Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = achromatic optics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2797 KiB  
Review
All-Dielectric Metalenses for Long-Wavelength Infrared Imaging Applications: A Review
by Shinpei Ogawa, Misaki Hanaoka, Manabu Iwakawa, Shoichiro Fukushima and Masaaki Shimatani
Sensors 2025, 25(12), 3781; https://doi.org/10.3390/s25123781 - 17 Jun 2025
Viewed by 754
Abstract
Infrared imaging has gained considerable attention across diverse fields, including security, surveillance, and environmental monitoring. The need to minimize size, weight, power, and cost (SWaP-C) poses challenges for conventional optical systems like refractive lenses. Metalenses with subwavelength surface patterns have emerged as promising [...] Read more.
Infrared imaging has gained considerable attention across diverse fields, including security, surveillance, and environmental monitoring. The need to minimize size, weight, power, and cost (SWaP-C) poses challenges for conventional optical systems like refractive lenses. Metalenses with subwavelength surface patterns have emerged as promising solutions to address these limitations. This review provides a comprehensive analysis of all-dielectric metalenses for long-wavelength infrared (LWIR) imaging applications, a critical spectral region for human detection and analytical applications (such as gas analysis). We examine the limitations of conventional infrared (IR) lens materials and highlight the performance advantages of LWIR metalenses. Key design principles, including chromatic and achromatic lens configurations, are discussed alongside their imaging performance. Additionally, we review advanced functionalities such as polarization control, multifocal capabilities, zoom, and reconfigurability. Theoretical performance limits and trade-offs are analyzed to provide insights into design optimization. We identify future challenges related to advanced design methods and fabrication techniques. LWIR metalenses can be expected to overcome the shortcomings of conventional LWIR lenses owing to meta-optics technologies, to achieve SWaP-C and advanced functionalities that cannot be achieved by conventional LWIR lenses. This review will guide researchers in academia and industry to develop LWIR metalenses to advance IR imaging technologies. Full article
(This article belongs to the Special Issue Feature Review Papers in Optical Sensors)
Show Figures

Figure 1

25 pages, 4126 KiB  
Review
The Principle and Application of Achromatic Metalens
by Runsheng Liu, Lihua Li and Jian Zhou
Micromachines 2025, 16(6), 660; https://doi.org/10.3390/mi16060660 - 30 May 2025
Viewed by 993
Abstract
Metalenses, as ultrathin planar optical devices based on metasurfaces, have attracted significant research interest in recent years due to their compact structure and versatile light manipulation, showing great potential to replace traditional lenses in specific applications. This review focuses on the fundamental principles [...] Read more.
Metalenses, as ultrathin planar optical devices based on metasurfaces, have attracted significant research interest in recent years due to their compact structure and versatile light manipulation, showing great potential to replace traditional lenses in specific applications. This review focuses on the fundamental principles of geometric and propagation phases of metalenses, introducing their applications in achromatic aberration correction, and emphasizing their advantages and limitations. We further discuss the application of multilayer metalenses in zoom optical systems and summarize methods such as topology optimization and inverse design to enhance the efficiency of metalenses. Special attention is given to comparing broadband and discrete achromatic correction, highlighting their respective working principles, design challenges, and practical implications. Additionally, recent advances in using deep learning for image-side aberration correction are briefly discussed. Finally, we highlight various practical applications of metalenses and discuss future research directions. Full article
(This article belongs to the Special Issue Design and Manufacture of Micro-Optical Lens, 2nd Edition)
Show Figures

Figure 1

9 pages, 4010 KiB  
Communication
Broadband Achromatic Hybrid Metalens Module with 100° Field of View for Visible Imaging
by Peixuan Wu, Xingyi Li, Yuanyuan Xing, Jiaojiao Wang, Wujie Zheng, Zekun Wang and Yaoguang Ma
Sensors 2025, 25(10), 3202; https://doi.org/10.3390/s25103202 - 20 May 2025
Viewed by 939
Abstract
Conventional metalenses struggle with chromatic aberration and narrow field of view (FOV), making it challenging to meet the dispersion requirements for large apertures and compensate off-axis aberrations for wide FOV. Here, we demonstrate a hybrid metalens module consisting of five refractive plastic lenses [...] Read more.
Conventional metalenses struggle with chromatic aberration and narrow field of view (FOV), making it challenging to meet the dispersion requirements for large apertures and compensate off-axis aberrations for wide FOV. Here, we demonstrate a hybrid metalens module consisting of five refractive plastic lenses and a polarization-insensitive metalens to achieve broadband achromatic imaging within 400–700 nm and a wide FOV up to 100°. The system exhibits negligible variation in focal length (~1.2%) across the visible range (460–656 nm) and consistently achieves modulation transfer function (MTF) values > 0.2 at 167 lp/mm across all wavelengths and incident angles. We also demonstrate integrated lens modules that capture high-quality images from distances ranging between 0.5 and 4 m without post-processing, showcasing its potential for compact, wide-angle optical systems. Full article
(This article belongs to the Special Issue Advanced Optics and Sensing Technologies for Telescopes)
Show Figures

Figure 1

13 pages, 6065 KiB  
Article
Design, Analysis, and Manufacturing of Diffractive Achromatic Optical Systems
by Yidi Zheng, Junfeng Du, Boping Lei, Jiang Bian, Lihua Wang and Bin Fan
Micromachines 2025, 16(3), 322; https://doi.org/10.3390/mi16030322 - 11 Mar 2025
Viewed by 768
Abstract
The increasing resolution requirements of imaging optical systems must be satisfied by expanding the aperture of the optical system according to Rayleigh’s criterion, and larger apertures of conventional refractive/reflective optics place a greater demand on manufacturing and transportation. Diffractive optics are applied to [...] Read more.
The increasing resolution requirements of imaging optical systems must be satisfied by expanding the aperture of the optical system according to Rayleigh’s criterion, and larger apertures of conventional refractive/reflective optics place a greater demand on manufacturing and transportation. Diffractive optics are applied to imaging optics to achieve lightweight design, but the image quality suffers due to their strong negative properties. Therefore, a wide-band imaging system based on the Schupmann achromatic model is proposed in this paper to solve the above problem, and the achromatic performance of the system is guaranteed by the Schupmann achromatic model. The aperture of the relay lens is reduced, since using harmonic diffractive optics as the primary lens results in a much more compact focus compared to the diffractive optics in the same wavelength band. This allows for the lightweight design of the optical system. An 80 mm aperture diffractive optical system covering the 400–900 nm band was designed and fabricated to verify the above theory. The actual resolution of the optical system was 76.196 lp/mm, and the achromatic task was accomplished. The design and experimentation of the wide-band achromatic imaging optical system confirms that the proposed theory is correct, and lays the foundation for the further application of large aperture diffractive telescopes. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

24 pages, 2793 KiB  
Article
Dispersive Sweatt Model for Broadband Lens Design with Metasurfaces
by Weiyu Chen, Ko-Han Shih and C. Kyle Renshaw
Photonics 2025, 12(1), 43; https://doi.org/10.3390/photonics12010043 - 6 Jan 2025
Cited by 2 | Viewed by 1025
Abstract
The Sweatt model has been extensively used to design optical systems containing diffractive optical elements (DOEs) because it captures the dispersive characteristics of DOEs. We introduce a new dispersive Sweatt model (DSM) that can describe meta-atom (MA) dispersion, which has material and geometric [...] Read more.
The Sweatt model has been extensively used to design optical systems containing diffractive optical elements (DOEs) because it captures the dispersive characteristics of DOEs. We introduce a new dispersive Sweatt model (DSM) that can describe meta-atom (MA) dispersion, which has material and geometric contributions in addition to diffraction. It uses a wavelength-dependent scalar coefficient to modify the diffractive dispersion and describe the dispersion of a given MA basis. This provides a robust framework to design systems containing metasurface (MS) elements while including their unique dispersive properties in the design optimization. Importantly, the DSM is based on ray optics and enables the design of MS-containing systems using conventional optical design software such as Zemax and Code V. We use the DSM to demonstrate the design of a hybrid refractive/MS achromatic doublet for the midwave infrared (MWIR) band. The design example includes multiple wavelengths and field angles during optimization and demonstrates excellent agreement between the DSM and real hybrid lens performance modeled using wave optics. We discuss the limits of the DSM and present a simple model to predict performance limits due to phase mismatch at Fresnel zone boundaries. Full article
(This article belongs to the Special Issue Advancements in Optical Metamaterials)
Show Figures

Figure 1

20 pages, 8796 KiB  
Article
Scattering Improves Temporal Resolution of Vision: A Pilot Study on Brain Activity
by Francisco J. Ávila
Photonics 2025, 12(1), 23; https://doi.org/10.3390/photonics12010023 - 30 Dec 2024
Cited by 1 | Viewed by 1239
Abstract
Temporal vision is a vital aspect of human perception, encompassing the ability to detect changes in light and motion over time. Optical scattering, or straylight, influences temporal visual acuity and the critical flicker fusion (CFF) threshold, with potential implications for cognitive visual processing. [...] Read more.
Temporal vision is a vital aspect of human perception, encompassing the ability to detect changes in light and motion over time. Optical scattering, or straylight, influences temporal visual acuity and the critical flicker fusion (CFF) threshold, with potential implications for cognitive visual processing. This study investigates how scattering affects CFF using an Arduino-based psychophysical device and electroencephalogram (EEG) recordings to analyze brain activity during CFF tasks under scattering-induced effects. A cohort of 30 participants was tested under conditions of induced scattering to determine its effect on temporal vision. Findings indicate a significant enhancement in temporal resolution under scattering conditions, suggesting that scattering may modulate the temporal aspects of visual perception, potentially by altering neural activity at the temporal and frontal brain lobes. A compensation mechanism is proposed to explain neural adaptations to scattering based on reduced electrical activity in the visual cortex and increased wave oscillations in the temporal lobe. Finally, the combination of the Arduino-based flicker visual stimulator and EEG revealed the excitatory/inhibitory stimulation capabilities of the high-frequency beta oscillation based on the alternation of an achromatic and a chromatic stimulus displayed in the CFF. Full article
(This article belongs to the Special Issue New Technologies for Human Visual Function Assessment)
Show Figures

Figure 1

8 pages, 4421 KiB  
Article
Chromatic Aberration in Wavefront Coding Imaging with Trefoil Phase Mask
by Miguel Olvera-Angeles, Justo Arines and Eva Acosta
Photonics 2024, 11(12), 1117; https://doi.org/10.3390/photonics11121117 - 26 Nov 2024
Viewed by 1100
Abstract
The refractive index of the lenses used in optical designs varies with wavelength, causing light rays to fail when focusing on a single plane. This phenomenon is known as chromatic aberration (CA), chromatic distortion, or color fringing, among other terms. Images affected by [...] Read more.
The refractive index of the lenses used in optical designs varies with wavelength, causing light rays to fail when focusing on a single plane. This phenomenon is known as chromatic aberration (CA), chromatic distortion, or color fringing, among other terms. Images affected by CA display colored halos and experience a loss of resolution. Fully achromatic systems can be achieved through complex and costly lens designs and/or computationally when digital sensors capture the image. In this work, we propose using the wavefront coding (WFC) technique with a trefoil-shaped phase modulation plate in the optical system to effectively increase the resolution of images affected by longitudinal chromatic aberration (LCA), significantly simplifying the optical design and reducing costs. Experimental results with three LEDs simulating RGB images verify that WFC with trefoil phase plates effectively corrects longitudinal chromatic aberration. Transverse chromatic aberration (TCA) is corrected computationally. Furthermore, we demonstrate that the optical system maintains depth of focus (DoF) for color images. Full article
(This article belongs to the Special Issue Adaptive Optics Imaging: Science and Applications)
Show Figures

Figure 1

12 pages, 1418 KiB  
Article
The Measurement of Contrast Sensitivity in Near Vision: The Use of a Digital System vs. a Conventional Printed Test
by Kevin J. Mena-Guevara, David P. Piñero, María José Luque and Dolores de Fez
Technologies 2024, 12(7), 108; https://doi.org/10.3390/technologies12070108 - 9 Jul 2024
Viewed by 2621
Abstract
In recent years, there has been intense development of digital diagnostic tests for vision. All of these tests must be validated for clinical use. The current study enrolled 51 healthy individuals (age 19–72 years) in which achromatic contrast sensitivity function (CSF) in near [...] Read more.
In recent years, there has been intense development of digital diagnostic tests for vision. All of these tests must be validated for clinical use. The current study enrolled 51 healthy individuals (age 19–72 years) in which achromatic contrast sensitivity function (CSF) in near vision was measured with the printed Vistech VCTS test (Stereo Optical Co., Inc., Chicago, IL, USA) and the Optopad-CSF (developed by our research group to be used on an iPad). Likewise, chromatic CSF was evaluated with a digital test. Statistically significant differences between tests were only found for the two higher spatial frequencies evaluated (p = 0.012 and <0.001, respectively). The mean achromatic index of contrast sensitivity (ICS) was 0.02 ± 1.07 and −0.76 ± 1.63 for the Vistech VCTS and Optopad tests, respectively (p < 0.001). The ranges of agreement between tests were 0.55, 0.76, 0.78, and 0.69 log units for the spatial frequencies of 1.5, 3, 6, and 12 cpd, respectively. The mean chromatic ICS values were −20.56 ± 0.96 and −0.16 ± 0.99 for the CSF-T and CSF-D plates, respectively (p < 0.001). Furthermore, better achromatic, red–green, and blue–yellow CSF values were found in the youngest groups. The digital test allows the fast measurement of near-achromatic and chromatic CSF using a colorimetrically calibrated iPad, but the achromatic measures cannot be used interchangeably with those obtained with a conventional printed test. Full article
Show Figures

Figure 1

15 pages, 9927 KiB  
Article
Compact Numerical Aperture 0.5 Fiber Optic Spectrometer Design Using Active Image Plane Tilt
by Pinliang Yue, Mingyu Yang, Qingbin Jiao, Liang Xu, Xiaoxu Wang, Mingle Zhang and Xin Tan
Sensors 2024, 24(12), 3883; https://doi.org/10.3390/s24123883 - 15 Jun 2024
Cited by 2 | Viewed by 1687
Abstract
The numerical aperture of the spectrometer is crucial for weak signal detection. The transmission lens-based configuration has more optimization variations, and the grating can work approximately in the Littrow condition; thus, it is easier to acquire high numerical aperture (NA). However, designing a [...] Read more.
The numerical aperture of the spectrometer is crucial for weak signal detection. The transmission lens-based configuration has more optimization variations, and the grating can work approximately in the Littrow condition; thus, it is easier to acquire high numerical aperture (NA). However, designing a large aperture focusing lens remains challenging, and thus, ultra-high NA spectrometers are still difficult to acquire. In this paper, we propose a method of setting image plane tilt ahead directly when designing the large aperture focusing lens to simplify the high NA spectrometer design. By analyzing the accurate demands of the focusing lens, it can be concluded that a focusing lens with image plane tilt has much weaker demand for achromatism, and other monochromatic aberration can also be reduced, which is helpful to increase the NA. An NA0.5 fiber optic spectrometer design is given to demonstrate the proposed method. The design results show that the NA can achieve 0.5 using four lenses of two materials, and the MTF is higher than 0.5 when the spectral dispersion length is 12.5 mm and the pixel size is 25 μm, and thus, the spectral resolution can achieve 6.5 nm when the spectral sampling ratio is 2:1. The proposed method can provide reference for applications when appropriate materials are limited and high sensitivity is necessary. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

11 pages, 6302 KiB  
Article
Full-Color Imaging System Based on the Joint Integration of a Metalens and Neural Network
by Shuling Hu, Ruixue Shi, Bin Wang, Yuan Wei, Binzhi Qi and Peng Zhou
Nanomaterials 2024, 14(8), 715; https://doi.org/10.3390/nano14080715 - 19 Apr 2024
Cited by 2 | Viewed by 1849
Abstract
Lenses have been a cornerstone of optical systems for centuries; however, they are inherently limited by the laws of physics, particularly in terms of size and weight. Because of their characteristic light weight, small size, and subwavelength modulation, metalenses have the potential to [...] Read more.
Lenses have been a cornerstone of optical systems for centuries; however, they are inherently limited by the laws of physics, particularly in terms of size and weight. Because of their characteristic light weight, small size, and subwavelength modulation, metalenses have the potential to miniaturize and integrate imaging systems. However, metalenses still face the problem that chromatic aberration affects the clarity and accuracy of images. A high-quality image system based on the end-to-end joint optimization of a neural network and an achromatic metalens is demonstrated in this paper. In the multi-scale encoder–decoder network, both the phase characteristics of the metalens and the hyperparameters of the neural network are optimized to obtain high-resolution images. The average peak-signal-to-noise ratio (PSNR) and average structure similarity (SSIM) of the recovered images reach 28.53 and 0.83. This method enables full-color and high-performance imaging in the visible band. Our approach holds promise for a wide range of applications, including medical imaging, remote sensing, and consumer electronics. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Optoelectronics: Second Edition)
Show Figures

Figure 1

12 pages, 7307 KiB  
Article
Design of an Achromatic Graphene Oxide Metalens with Multi-Wavelength for Visible Light
by Yuxi Chen, Yongchang Ding, Haowen Yu and Xueyan Li
Photonics 2024, 11(3), 249; https://doi.org/10.3390/photonics11030249 - 11 Mar 2024
Cited by 4 | Viewed by 2314
Abstract
Dispersion control is a critical aspect in nano-optical systems. Moreover, chromatic aberration significantly impacts image quality. Despite metasurfaces being a novel approach to tackle chromatic aberration in diffractive lenses, numerous challenges hinder their practical implementation due to the complexity of 3D fabrication techniques [...] Read more.
Dispersion control is a critical aspect in nano-optical systems. Moreover, chromatic aberration significantly impacts image quality. Despite metasurfaces being a novel approach to tackle chromatic aberration in diffractive lenses, numerous challenges hinder their practical implementation due to the complexity of 3D fabrication techniques and high manufacturing costs. In contrast, ultra-thin graphene oxide lenses are simpler and less expensive to manufacture. The optical performance of graphene oxide lenses, such as high focusing efficiency, large depth of field, wide bandwidth, and zooming capability, depends on the design of the positional arrangement of reduced graphene oxide regions. In this study, we utilized the self-constructed datasets to train machine learning models based on the structure of the graphene oxide lens and combined it with intelligent optimization algorithms. This approach facilitated the design of the graphene oxide achromatic lens in multi-wavelengths with high-performance. Experimental results substantiate that the designed ultra-thin graphene oxide lens, with a thickness of ~200 nm, effectively controls dispersion across multiple incident wavelengths (450, 550, and 650 nm) and achieves super resolution with consistent intensity at the focal point. Our graphene oxide lens holds the potential for integration into micro-optical systems that demand dispersion control, providing broad applications in optical imaging, optical communication, the biomedical field, and beyond. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

12 pages, 9747 KiB  
Article
Four-Polarisation Camera for Anisotropy Mapping at Three Orientations: Micro-Grain of Olivine
by Shuji Kamegaki, Daniel Smith, Meguya Ryu, Soon Hock Ng, Hsin-Hui Huang, Pegah Maasoumi, Jitraporn Vongsvivut, Daniel Moraru, Tomas Katkus, Saulius Juodkazis and Junko Morikawa
Coatings 2023, 13(9), 1640; https://doi.org/10.3390/coatings13091640 - 18 Sep 2023
Cited by 4 | Viewed by 2370
Abstract
A four-polarisation camera was used to map the absorbance of olivine micro-grains before and after high-temperature annealing (HTA). It is shown that HTA of olivine xenoliths at above 1200 °C in O2 flow makes them magnetised. Different modes of operation of [...] Read more.
A four-polarisation camera was used to map the absorbance of olivine micro-grains before and after high-temperature annealing (HTA). It is shown that HTA of olivine xenoliths at above 1200 °C in O2 flow makes them magnetised. Different modes of operation of the polariscope with polarisation control before and after the sample in transmission and reflection modes were used. The reflection type was assembled for non-transparent samples of olivine after HTA. The sample for optical observation in transmission was placed on an achromatic, plastic, quarter-wavelength waveplate as a sample holder. Inspection of the sample’s birefringence (retardance), as well as absorbance, was undertaken. The best fit for the transmitted intensity or transmittance T (hence, absorbance A=log10T) is obtainable using a simple best fit with only three orientations (from the four orientations measured by the camera). When the intensity of transmitted light at one of the orientations is very low due to a cross-polarised condition (polariser–analyser arrangement), the three-point fit can be used. The three-point fit in transmission and reflection modes was validated for T(θ)=Amp×cos(2θ2θshift)+offset, where the amplitude Amp, offset offset, and orientation azimuth θshift were extracted for each pixel via the best fit. Full article
(This article belongs to the Special Issue New Advances in Novel Optical Materials and Devices)
Show Figures

Figure 1

20 pages, 4453 KiB  
Article
Hierarchical Feature Enhancement Algorithm for Multispectral Infrared Images of Dark and Weak Targets
by Shuai Yang, Zhihui Zou, Yingchao Li, Haodong Shi and Qiang Fu
Photonics 2023, 10(7), 805; https://doi.org/10.3390/photonics10070805 - 11 Jul 2023
Cited by 3 | Viewed by 1433
Abstract
A multispectral infrared zoom optical system design and a single-frame hierarchical guided filtering image enhancement algorithm are proposed to address the technical problems of low contrast, blurred edges, and weak signal strength of single-spectrum infrared imaging of faint targets, which are easily drowned [...] Read more.
A multispectral infrared zoom optical system design and a single-frame hierarchical guided filtering image enhancement algorithm are proposed to address the technical problems of low contrast, blurred edges, and weak signal strength of single-spectrum infrared imaging of faint targets, which are easily drowned out by noise. The multispectral infrared zoom optical system, based on the theory of complex achromatic and mechanical positive group compensation, can simultaneously acquire multispectral image information for faint targets. The single-frame hierarchical guided filtering image enhancement algorithm, which extracts the background features and detailed features of faint targets in a hierarchical manner and then weights fusion, effectively enhances the target and suppresses the interference of complex background and noise. Solving multi-frame processing increases data storage and real-time challenges. The experimental verification of the optical system design and image enhancement algorithm proposed in this paper separately verified that the experimental enhancement was significant, with the combined use improving Mean Square Error (MSE) by 14.32, Signal-Noise Ratio (SNR) by 11.64, Peak Signal-to-Noise Ratio (PSNR) by 12.78, and Structural Similarity (SSIM) by 14.0% compared to guided filtering. This research lays the theoretical foundation for the research of infrared detection and tracking technology for clusters of faint targets. Full article
Show Figures

Figure 1

12 pages, 1132 KiB  
Article
Morphological and Functional Aspects and Quality of Life in Patients with Achromatopsia
by Caroline Chan, Berthold Seitz and Barbara Käsmann-Kellner
J. Pers. Med. 2023, 13(7), 1106; https://doi.org/10.3390/jpm13071106 - 7 Jul 2023
Viewed by 1896
Abstract
(1) Background: Achromatopsia is a rare disease of which the natural course and impact on life are still unknown to this date. We aimed to assess the morphological, functional characteristics, and quality of life in a large sample size of patients with achromatopsia. [...] Read more.
(1) Background: Achromatopsia is a rare disease of which the natural course and impact on life are still unknown to this date. We aimed to assess the morphological, functional characteristics, and quality of life in a large sample size of patients with achromatopsia. (2) A total of 94 achromats were included in this retrospective cohort study. Sixty-four were patients of the Department of Ophthalmology, Saarland University Medical Centre in Homburg/Saar, Germany, between 2008 and 2021. Thirty further participants with achromatopsia from the national support group were included using an online questionnaire, which is available under ‘Supplementary data’. Statistical analysis was performed using SPSS Version 25; (3) The 94 patients (37 males (39.4%) and 57 females (60.6%)) showed a mean age of 24.23 ± 18.53 years. Visual acuity was stable (SD ± 0.22 logMAR at 1.0 logMAR) over a time of observation from 2008 to 2021. Edge filter glasses were the most used optical aids, while enlarged reading glasses were the most used low vision aids. (4) Conclusions: Our findings give an insight into describing the natural process and the quality of life of achromatopsia. The results demonstrate that achromatopsia is a predominantly stationary disease. The individual prescription of edge filters and low-vision aids is essential following a personalised fitting. Full article
(This article belongs to the Special Issue The Challenges and Therapeutic Prospects in Eye Disease)
Show Figures

Figure 1

34 pages, 22799 KiB  
Article
An Improved Automation System for Destructive and Visual Measurements of Cross-Sectional Geometric Parameters of Microdrills
by Wen-Tung Chang and Yu-Yun Lu
Machines 2023, 11(6), 581; https://doi.org/10.3390/machines11060581 - 23 May 2023
Viewed by 1799
Abstract
Microdrills are specific cutting tools widely used to drill microholes and microvias. For certain microdrill manufacturers, a conventional sampling inspection procedure is still manually operated for carrying out the destructive and visual measurements of two essential cross-sectional geometric parameters (CSGPs), called the cross-sectional [...] Read more.
Microdrills are specific cutting tools widely used to drill microholes and microvias. For certain microdrill manufacturers, a conventional sampling inspection procedure is still manually operated for carrying out the destructive and visual measurements of two essential cross-sectional geometric parameters (CSGPs), called the cross-sectional web thickness (CSWT) and the cross-sectional outer diameter (CSOD), of their straight (ST) and undercut (UC) type microdrill products. In order to comprehensively automate the conventional sampling inspection procedure, a destructive and visual measuring system improved from an existing vision-aided automation system, for both the hardware and the automated measuring process (AMP), is presented in this paper. The major improvement of the hardware is characterized by a machine vision module consisting of several conventional machine vision components in combination with an innovative and lower cost optical subset formed by a set of plano-concave achromatic (PCA) lenses and a reflection mirror, so that the essential functions of visually positioning the drilltip and visually measuring the CSGPs can both be achieved via the use of merely one machine vision module. The major improvement of the AMP is characterized by the establishment of specific image processing operations for an auto-focusing (AF) sub-process based on two-dimensional discrete Fourier transform (2D-DFT), for a web thickness measuring (WTM) sub-process based on an iterative least-square (LS) circle-fitting approach, and for an outer diameter measuring (ODM) sub-process based on integrated applications of an iterative LS circle-fitting approach and an LS line-fitting-based group-dividing approach, respectively. Experiments for measuring the CSGPs of microdrill samples were conducted to evaluate the actual effectiveness of the developed system. It showed that the developed system could achieve good repeatability and accuracy for the measurements of the CSWTs and CSODs of both ST and UC type microdrills. Therefore, the developed system could effectively and comprehensively automate the conventional sampling inspection procedure. Full article
(This article belongs to the Special Issue Industrial Process Improvement by Automation and Robotics)
Show Figures

Figure 1

Back to TopTop