Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = acid fracture propagation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 301
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

13 pages, 2711 KiB  
Article
Assessment of Reasons for Low Productivity in Ultra-Deep Fractured Tight Sandstone Reservoirs Using Data-Driven Analysis
by Fen Peng, Jianping Zhou, Jianxin Peng, Junyan Liu, Dehai Deng, Zihao Liu and Bo Gou
Processes 2025, 13(6), 1793; https://doi.org/10.3390/pr13061793 - 5 Jun 2025
Viewed by 360
Abstract
With the increase in exploration and development, the productivity of some wells in the BD area of Kuqa Depression, Tarim Basin, has failed to meet the expected standards. The underlying causes remain unclear, limiting the optimization of stimulation techniques and hindering production enhancement. [...] Read more.
With the increase in exploration and development, the productivity of some wells in the BD area of Kuqa Depression, Tarim Basin, has failed to meet the expected standards. The underlying causes remain unclear, limiting the optimization of stimulation techniques and hindering production enhancement. Data-driven analysis is a promising approach for post-fracturing evaluation. In this study, a comprehensive database of wells in the BD area was established. The formation and fracturing parameters of post-stimulated wells, Pearson correlation coefficient, multiple linear regression, and machine learning were used to identify the key factors controlling productivity including the pressure coefficient, formation porosity, natural fracture density, and strength of injected fluid. This approach helps reduce the complexity of assessing the causes of low productivity. By parameter comparison and “G” function analysis, the preliminary reasons for low productivity in the BD area were identified as follows: (1) difficulty in forming complex fracture networks due to a low natural fracture density; (2) limited stimulation scope due to a high fracture propagation pressure; (3) a low formation pressure coefficient; and (4) a low well productivity index of peripheral wells. Considering the high calcium content in natural fractures, a composite stimulation method—“pre-acid fracturing + hydraulic fracturing”—is proposed to enhance fracture network connectivity through acid dissolution. By comparing the stimulation performance, it is suggested that hydraulic fracturing should be the main method for reservoirs with a low natural fracture density. For the reservoir with a high natural fracture density, the composite stimulation mode is beneficial to activate calcium-filled natural fractures by acid and reduce the difficulty of injecting proppant to support the fracture network. This study provides a theoretical basis for optimizing fracturing strategies in the BD area. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 9105 KiB  
Article
The Law of Acid Pressure Fracture Propagation in Maokou Formation Carbonate Reservoir in Central Sichuan
by Yu Fan, Hailong Jiang, Zhouyang Wang, Jinsui Li, Xing Yang, Zefei Lv, Xiangfei Zhang and Xueyuan Han
Processes 2025, 13(6), 1634; https://doi.org/10.3390/pr13061634 - 22 May 2025
Viewed by 507
Abstract
The Dolomite reservoir of the Maokou Formation is rich in gas resources in the central Sichuan Basin. Acid fracturing is an important technical means to improve reservoir permeability and productivity. The interaction mode of the dolomite and limestone acid system will affect the [...] Read more.
The Dolomite reservoir of the Maokou Formation is rich in gas resources in the central Sichuan Basin. Acid fracturing is an important technical means to improve reservoir permeability and productivity. The interaction mode of the dolomite and limestone acid system will affect the effect of reservoir reconstruction. In order to clarify the influence of complex structure on fracture morphology, we explore the fracturing effect of different acid systems. Physical simulation experiments of true triaxial acid fracturing were carried out with two acid systems and downhole full-diameter cores. The experimental results show: (1) After the carbonate rock is subjected to acid fracturing using a “self-generated acid + gel acid” system, the fracture pressure drops significantly by up to 60%. The morphology of the acid-eroded fractures becomes more complex, with an increase in geometric complexity of about 28% compared to a single acid solution system. It is prone to form three-dimensional “spoon” shaped fractures, and the surface of the acid-eroded fractures shows light yellow acid erosion marks. Analysis of the acid erosion marks indicates that the erosion depth on the fracture surface reaches 0.8–1.2 mm, which is deeper than the 0.2 mm erosion depth achieved with a single system. (2) Acid solution is difficult to penetrate randomly distributed calcite veins with a low porosity and permeability structure. When the fracture meets the calcite vein, the penetration rate of acid solution drops sharply to 15–20% of the initial value, resulting in a reduction of about 62% of the acid erosion area in the limestone section behind. And the acid erosion traces in the limestone behind the calcite vein are significantly reduced. The acid erosion cracks are easy to open on the weak surface between dolomite and limestone, causing the fracture to turn. (3) The results of field engineering and experiment are consistent, and injecting authigenic acid first in the process of reservoir reconstruction is helpful to remove pollution. The recovery rate of near-well permeability is more than 85% with pre-generated acid. Reinjection of gelled acid can effectively communicate the natural weak surface and increase the complexity of cracks. The average daily oil production of the completed well was increased from 7.8 m3 to 22.5 m3, and the increase factor reached 2.88. Full article
Show Figures

Figure 1

46 pages, 9978 KiB  
Review
Experimental and Numerical Methods for Hydraulic Fracturing at Laboratory Scale: A Review
by Atif Ismail and Saman Azadbakht
Geosciences 2025, 15(4), 142; https://doi.org/10.3390/geosciences15040142 - 9 Apr 2025
Viewed by 1137
Abstract
Hydraulic fracturing experimentation is an essential tool for understanding the application of hydraulic fracturing in producing hydrocarbons from unconventional reservoirs. Laboratory testing methods such as uniaxial, biaxial, and true triaxial testing have limited accuracy due to the simplified consideration of in situ stresses, [...] Read more.
Hydraulic fracturing experimentation is an essential tool for understanding the application of hydraulic fracturing in producing hydrocarbons from unconventional reservoirs. Laboratory testing methods such as uniaxial, biaxial, and true triaxial testing have limited accuracy due to the simplified consideration of in situ stresses, geological conditions, and subsurface temperature variations. Despite these limitations, hydraulic fracturing experimentation provides valuable insights for the execution of hydraulic fracturing in field conditions. Key factors influencing the accuracy and generalization of experimental results include sample specifications, stress regime, saturation conditions, and fracturing fluid properties. However, extending laboratory-scale conclusions to the field scale requires appropriate scaling factors. This paper provides an overview of the main concepts in hydraulic fracture modeling, including design considerations, laboratory scaling, uniaxial, biaxial, and triaxial testing in hydraulic fracturing experimentation and major numerical simulation methodologies. Numerical methods, such as the discrete element method, discontinuous deformation analysis, rigid body spring network, and virtual internal bond, effectively simulate complex mechanisms like fracture initiation, propagation, fracture–fluid interactions, and the influence of rock microstructure, complementing the experimental findings. Advancements in these models, including the integration of nonlinear elasticity in virtual internal bonds and coupling with finite element analysis or fluid network models, continue to enhance the predictive accuracy and efficiency, particularly in complex geological settings, offering promising applications for optimizing shale gas production, acid fracturing, and geotechnical engineering. Furthermore, this review discusses the importance of in situ stresses, geological conditions, and temperature in both laboratory experiments and numerical simulations, highlighting future directions to consider in laboratory-scale analyses of hydraulic fracturing. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

13 pages, 2195 KiB  
Article
Experimental Study on the Acid Fracturing Fracture Propagation Law of a Fractured Carbonate Reservoir in the Majiagou Formation
by Yongchun Zhang, Jianchao Kuang, Hao Zhang, Ying Zhong and Shijie Dong
Processes 2025, 13(3), 695; https://doi.org/10.3390/pr13030695 - 28 Feb 2025
Viewed by 861
Abstract
Acid fracturing is a crucial method for reservoir reconstruction in carbonate reservoirs, and the propagation pattern of acid-etched fractures plays a key role in determining the scope of reservoir enhancement and post-fracturing productivity. However, large-scale physical simulations directly using acid solutions in fracturing [...] Read more.
Acid fracturing is a crucial method for reservoir reconstruction in carbonate reservoirs, and the propagation pattern of acid-etched fractures plays a key role in determining the scope of reservoir enhancement and post-fracturing productivity. However, large-scale physical simulations directly using acid solutions in fracturing experiments are limited, and the fracture propagation patterns under acid fracturing remain unclear. To address this gap, in this study, we collected carbonate rock samples from the Majiagou Formation in the Daniudi area, preparing large-scale fracturing specimens with side lengths of 30 cm. The propagation of acid fracturing fractures was investigated using self-developed true-triaxial acid fracturing equipment. Based on post-fracturing fracture morphology and pressure curves, the effects of fracturing fluid type, injection rate, injection mode, and natural fractures (NFs) on acid fracturing fracture propagation were analyzed. The experimental results showed that the acid solution effectively weakens the mechanical properties of the open-hole section, creating multiple mechanical weak points and promoting the initiation of fractures. Pre-fracturing treatment with low-viscosity acid can significantly enhance fracture complexity near the wellbore and expand the near-well stimulation zone. Lowering the injection rate increases the acid solution’s filtration loss into natural fractures, weakening the cementation strength of these fractures and encouraging the formation of complex fracture networks. Furthermore, employing a multi-stage alternating injection of high-viscosity and low-viscosity acids can reduce fracture temperature and acid filtration loss while also enhancing differential etching through viscous fingering. This approach improves the conductivity and conductivity retention of the acid-etched fractures. The results of this study can provide a reference for the acid fracturing stimulation of fractured carbonate reservoirs. Full article
(This article belongs to the Special Issue Recent Advances in Hydrocarbon Production Processes from Geoenergy)
Show Figures

Figure 1

17 pages, 8338 KiB  
Article
Numerical Simulation of Acid Diversion and Wormhole Propagation Mechanism of Nanoparticle VES Acid in High-Temperature Carbonate Reservoirs
by Da Wang, Yunjin Wang, Puyong Feng, Yuan Li, Kun Zhang, Fujian Zhou, Fuming Li and Yancai Gao
Processes 2025, 13(3), 608; https://doi.org/10.3390/pr13030608 - 20 Feb 2025
Viewed by 523
Abstract
Uniform acid distribution is a critical challenge and a key factor for the successful acidizing of carbonate reservoirs. Previous experimental studies have shown that nanoparticles can enhance the viscosity and thermal resistance of viscoelastic surfactant (VES) fracturing fluids. However, there has been limited [...] Read more.
Uniform acid distribution is a critical challenge and a key factor for the successful acidizing of carbonate reservoirs. Previous experimental studies have shown that nanoparticles can enhance the viscosity and thermal resistance of viscoelastic surfactant (VES) fracturing fluids. However, there has been limited research on the effects of nanoparticles on the wormhole propagation and diversion performance of VES acid. This paper establishes a nanoparticle VES acid rheological model based on rheology experiments, and introduces a porous medium temperature field and nanoparticle adsorption model into a two-scale continuum model to establish a mathematical model for the expansion of wormholes in nanoparticle VES acid. The accuracy of the wormhole model is verified through laboratory experiments. The effects of permeability contrast, initial acid temperature, and nanoparticle adsorption on the diversion performance and wormhole propagation of nanoparticle VES acid are analyzed. The results indicate that nanoparticle VES acid differs from conventional VES acid, with its invaded zone divided into high-viscosity and low-viscosity zones. The presence of the high-viscosity zone allows nanoparticle VES acid to improve wormhole propagation in low-permeability cores by 16.2% compared to conventional VES acid. At 393 K, nanoparticle VES acid has a better diversion effect in carbonate cores with permeability contrast of 10, as the acid fluid flows faster in high-permeability cores, resulting in wormhole shapes with more branches. Numerical model results show that when the permeability contrast is 8, increasing the injection temperature of the acid solution from 293 K to 368 K improves the ability of low-permeability cores by 33.3%. This study establishes a mathematical model for nanoparticle VES acid based on laboratory experiments and numerical simulations, investigates the effects of nanoparticles on VES rheological properties under acidic conditions, and clarifies the wormhole propagation and acid diversion behavior of nanoparticle VES acid, providing guidance for future field applications of this acid. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 7266 KiB  
Article
Experimental Study on Fracture Propagation in Carbonate Rocks by Acid Fracturing Using the Image-Based 3D Object Reconstruction Technique
by Chenhao Jin, Haijun Mao, Jun Zhou, Yiming Liu, Motao Duan, Zechen Guo and Kaijie Wang
Processes 2025, 13(1), 98; https://doi.org/10.3390/pr13010098 - 3 Jan 2025
Viewed by 954
Abstract
Acid fracturing is an effective method of reservoir stimulation and has been widely used for carbonate reservoir development. However, knowledge on the propagation characteristics of acid-etched fracture is still poor due to the complexities of acidization and stress conditions, as well as the [...] Read more.
Acid fracturing is an effective method of reservoir stimulation and has been widely used for carbonate reservoir development. However, knowledge on the propagation characteristics of acid-etched fracture is still poor due to the complexities of acidization and stress conditions, as well as the limitations of the fracture network reconstruction method, especially when dealing with large specimens. In this paper, a new method based on image-based 3D object reconstruction is proposed to study the fracture networks of specimens after acid fracturing by cutting rock specimens into thin slices, scanning them, and reconstructing 3D fracture networks. This method is more precise than the method of separating specimens into pieces and scanning, and it has advantages over the method of CT X-ray scanning when dealing with large specimens. Using this approach, the effects of natural fractures, stress conditions, and acid systems on the fracture propagation of specimens after true triaxial acid-fracturing tests were investigated. The fracture initiation and propagation patterns of specimens under different conditions were summarized. The results of the study show that the presence of a natural fracture will induce the propagation of fractures, in addition to demonstrating the positive effect of high horizontal stress difference on fracture initiation and provide an acid system conducive to the formation of a fracture network. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

17 pages, 8382 KiB  
Article
Modeling Complex Interactions Between Acid–Rock Reactions and Fracture Propagation in Heterogeneous Layered Formations
by Qingdong Zeng, Taixu Li, Tong Zhou, Long Bo, Shumin Liu, Xuelong Li and Jun Yao
Water 2024, 16(24), 3586; https://doi.org/10.3390/w16243586 - 12 Dec 2024
Viewed by 957
Abstract
Acid fracturing is essential in enhancing recovery efficiency, especially within carbonate reservoirs. Although extensive studies have been conducted on hydraulic fracturing, understanding the intricate dynamics between acid–rock reactions and fracture propagation in heterogeneous layered reservoirs remains limited. This study employs a comprehensive coupled [...] Read more.
Acid fracturing is essential in enhancing recovery efficiency, especially within carbonate reservoirs. Although extensive studies have been conducted on hydraulic fracturing, understanding the intricate dynamics between acid–rock reactions and fracture propagation in heterogeneous layered reservoirs remains limited. This study employs a comprehensive coupled hydro-mechanical-chemical flow framework to investigate acid fracturing processes in layered geological formations. The model incorporates a two-stage homogenization approach to account for rock heterogeneity, a dual-scale continuum framework for fluid flow and acid transport, and a phase field method for examining fracture propagation. We thoroughly examine how treatment parameters, particularly acid concentration and injection rate, affect fracture propagation modes. The analysis identifies three distinct propagation patterns: crossing, diversion, and arresting. These are influenced by the interplay between pressure buildup and wormhole formation. Initially, higher acid concentration aids in fracture crossing by lowering the peak pressure required for initiation, but excessive concentration results in arresting because it causes extensive wormhole development, which reduces fluid pressure. Similarly, the injection rate plays a crucial role in fracture movement across layer interfaces, with moderate rates optimizing propagation by balancing pressure and wormhole growth. This comprehensive modeling framework serves as a valuable prediction and control tool for acid fracture behavior in complex layered formations. Full article
Show Figures

Figure 1

17 pages, 6439 KiB  
Article
Comprehensive Investigation of Factors Affecting Acid Fracture Propagation with Natural Fracture
by Qingdong Zeng, Taixu Li, Long Bo, Xuelong Li and Jun Yao
Energies 2024, 17(21), 5386; https://doi.org/10.3390/en17215386 - 29 Oct 2024
Cited by 2 | Viewed by 1307
Abstract
Acid fracturing is a crucial stimulation technique to enhance hydrocarbon recovery in carbonate reservoirs. However, the interaction between acid fractures and natural fractures remains complex due to the combined effects of mechanical, chemical, and fluid flow processes. This study extends a previously developed [...] Read more.
Acid fracturing is a crucial stimulation technique to enhance hydrocarbon recovery in carbonate reservoirs. However, the interaction between acid fractures and natural fractures remains complex due to the combined effects of mechanical, chemical, and fluid flow processes. This study extends a previously developed hydro-mechano-reactive flow coupled model to analyze these interactions, focusing on the influence of acid dissolution. The model incorporates reservoir heterogeneity and simulates various scenarios, including different stress differences, approaching angles, injection rates, and acid concentrations. Numerical simulations reveal distinct propagation modes for acid and hydraulic fractures, highlighting the significant influence of acid dissolution on fracture behavior. Results show that hydraulic fractures are more likely to cross natural fractures, whereas acid fractures tend to be arrested due to wormhole formation. Increasing stress differences and approaching angles promote fracture crossing, while lower angles favor diversion into natural fractures. Higher injection rates facilitate fracture crossing by increasing pressure accumulation, but excessive acid concentrations hinder fracture initiation due to enhanced wormhole formation. The study demonstrates the importance of tailoring fracturing treatments to specific reservoir conditions, optimizing parameters to enhance fracture propagation and reservoir stimulation. These findings contribute to a deeper understanding of fracture mechanics in heterogeneous reservoirs and offer practical implications for improving the efficiency of hydraulic fracturing operations in unconventional reservoirs. Full article
Show Figures

Figure 1

18 pages, 7765 KiB  
Article
Study on Optimization of Stimulation Technology of Heterogeneous Porous Carbonate Reservoir
by Kangjia Zhao, Hualei Xu, Jie Wang, Houshun Jiang and Liangjun Zhang
Processes 2024, 12(6), 1191; https://doi.org/10.3390/pr12061191 - 10 Jun 2024
Cited by 1 | Viewed by 1078
Abstract
Mishrif (M) reservoir of Faihaa (F) oilfield in Iraq is a heterogeneous porous carbonate reservoir. The reservoir properties of each reservoir unit differ greatly, and the distribution of porosity and permeability is non-uniform. Some reservoir units have the problem that the expected production [...] Read more.
Mishrif (M) reservoir of Faihaa (F) oilfield in Iraq is a heterogeneous porous carbonate reservoir. The reservoir properties of each reservoir unit differ greatly, and the distribution of porosity and permeability is non-uniform. Some reservoir units have the problem that the expected production cannot be achieved or the production decline rate is too fast after matrix acidification. This work optimized and compared the process of acid fracturing and hydraulic fracturing techniques. The Mishrif B (MB) and Mishrif C (MC) layers are selected as the target units for fracturing and the perforation intervals are optimized. The acid fracturing process adopted the acid fracturing technology of guar gum pad fluid and gelled acid multi-stage injection. According to the wellhead pressure limit and fracture propagation geometry, the pumping rate is optimized. The recommended maximum pumping rate of acid fracturing is 5.0 m3/min, and the optimized acid volume is 256.4 m3. The pressure changes during hydraulic fracturing and acid fracturing are different. It is recommended that the maximum hydraulic fracturing pump rate is 4.5 m3/min for MB and MC layers, and the amount of proppant in MB and MC layers is 37.5 m3 and 43.7 m3, respectively. The production prediction of two optimized processes is carried out. The results showed that the effect of acid fracturing in MB and MC layers is better than hydraulic fracturing, and it is recommended to adopt acid fracturing technology to stimulate MB and MC layers. Acid fracturing operation is carried out in the X-13 well, and better application results are achieved. The results of this study provide optimized reference ideas for reservoir stimulation in heterogeneous porous reservoirs. Full article
(This article belongs to the Special Issue Recent Advances in Hydrocarbon Production Processes from Geoenergy)
Show Figures

Figure 1

26 pages, 8773 KiB  
Article
Study of Acid Fracturing Strategy with Integrated Modeling in Naturally Fractured Carbonate Reservoirs
by Xusheng Cao, Jichuan Ren, Shunyuan Xin, Chencheng Guan, Bing Zhao and Peixuan Xu
Processes 2024, 12(4), 808; https://doi.org/10.3390/pr12040808 - 17 Apr 2024
Cited by 1 | Viewed by 1513
Abstract
Natural fractures and wormholes strongly influence the performance of acid fracturing in naturally fractured carbonate reservoirs. This work uses an integrated model to study the effects of treatment parameters in acid fracturing in different reservoir conditions. Hydraulic fracture propagation, wormhole propagation, complex fluid [...] Read more.
Natural fractures and wormholes strongly influence the performance of acid fracturing in naturally fractured carbonate reservoirs. This work uses an integrated model to study the effects of treatment parameters in acid fracturing in different reservoir conditions. Hydraulic fracture propagation, wormhole propagation, complex fluid leak-off mediums, and heat transfer are considered in the modeling. The model is validated in several steps by analytical solutions. The simulation results indicated that natural fractures and wormholes critically impact acid fracturing and can change the predicted outcomes dramatically. The high permeability reservoirs with conductive natural fractures or low permeability reservoirs with natural fracture networks showed the highest stimulation potential in applying acid fracturing technology. The optimal acid injection rate depends on natural fracture geometry and reservoir permeability. This study also observed that obtaining a high production index is difficult because natural fractures and wormholes reduce the acid efficiency during acid fracturing. Building an acid-etched fracture system consisting of acid-etched natural fractures and hydraulic fractures may help us better stimulate the naturally fractured carbonate reservoirs. The paper illustrates a better understanding of the effects of the treatment design parameters on productivity. It paves a path for the optimal design of acid fracturing treatment for heterogeneous carbonate reservoirs. Full article
(This article belongs to the Special Issue Advanced Fracturing Technology for Oil and Gas Reservoir Stimulation)
Show Figures

Figure 1

16 pages, 2901 KiB  
Article
Simulation and Control Strategies for Longitudinal Propagation of Acid Fracture in a Low-Permeability Reservoir Containing Bottom Water
by Song Li, Yu Fan, Yujie Guo, Yang Wang, Tingting He, Hua Zhang, Jiexiao Ye, Weihua Chen and Xi Zhang
Processes 2024, 12(4), 792; https://doi.org/10.3390/pr12040792 - 15 Apr 2024
Cited by 24 | Viewed by 1229
Abstract
The reservoir in the Anyue gas field, located in the Sichuan basin of China, belongs to the second member of the Dengying formation and has distinctive geological features. It is characterized by strong heterogeneity, low porosity, low permeability, and locally developed natural fractures. [...] Read more.
The reservoir in the Anyue gas field, located in the Sichuan basin of China, belongs to the second member of the Dengying formation and has distinctive geological features. It is characterized by strong heterogeneity, low porosity, low permeability, and locally developed natural fractures. The reservoir space consists primarily of corrosion holes, natural fractures, and similar voids. Moreover, the lower reservoir exhibits high water saturation and a homogeneous bottom-water interface. Since it is a carbonate-based hydrocarbon reservoir with low porosity and permeability, deep acid fracturing has proven to be an efficient method for enhancing individual well production. However, the reconstruction of the second member of the Dengying formation reservoir poses significant challenges. The reservoir contains high-angle natural fractures, small vertical stress differences, and is located in close proximity to the gas–water interface. As a result, it becomes difficult to control the height of the acid break. Improper acid break treatment may easily result in water production affecting gas well production. To explore ways to control the longitudinal extension of acid fractures, 3D numerical models focusing on the initiation and expansion of acid fractures have been developed. This model takes into account geological and engineering factors such as stress differences, acid fracture displacements and scales, and their effects on the longitudinal extension of acid fractures. It was revealed that the pressure difference is the main controlling factor for the acid fracture height, followed by the reservoir thickness, the interlayer thickness, and the viscosity of the working fluid. Technical countermeasures for controlled fracture and high-acid fracturing tailored to different reservoir characteristics have been proposed, and design parameters for controlled fracture and high-acid fracturing can be optimized. By effectively controlling the vertical extension of the acid fracture, it is possible to maximize production from a single well while avoiding interference from the lower water layer. This study provides theoretical guidance for the application of deep-acid-fracturing techniques in low-permeability bottom-water gas reservoirs. Full article
Show Figures

Figure 1

23 pages, 10385 KiB  
Article
An Integrated Model for Acid Fracturing without Prepad Considering Wormhole Growth
by Yuxin Chen, Haibo Wang, Fengxia Li, Tong Zhou, Ning Li and Yu Bai
Processes 2024, 12(3), 429; https://doi.org/10.3390/pr12030429 - 20 Feb 2024
Viewed by 1425
Abstract
Acid fracturing is an effective stimulation technology that is widely applied in carbonate reservoirs. An integrated model for acid fracturing without prepad treatment has been established. Compared with the previous models which use prepad for generating hydraulic fractures, this model can simultaneously simulate [...] Read more.
Acid fracturing is an effective stimulation technology that is widely applied in carbonate reservoirs. An integrated model for acid fracturing without prepad treatment has been established. Compared with the previous models which use prepad for generating hydraulic fractures, this model can simultaneously simulate the fracture propagation and the acid etching of fracture surfaces, as well as the wormhole growth during acid fracturing. The influences of some essential factors have been studied through a series of numerical simulations, and the main conclusions are as follows. First, increasing the injected acid volume can expand the size of the formed hydraulic fractures and extend the propagation distance of the wormhole. Increasing the injected acid volume can also expand the etched width and extend the effective distance of the injected acid. Second, a high injection rate impels more acid to flow into the depth of a fracture before infiltration and reaction, resulting in the augmentation of a hydraulic fracture’s geometric size and the extension of the effective distance. But the maximum etched width decreases as the injection rate rises. A high injection rate can also enable wormholes to grow in the natural fracture area farther away from the hydraulic fracture inlet, but shorten the length of the original wormhole near the hydraulic fracture inlet. Third, an increase in acid viscosity can enlarge the geometric size of the hydraulic fracture and reduce the propagation distance of wormholes. In addition, an increase in the acid viscosity blocks the acid flow from fracture inlet to tip, reducing the effective distance of acid fracturing. Fourth, the natural fracture is the vital inducement of wormhole growth, and wormholes are apt to grow in the natural fracture area. Moreover, the geometric size of the hydraulic fracture and the effective distance of acid fracturing decrease with an increasing number of natural fractures. This research can provide a reference for field applications of acid fracturing without prepad. Full article
(This article belongs to the Special Issue Oil and Gas Drilling Rock Mechanics and Engineering)
Show Figures

Figure 1

17 pages, 8349 KiB  
Article
A Study on the Effect of Doping Metallic Nanoparticles on Fracture Properties of Polylactic Acid Nanofibres via Molecular Dynamics Simulation
by Razie Izadi, Patrizia Trovalusci and Nicholas Fantuzzi
Nanomaterials 2023, 13(6), 989; https://doi.org/10.3390/nano13060989 - 9 Mar 2023
Cited by 9 | Viewed by 2303
Abstract
All-atom molecular dynamics simulations are conducted to elucidate the fracture mechanism of polylactic acid nanofibres doped with metallic nanoparticles. Extensional deformation is applied on polymer nanofibres decorated with spherical silver nanoparticles on the surface layer. In the obtained stress–strain curve, the elastic, yield, [...] Read more.
All-atom molecular dynamics simulations are conducted to elucidate the fracture mechanism of polylactic acid nanofibres doped with metallic nanoparticles. Extensional deformation is applied on polymer nanofibres decorated with spherical silver nanoparticles on the surface layer. In the obtained stress–strain curve, the elastic, yield, strain softening and fracture regions are recognized, where mechanical parameters are evaluated by tracking the stress, strain energy and geometrical evolutions. The energy release rate during crack propagation, which is a crucial factor in fracture mechanics, is calculated. The results show that the presence of doping nanoparticles improves the fracture properties of the polymer nanofibre consistently with experimental observation. The nanoparticles bind together polymer chains on the surface layer, which hinders crack initiation and propagation. The effect of the distribution of nanoparticles is studied through different doping decorations. Additionally, a discussion on the variation of internal energy components during uniaxial tensile loading is provided to unravel the deformation mechanism of nanoparticle-doped nanofibres. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

17 pages, 5860 KiB  
Article
Numerical Simulation of the Wormhole Propagation in Fractured Carbonate Rocks during Acidization Using a Thermal-Hydrologic-Mechanics-Chemical Coupled Model
by Piyang Liu, Chaoping Huang, Lijing Jia, Weijing Ji, Zhao Zhang and Kai Zhang
Water 2022, 14(24), 4117; https://doi.org/10.3390/w14244117 - 16 Dec 2022
Cited by 6 | Viewed by 3522
Abstract
Acidizing is a widely adopted approach for stimulating carbonate reservoirs. The two-scale continuum (TSC) model is the most widely used model for simulating the reactive process in a carbonate reservoir during acidizing. In realistic cases, there are overburden pressure and pore pressure at [...] Read more.
Acidizing is a widely adopted approach for stimulating carbonate reservoirs. The two-scale continuum (TSC) model is the most widely used model for simulating the reactive process in a carbonate reservoir during acidizing. In realistic cases, there are overburden pressure and pore pressure at present. When the injected acid reacts with the rock, the dissolution of the rock and the consumption of the acid in the pore will break the mechanical balance of the rock. Many experimental studies show that cores after acidizing have lower strength. However, it is still not clear how the deformation of rocks by the change of ground stress influences the acidizing dynamics. For fractured carbonate reservoirs, fractures play a leading role in the flow of injected acid, which preferentially flows into the fractures and dissolves the fracture walls. The effect of the combined action of rock mechanical balance broken and fracture wall dissolution on the formation of wormholes in fractured carbonate reservoirs remains to be studied. To address the above-mentioned issues, a thermal-hydrologic-mechanical-chemical coupled model is presented based on the TSC model for studying the wormhole propagation in fractured carbonate reservoirs under practical conditions. Linear and radial flow cases are simulated to investigate the influences of fracture distribution, reaction temperature, and effective stress on acidizing dynamics. The simulation results show that more wormhole branches are formed by acidizing if the fractures are perpendicular to the flow direction of acid. Temperature is a key parameter affecting the acidification dissolution patterns, so the influence of temperature cannot be ignored during the acidification design. As the effective stress of the formation increases, the diameter of the wormhole gradually decreases, and the branching decreases. More acid is needed for the same stimulation result under higher effective stress. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment)
Show Figures

Figure 1

Back to TopTop