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Abstract: In this paper, we propose a dual-fiberoptic Fabry–Perot interferometer (FFPI) sensing
system integrated with a low-cost and low-coherence light-emitting diode (LED) as a light source to
detect dynamic vibration caused by acoustic waves with a cut-off frequency of 200 Hz. When the
acoustic signals are applied, the sensing FFPI on a Styrofoam sheet provides the function of partially
transforming the longitudinal energy as the transverse energy generates a phase shift in the sensing
FFPI cavity. The light reflected from the sensor is demodulated by the reference FFPI to extract the
measurand. The low-power (sub-nW) optical signals are transferred into electrical signals, processed
by a designed optical receiver, and recorded for data analysis.

Keywords: Fabry–Perot interferometer; vibration; acoustic wave; sensing system; LED; coherence

1. Introduction

Refractometry optics are widely used in industry, biology, semiconductor fields, etc.,
especially with fiberoptic architecture [1–9]. The applications of fiber optics were first in-
troduced more than 70 years ago, such as in communication, parameter extraction, image
transmission, and sensing [10–14]. With respect to sensing, given the view of mass pro-
duction and precision, novel fiber Bragg grating (FBG) technology [15–22] is preferable to
primary optic interferometers [23–29], despite its high cost and complicated manufacturing
process. Given their operational convenience, system complexity, and cost-effectiveness,
fiberoptic interferometers are valuable for small-scale or pilot experiments [30–35].

Despite studies exposing the vibration effect [36–38] with the aim of inducing a mirror
disturbance in the sensed interferometer via acoustic vibration, indirectly changing the
cavity length and impacting optical transmission is another interesting topic. Due to this
phenomenon, the desired sensing parameter(s), such as acoustics, mechanical strain or
stress, thermal stress, or electrical stress, can be extracted from the disturbance source.
These precisely reflected consequences are beneficial for system designers in terms of
accurately monitoring and post data processing. Refractometry acoustic sensors have been
used since they were first proposed to detect pressure by Bucaro et al. in 1977 [39–44].
Owing to benefits such as low cost, accuracy, high reliability, immunity to electromagnetic
interference, ability to operate in a broad range of environments [45,46], high sensitivity,
simplicity, compactness, and the potential for multiplexing [47], single-fiber Fabry–Perot
interferometers (FFPIs) with a laser diode light source have been widely used to sense
temperature [48,49], pressure [50–52], and acoustic wave amplitudes [41,42]. However, the
cost of such devices for single-mode operation is relatively high, and a Faraday isolator is
necessary to eliminate feedback effects. The operating temperature range is limited, and
thermal-induced shifts in the emission wavelength of the laser are needed to compensate.
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Motivated by the need to design and fabricate a low-cost FFPI sensing system, we
used a communication light emitting diode (LED) as a light source. The proposed system
was designed to function as a sensing system with a laser light source [40] in dynamic
operation. A dual FFPI sensing system integrated with a 850 nm low-cost communication
LED was utilized to sense acoustic vibration signals. This sensing system involves FFPI
sensing and a reference FFPI.

2. Sensing Principles of a Dual FFPI and Experimental Setup

Exposing the operating principles of a dual FFPI is essential to provide accurate
information to establishing a feasible experimental setup.

2.1. Basic Principles of a Dual FFPI

The Fabry–Perot interferometer constructed by Charles Fabry and Alfred Perot in 1898
plays an important role in modern optics. Over the years, this concept has found a broad
spectrum of applications. In addition to being a spectroscopic device with extremely high
resolving power, it can serve as a basic laser resonant cavity or an optical oscillator. With
the development of optical fiber, this interferometer is also utilized as a highly sensitive
sensor head. A schematic diagram of a single FFPI is shown in Figure 1.
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Figure 1. Illustration of a single FFPI with interior mirrors.

By ignoring the optical loss in [51], the power reflected from a single FFPI can be
expressed as:

PR =
R1 + R2 − 2(R1R2)

1/2 cos ϕ

1 + R1R2 − 2(R1R2)
1/2 cos ϕ

PI (1)

where R1 and R2 are the reflectances of two mirrors in a single FFPI, PI is the total power
incident into this single FFPI, and ϕ is the roundtrip phase shift. ϕ is also dependent on the
peak wavelength of the light source (λ), the refractive index of the cavity fiber medium n
(=1.46 for silica), and the unperturbed cavity length of the interferometer (L) according to:

ϕ =
4π

λ
· (nL) =

4π ν

c
· Lo (2)

where ν is the optical frequency, c is the optical speed, and Lo is nL.
As the optical loss in the cavity is temporarily omitted due to the minimal loss and

R1 = R2 are equal to R, Equation (1) and the transmitted power PT can be simplified as:

PR =
2R− 2R cos ϕ

1 + R2 − 2R cos ϕ
PI (3)
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PT =
PI · (1− R)2

1 + R2 − 2R cos ϕ
(4)

If R << 1, Equation (3) can be expressed as:

PR = 2PI · R · (1− cos ϕ) (5)

A dual FFPI sensor [30,49] with a diode light source was explored to sense the
continuous-wave temperature variation. Using this characteristic, the applications are
expanded to dynamic sensing. As shown in Figure 2, the FFPI sensing system is composed
of a sensing FFPI, a reference FFPI, an LED driver, a 50/50 fiber coupler, a feedback circuit,
and an optical receiver. This working principle is similar to an electronic circuit design [53],
which works at the operating point with direct-current bias and then processes the small
dynamic signal via amplification or filtering.
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The reflected power from sensing a FFPI (PRs) is treated as incident power at a reference
FFPI site, PIr. PIr = α PRs represents the optical loss between sensing and reference FFPIs,
where α is constant.

The modulation effect shows the power reflected from the reference FFPI, repre-
sented as:

PRr = 4α Rs RrPIs{1 + 0.5 cos ∆ϕp exp[−(a∆Lo)
2]} (6)

a =
π∆ν

c ·
√

ln 2
(7)

where Rs and Rr are the reflectances of the mirrors in the sensing and reference FFPIs,
respectively; the constant a is related to the light source spectral width (∆ν); ∆ϕp is the
phase shift due to the perturbation applied to the sensing interferometer; and ∆Lo is the
optical path length mismatch between reference and sensing FFPIs.

Similarly, the transmitted power from the reference FFPI (PTr) is approximated by:

PTr ≈ 2α2 RsPI{1− Rr cos ∆ϕp exp[−(a∆Lo)
2]} (8)

2.2. Inner Mirror Fabrication and Experimental Setup

Using a sputtering system, a thin titanium oxide (TiO2) layer (~1000 Å) was deposited
as a reflected mirror in an FFPI. These fibers are moved on a cleaver with an adjustable one-
dimensional stage, shown in Figure 3a. Precision cleaving of both fibers is simultaneously
employed. A microscope is applied to inspect the alignment and the cavity lengths during
this cleaving. There is an internal ruler in this microscope. The smallest division in this
ruler is about 15 µm for a maximum magnification ≈ 1000×. One scale marker in the ruler
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is about 4 µm. In the beginning, the smallest magnification is used to roughly align both
dielectric mirrors, which are light blue under the microscope. The joint between the coated
fiber and the uncoated fiber is clear and light blue in color. There is also a ruler in the cleaver
to inspect the cavity length. In this work, a 12-mm-long cavity for internal-mirror FFPIs
was fabricated, exhibiting an adequate reflectance with precise fiber cleaving and splicing.
The dielectric mirror was moved to the number 12 position in the cleaver with a microscope,
as shown in Figure 3b. Ultimately, the desired cavity length was achieved by moving a
diamond blade in the cleaver. The same procedure was employed to achieve identical
cavity lengths for both fibers simultaneously. When these two fibers with dielectric mirrors
were moved to approximately the number 12 position in the cleaver, one of the fibers was
fastened on a 1D stage with tape. The difference between these two cavity lengths (less than
5 µm) was obtained with the highest magnification and an adjustable stage. The smallest
division is ≤10 µm. If the desired cavity length is not obtained with a cleaver, a micro
polish machine can be applied to adjust the length of one fiber as needed.
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Figure 3. (a) Top view of the alignment of both fibers with dielectric mirrors on a cleaver and an 

adjustable 1D stage. (b) Contour of a splicer. 
Figure 3. (a) Top view of the alignment of both fibers with dielectric mirrors on a cleaver and an
adjustable 1D stage. (b) Contour of a splicer.

Moreover, it is necessary to test the spectral output of the applied light source to
eliminate the error source in the sensing view. The monochromator is utilized to verify the
performance. In the experimental setup, an LED is fixed on a three-dimension positioner for
localization. Additionally, by tuning the positioner and an infrared-sensitive card, the LED
can be aligned at a focus point on the left-hand side of a fixed lens. Because the LED was at
the focus point, collimated light was incident upon a Jarrell-Ash monochromator. A chopper
with the frequency set to 1 kHz was located between the lens and the monochromator.
An electrical signal from the chopper was directed to a lock-in amplifier as a reference
signal. Light from the LED passing through the chopper entered the monochromator
and was diffracted by a grating, which can be rotated with a stepping motor. A power
meter collected light from the output slit of the monochromator. The electrical signal from
the power meter entered the lock-in amplifier, the output of which directed the y-axis of
the plotter. When the grating drive was operating, the LED spectrum was traced by the
x-y plotter.
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The experimental results, as shown in Figure 4, demonstrate that the spectral distribu-
tion of this LED is close to a Gaussian shape. Therefore, as in [54], the coherence length (Lc)
is expressed as:

Lc = 0.664 · λ2

∆λ
(9)

where λ is the peak response wavelength, and ∆λ is the full width at half maximum
(FWHM) of the spectrum.
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Figure 4. Relative spectral output vs. wavelength of the tested diode measured with a monochromator.
There are three close Gaussian shapes at the forward currents: Is = 25, 50, and 100 mA [30].

According to the data sheet in [54] and the measurand, ∆λ is approximately 60 nm.
Thus, the coherence length (Lc) in this light source, as determined by Equation (9), is
approximately 8 µm.

The sensing FFPI was placed on a Peltier device or thermoelectric cooler (TEC Marlow
SP1546T). This cooler exhibits an excellent temperature linearity characteristic with a forcing
current of 0 to 40 ◦C. The TEC in the reference FFPI was treated as an optical path-length
change compensator to maintain the optimal system operating point. To verify the surface
temperature of the TEC, a K-type thermoresistor was also placed on top of the TEC [30].
The variation data of the thermoresistors in the reference FFPI were automatically recorded
by a data acquisition system connected to a personal computer. As the mismatch length
of these cavities decreased to less than L or zero, the distortion of the sensing signal in
the system was expectedly improved. An acoustic speaker utilized as a vibration-wave
source, as depicted in Figure 5, was suspended on a sensing FFPI with a Styrofoam sheet as
an acoustic compressor to stress the sheet and produce a disturbance on the sensing FFPI.
Owing to the characteristics of a Styrofoam sheet, it partially transforms the longitudinal
energy as the transverse energy and indirectly impact the phase change of the sensing FFPI.
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3. Results and Discussion

Using this LED light source, the operating stability is also an essential factor to ensure
sensing performance. The stability consequences of this diode light source in short- and
long-term tests sensed by an optical detector are exhibited in Figure 6. In general, the
maximum and minimum peaks are 0.7015 V and 0.698 V, respectively, for the short-term
test. The maximum value is 0.702V, with a minimum value of 0.694 V for the short-term
test. This tested diode demonstrates the suitable stability of the expectation: below 1%
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at room temperature. These experiments were repeated in triplicate, with a performance
variation of less than 1%. Then, a simulation was executed to achieve suitable reflectance,
as shown in Figure 7 [30]. Here, the experimental reflectance of a single FFPI of R ≈ 0.1
was adopted.
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Figure 7. Relative output power vs. phase shift in the cavity of a single FFPI with a mirror reflectance
of (a) R = 0.05 and (b) R = 0.8, assuming no optical loss.

Within the adequate adjustment of the mismatch of these two cavity lengths with
a TEC at the reference FFPI, there is no mismatch. Unfortunately, in this case, ∆L is
approximately 8µm, which is similar to the coherence length of the LED light source. The
TEC at the reference FFPI provides compensation to correct for the mismatch and increase
visibility, as shown in Figure 2. Whereas the optical path-length difference of the proposed
low-cost sensing system is acceptably tolerated, the performance of temperature sensing is
indeed close to that reported by Lee and colleagues [48].

Following all preliminary experiments, an acoustic modulator as a perturbed dynamic
sinusoidal acoustic signal at a frequency of 1.74 Hz, as shown in Figure 8a, was implemented
in the sensing FFPI. The sensing cavity produced a disturbing phase shift as a result of
either a change in cavity medium index or cavity length modulation. The transmitted
output signal at the reference FFPI, as depicted in Figure 8b, responded simultaneously
and in accordance with the frequency of the acoustic stress source. With respect to the
measured stress result, this acoustic wave sensor successfully detected the measurand. The
total sensing wave form (ΦT(t)) shown in Figure 8b is composed of Φsp(t), Φst(t), and Φr(t),
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indicating the signals from the speaker, Styrofoam sheet, and receiver, respectively. Because
the acoustic wave in the Styrofoam sheet also generates some second-order disturbance in
the sensing cavity, the entire waveform on the oscilloscope is distorted and not matched
well with the original speaker signal. The signal noise on the waveform should chiefly
come from the receiver. The frequency response is shown in Figure 9 in the frequency range
of 0.1 to 200 Hz, indicating a cut-off frequency. The signal-to-noise ratio demonstrates a
good performance at greater than 3 dB.

In recent years, reflective mirrors have been utilized to detect desired parameters [55].
Changes in ∆Lo due to disturbances in test circumstances impact the refractive index, cavity
length, or both. The roundtrip phase shift in Equation (2) in the interferometers also varies
and denotes the relationship between the phase shift and the measurand according to:

∆Lo = n · ∆L + L · ∆n (10)
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In general, the test circumstances occur not only in silica but also in fluid, air, or other
objects. Thus, microelectromechanical systems, nanoelectromechanical systems, or other
explicit cavity structures can be integrated into the sensing system to form more precise
monitoring equipment in semiconductors or other advanced fields. In addition, to enhance
the sensing performance, with an LED light source with a longer wavelength, i.e., 1.3 or
1.55 µm or shorter FWHM, ∆λ is preferable to promote the coherence length. This action
indirectly allows for prolonged mismatch of two FFPIs during manufacture. The success
rate of a pair of FFPIs in manufacturing should be increased. The sensing experiment
can likely be operated at room temperature without temperature compensation in the
mismatch of cavity lengths. An alternative approach involves adjusting the reflectance of a
sensing mirror, especially in bio applications [5,6,32]. However, this effect is mostly related
to the variation of optical power intensity. If accuracy and multinode sensing are the main
concerns, fiber Bragg grating technology can be integrated as a refractory optic system [56].

4. Conclusions

A low frequency-vibration sensor that integrates a dual FFPI sensing system with
a low-cost and low-coherence LED light source is proposed to precisely detect acoustic
vibrations. A novel technique for fabricating an intrinsic fiberoptic sensor with an optical
path length greater than the coherence length of the LED light source was demonstrated.
The dual FFPI sensing system consists of two Fabry–Perot interferometers. A sensing
FFPI modulates the spectrum of LED emission, and a reference FFPI demodulates it. The
characteristics of the components in the sensing system were investigated. Analytical and
experimental results were obtained.

The experimental outcomes show that the dynamic measured consequences respond
well in the dual FFPI to detect acoustic wave signals induced by vibration in a Styro-
foam sheet. The sensing system demonstrates the high sensitivity of the optical receiver
operating under sub-nW optical power. The development of feedback stabilization of a
dual FFPI sensing system ensures optimal performance. In future research, the sensitivity
and precision of the dual FFPI sensing system can be improved by using a longer peak
wavelength, a shorter FWHM light source, or by adopting FBG technology to form the
internal mirrors to achieve zero mismatch with respect to difference of cavity lengths. The
proposed design using FBG technology is expected to provide strength, uniformity, and
high reliability for the optical cavity of the FFPI, although cost and system complexity will
be relatively increased.
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