratio of STPAC was increased by an order of magnitude at the same concentration of the NO2 sample. Full article
(This article belongs to the Special Issue Laser-Spectroscopy Based Sensing Technologies)
Show Figures

Figure 1

30 pages, 95132 KiB  
Review
Recent Advances in Fabricating Wurtzite AlN Film on (0001)-Plane Sapphire Substrate
by Hualong Wu, Kang Zhang, Chenguang He, Longfei He, Qiao Wang, Wei Zhao and Zhitao Chen
Crystals 2022, 12(1), 38; https://doi.org/10.3390/cryst12010038 - 27 Dec 2021
Cited by 29 | Viewed by 7084
Abstract
Ultrawide bandgap (UWBG) semiconductor materials, with bandgaps far wider than the 3.4 eV of GaN, have attracted great attention recently. As a typical representative, wurtzite aluminum nitride (AlN) material has many advantages including high electron mobility, high breakdown voltage, high piezoelectric coefficient, high [...] Read more.
Ultrawide bandgap (UWBG) semiconductor materials, with bandgaps far wider than the 3.4 eV of GaN, have attracted great attention recently. As a typical representative, wurtzite aluminum nitride (AlN) material has many advantages including high electron mobility, high breakdown voltage, high piezoelectric coefficient, high thermal conductivity, high hardness, high corrosion resistance, high chemical and thermal stability, high bulk acoustic wave velocity, prominent second-order optical nonlinearity, as well as excellent UV transparency. Therefore, it has wide application prospects in next-generation power electronic devices, energy-harvesting devices, acoustic devices, optical frequency comb, light-emitting diodes, photodetectors, and laser diodes. Due to the lack of low-cost, large-size, and high-ultraviolet-transparency native AlN substrate, however, heteroepitaxial AlN film grown on sapphire substrate is usually adopted to fabricate various devices. To realize high-performance AlN-based devices, we must first know how to obtain high-crystalline-quality and controllable AlN/sapphire templates. This review systematically summarizes the recent advances in fabricating wurtzite AlN film on (0001)-plane sapphire substrate. First, we discuss the control principles of AlN polarity, which greatly affects the surface morphology and crystalline quality of AlN, as well as the electronic and optoelectronic properties of AlN-based devices. Then, we introduce how to control threading dislocations and strain. The physical thoughts of some inspirational growth techniques are discussed in detail, and the threading dislocation density (TDD) values of AlN/sapphire grown by various growth techniques are compiled. We also introduce how to achieve high thermal conductivities in AlN films, which are comparable with those in bulk AlN. Finally, we summarize the future challenge of AlN films acting as templates and semiconductors. Due to the fast development of growth techniques and equipment, as well as the superior material properties, AlN will have wider industrial applications in the future. Full article
(This article belongs to the Special Issue Wide Bandgap Semiconductor Materials and Devices)
Show Figures

Graphical abstract

Back to TopTop