Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = acetylene hydrogenation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2470 KB  
Article
Amorphous Nano Zero-Valent Iron (A-nZVI) Modified by Ethylenediamine for Efficient Dechlorination of Trichloroethylene: Structure, Kinetics, and Mechanism
by Zhidong Zhao, Yuqi Qiu, Baoliang Lei, Chenyang Zhang, Zhanhe Liu, Wei Wang, Haitao Wang and Tielong Li
Catalysts 2025, 15(12), 1173; https://doi.org/10.3390/catal15121173 - 18 Dec 2025
Viewed by 449
Abstract
Amorphous nano zero-valent iron (A-nZVI) was synthesized via liquid-phase reduction and ethylenediamine (EDA) modification to enhance trichloroethylene (TCE) dechlorination. A-nZVI showed a cauliflower-like morphology, where 20–50 nm primary particles formed 500–1000 nm secondary agglomerates with a high surface area. Compared with crystalline nZVI [...] Read more.
Amorphous nano zero-valent iron (A-nZVI) was synthesized via liquid-phase reduction and ethylenediamine (EDA) modification to enhance trichloroethylene (TCE) dechlorination. A-nZVI showed a cauliflower-like morphology, where 20–50 nm primary particles formed 500–1000 nm secondary agglomerates with a high surface area. Compared with crystalline nZVI (C-nZVI), A-nZVI exhibited higher electron transfer efficiency and stronger reducing capability (potentiodynamic polarization analysis). TCE removal followed a two-stage model: a rapid adsorption–reduction phase (pseudo-second-order; qe = 9.48 mg/g, R2 = 0.998) and a slower degradation phase (pseudo-first-order; k = 0.0125 h−1, R2 = 0.994). No toxic intermediates (e.g., dichloroethylene or vinyl chloride) were detected; products were mainly acetylene, ethylene, and ethane. The electron utilization efficiency increased from 8.47% (C-nZVI) to 15.32% (A-nZVI), while hydrogen evolution decreased by 32%. EDA formed Fe–N coordination bonds that facilitated electron transfer and stabilized the amorphous structure. A-nZVI retained 40% of its activity after four cycles under neutral to alkaline conditions. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

15 pages, 2609 KB  
Article
Research on Diagnostic Methods for Gas Generation Due to Degradation of Cable PVC Materials Under Electrical and Thermal Stress
by Peng Zhang, Xingwang Huang, Jingang Su, Zhen Liu, Xianhai Pang, Zihao Wang and Yidong Chen
Polymers 2025, 17(22), 3021; https://doi.org/10.3390/polym17223021 - 13 Nov 2025
Viewed by 779
Abstract
Polyvinyl chloride (PVC), owing to its excellent electrical properties and low cost, is widely applied in the inner insulation and outer sheath of cables. To achieve early fault warning based on characteristic gases, this study integrates experimental testing with molecular simulations to systematically [...] Read more.
Polyvinyl chloride (PVC), owing to its excellent electrical properties and low cost, is widely applied in the inner insulation and outer sheath of cables. To achieve early fault warning based on characteristic gases, this study integrates experimental testing with molecular simulations to systematically reveal the decomposition and gas generation characteristics of different PVC layers under electrical and thermal stresses. The results indicate that inner-layer PVC under electrical stress predominantly generates small-molecule olefins and halogenated hydrocarbons, while outer-layer PVC during thermal decomposition mainly produces hydrogen chloride, alkanes, and fragments of plasticizers. The surrounding atmosphere significantly regulates the gas generation pathways: air promotes the formation of CO2 and H2O, whereas electrical discharges accelerate the release of unsaturated hydrocarbons such as acetylene. By employing TG-FTIR, ReaxFF molecular dynamics, and DFT spectral calculations, a normalized infrared spectral library covering typical products was established and combined with the non-negative least squares method to realize quantitative deconvolution of mixed gases. Ultimately, a diagnostic system was constructed based on the concentration ratios of characteristic gases, which can effectively distinguish the failure modes of inner and outer PVC layers as well as different stress types. This provides a feasible approach for early detection of cable faults and supports intelligent maintenance strategies. Full article
(This article belongs to the Special Issue Polymeric Composites for Electrical Insulation Applications)
Show Figures

Figure 1

13 pages, 1060 KB  
Article
Reaction Mechanisms of Aqueous Methane Reforming by Continuous Flow Two-Phase Plasma Discharge
by Ekow Agyekum-Oduro, Md. Mokter Hossain, Ahmad Mukhtar and Sarah Wu
Catalysts 2025, 15(10), 980; https://doi.org/10.3390/catal15100980 - 14 Oct 2025
Viewed by 890
Abstract
This study explores nonthermal plasma reactions of methane and water in a two-phase system to produce methanol, examining reaction pathways, kinetics, and product distribution over time. The results show that methanol is the dominant liquid phase product among other oxygenates, including ethanol and [...] Read more.
This study explores nonthermal plasma reactions of methane and water in a two-phase system to produce methanol, examining reaction pathways, kinetics, and product distribution over time. The results show that methanol is the dominant liquid phase product among other oxygenates, including ethanol and acetic acid, with hydrogen as the largest fraction among gas-phase products comprising carbon monoxide, carbon dioxide, ethylene, and acetylene. Conductivity and pH trends of reactant water and their influence on reaction products were also analyzed. Methanol was found to be formed principally from the reactive coupling of methyl and hydroxyl radicals, as well as from methoxy and hydrogen radical combinations. Hydrogen was produced from three pathways: stepwise dehydrogenation of methane through electron-mediated hydrogen abstraction, sequential hydrogenation of ethane to acetylene, and water splitting. The methanol-yielding reactions proceeded at different rates in the liquid and gas phases, with gas-phase reactions occurring approximately nine times faster than the liquid-phase reactions. This work provides valuable insights into reaction pathways for direct methane conversion to oxygenates and value-added gas products under mild conditions using water as an environmentally friendly oxidant. Full article
Show Figures

Graphical abstract

36 pages, 7184 KB  
Review
Exploration of Sp-Sp2 Carbon Networks: Advances in Graphyne Research and Its Role in Next-Generation Technologies
by Muhammad Danish Ali, Anna Starczewska, Tushar Kanti Das and Marcin Jesionek
Int. J. Mol. Sci. 2025, 26(11), 5140; https://doi.org/10.3390/ijms26115140 - 27 May 2025
Cited by 8 | Viewed by 1939
Abstract
Graphyne, a hypothetical carbon allotrope comprising sp and sp2 hybridized carbon atoms, has garnered significant attention for its potential applications in next-generation technologies. Unlike graphene, graphyne’s distinctive acetylenic linkages endow it with a tunable electronic structure, directional charge transport, and superior mechanical [...] Read more.
Graphyne, a hypothetical carbon allotrope comprising sp and sp2 hybridized carbon atoms, has garnered significant attention for its potential applications in next-generation technologies. Unlike graphene, graphyne’s distinctive acetylenic linkages endow it with a tunable electronic structure, directional charge transport, and superior mechanical flexibility. This review delves into the structural variety, theoretical underpinnings, and burgeoning experimental endeavors associated with various graphyne allotropes, including α-, β-, γ-, and 6,6,12-graphyne. It examines synthesis methods, structural and electronic characteristics, and the material’s prospective roles in diverse fields, such as nanoelectronics, transistors, hydrogen storage, and desalination. Additionally, it highlights the use of computational modeling techniques—density functional theory (DFT), GW approximation, and nonequilibrium Green’s function (NEGF)—to anticipate and validate properties without fully scalable experimental data. Despite substantial theoretical progress, the practical implementation of graphyne-based devices faces several challenges. By critically assessing current research and identifying strategic directions, this review underscores graphyne’s potential to revolutionize advanced materials science. Full article
Show Figures

Figure 1

13 pages, 9328 KB  
Article
Light-Controlled Interconvertible Self-Assembly of Non-Photoresponsive Suprastructures
by Wentao Yu, Sudarshana Santhosh Kumar Kothapalli, Zhiyao Yang, Xuwen Guo, Xiaowei Li, Yimin Cai, Wen Feng and Lihua Yuan
Molecules 2024, 29(20), 4842; https://doi.org/10.3390/molecules29204842 - 12 Oct 2024
Cited by 1 | Viewed by 2096
Abstract
Achieving light-induced manipulation of controlled self-assembly in nanosized structures is essential for developing artificially dynamic smart materials. Herein, we demonstrate an approach using a non-photoresponsive hydrogen-bonded (H-bonded) macrocycle to control the self-assembly and disassembly of nanostructures in response to light. The present system [...] Read more.
Achieving light-induced manipulation of controlled self-assembly in nanosized structures is essential for developing artificially dynamic smart materials. Herein, we demonstrate an approach using a non-photoresponsive hydrogen-bonded (H-bonded) macrocycle to control the self-assembly and disassembly of nanostructures in response to light. The present system comprises a photoacid (merocyanine, 1-MEH), a pseudorotaxane formed by two H-bonded macrocycles, dipyridinyl acetylene, and zinc ions. The operation of such a system is examined according to the alternation of self-assembly through proton transfer, which is mediated by the photoacid upon exposure to visible light. The host–guest complexation between the macrocycle and bipyridium guests was investigated by NMR spectroscopy, and one of the guests with the highest affinity for the ring was selected for use as one of the components of the system, which forms the host–guest complex with the ring in a 2:1 stoichiometry. In solution, a dipyridine and the ring, having no interaction with each other, rapidly form a complex in the presence of 1-MEH when exposed to light and thermally relax back to the free ring without entrapped guests after 4 h. Furthermore, the addition of zinc ions to the solution above leads to the formation of a polypseudorotaxane with its morphology responsive to photoirradiation. This work exemplifies the light-controlled alteration of self-assembly in non-photoresponsive systems based on interactions between the guest and the H-bonded macrocycle in the presence of a photoacid. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

18 pages, 1978 KB  
Article
Infrared Spectroscopy and Photochemistry of Ethyl Maltol in Low-Temperature Argon Matrix
by İsa Sıdır, Susy Lopes, Timur Nikitin, Yadigar Gülseven Sıdır and Rui Fausto
Spectrosc. J. 2024, 2(4), 188-205; https://doi.org/10.3390/spectroscj2040013 - 3 Oct 2024
Viewed by 2497
Abstract
Ethyl maltol was investigated using matrix isolation infrared spectroscopy and DFT calculations. In an argon matrix (14.5 K), the compound was found to exist in a single conformer (form I), characterized by an intramolecular hydrogen bond with an estimated energy of ~17 kJ [...] Read more.
Ethyl maltol was investigated using matrix isolation infrared spectroscopy and DFT calculations. In an argon matrix (14.5 K), the compound was found to exist in a single conformer (form I), characterized by an intramolecular hydrogen bond with an estimated energy of ~17 kJ mol−1. The IR spectrum of this conformer was assigned, and the molecule’s potential energy landscape was explored to understand the relative stability and isomerization dynamics of the conformers. Upon annealing the matrix to 41.5 K, ethyl maltol was found to predominantly aggregate into a centrosymmetric dimer (2× conformer I) bearing two intermolecular hydrogen bonds with an estimated energy of ca. 28 kJ mol−1 (per bond). The UV-induced (λ > 235 nm) photochemistry of the matrix-isolated ethyl maltol was also investigated. After 1 min of irradiation, band markers of two rearrangement photoproducts formed through the photoinduced detachment-attachment (PIDA) mechanism, in which the ethyl maltol radical acts as an intermediate, were observed: 1-ethyl-3-hydroxy-6-oxibicyclo [3.1.0] hex-3-en-2-one and 2-ethyl-2H-pyran-3,4-dione. The first undergoes subsequent reactions, rearranging to 4-hydroxy-4-propanoylcyclobut-2-en-1-one and photofragmenting to cyclopropenone and 2-hydroxybut-1-en-1-one. Other final products were also observed, specifically acetylene and CO (the expected fragmentation products of cyclopropenone), and CO2. Overall, the study demonstrated ethyl maltol’s high reactivity under UV irradiation, with significant photochemical conversion occurring within minutes. The rapid photochemical conversion, with complete consumption of the compound in 20 min, should be taken into account in designing practical applications of ethyl maltol. Full article
Show Figures

Figure 1

22 pages, 14535 KB  
Article
The Synthesis of Green Palladium Catalysts Stabilized by Chitosan for Hydrogenation
by Farida Bukharbayeva, Alima Zharmagambetova, Eldar Talgatov, Assemgul Auyezkhanova, Sandugash Akhmetova, Aigul Jumekeyeva, Akzhol Naizabayev, Alima Kenzheyeva and Denis Danilov
Molecules 2024, 29(19), 4584; https://doi.org/10.3390/molecules29194584 - 26 Sep 2024
Cited by 3 | Viewed by 1804
Abstract
The proposed paper describes a simple and environmentally friendly method for the synthesis of three-component polymer–inorganic composites, which includes the modification of zinc oxide or montmorillonite (MMT) with chitosan (CS), followed by the immobilization of palladium on the resulting two-component composites. The structures [...] Read more.
The proposed paper describes a simple and environmentally friendly method for the synthesis of three-component polymer–inorganic composites, which includes the modification of zinc oxide or montmorillonite (MMT) with chitosan (CS), followed by the immobilization of palladium on the resulting two-component composites. The structures and properties of the obtained composites were characterized by physicochemical methods (IRS, TEM, XPS, SEM, EDX, XRD, BET). Pd–CS species covered the surface of inorganic materials through two different mechanisms. The interaction of chitosan polyelectrolyte with zinc oxide led to the deprotonation of its amino groups and deposition on the surface of ZnO. The immobilization of Pd on CS/ZnO occurred by the hydrolysis of [PdCl4]2−, followed by forming PdO particles by interacting with amino groups of chitosan. In the case of CS/MMT, protonated amino groups of CS interacted with negative sites of MMT, forming a positively charged CS/MMT composite. Furthermore, [PdCl4]2− interacted with the –NH3+ sites of CS/MMT through electrostatic force. According to TEM studies of 1%Pd–CS/ZnO, the presence of Pd nanoclusters composed of smaller Pd nanoparticles of 3–4 nm in size were observed on different sites of CS/ZnO. For 1%Pd–CS/MMT, Pd nanoparticles with sizes of 2 nm were evenly distributed on the support surface. The prepared three-component CS–inorganic composites were tested through the hydrogenation of 2-propen-1-ol and acetylene compounds (phenylacetylene, 2-hexyn-1-ol) under mild conditions (T—40 °C, PH2—1 atm). It was shown that the efficiency of 1%Pd–CS/MMT is higher than that of 1%Pd–CS/ZnO, which can be explained by the formation of smaller Pd particles that are evenly distributed on the support surface. The mechanism of 2-hexyn-1-ol hydrogenation over an optimal 1%Pd–CS/MMT catalyst was proposed. Full article
Show Figures

Figure 1

20 pages, 7534 KB  
Article
Investigation of the Performances of TiO2 and Pd@TiO2 in Photocatalytic Hydrogen Evolution and Hydrogenation of Acetylenic Compounds for Application in Photocatalytic Transfer Hydrogenation
by Eldar T. Talgatov, Akzhol A. Naizabayev, Alima M. Kenzheyeva, Zhannur K. Myltykbayeva, Atıf Koca, Farida U. Bukharbayeva, Sandugash N. Akhmetova, Raiymbek Yersaiyn and Assemgul S. Auyezkhanova
Catalysts 2024, 14(10), 665; https://doi.org/10.3390/catal14100665 - 26 Sep 2024
Cited by 6 | Viewed by 2661
Abstract
The development of effective bifunctional catalysts demonstrating high performance in both photocatalytic hydrogen evolution and selective hydrogenation of unsaturated compounds is of great interest for photocatalytic transfer hydrogenation. In this work, TiO2 and Pd@TiO2 catalysts were studied in two separate processes: [...] Read more.
The development of effective bifunctional catalysts demonstrating high performance in both photocatalytic hydrogen evolution and selective hydrogenation of unsaturated compounds is of great interest for photocatalytic transfer hydrogenation. In this work, TiO2 and Pd@TiO2 catalysts were studied in two separate processes: photocatalytic H2 evolution and conventional hydrogenation reactions. Photocatalytic properties of titanium dioxide synthesized by a simple precipitation method were compared with those of commercial ones. Commercial anatase with a lower agglomeration degree showed better activity in H2 evolution. Further modification of the commercial anatase with Pd resulted in increasing its activity, achieving an H2 evolution rate of 760 μmol/h gcat. The Pd catalysts supported on different TiO2 samples were tested in hydrogenation of acetylenic compounds. The activity of the Pd@TiO2 catalysts was found to be dependent on the photocatalytic properties of TiO2 supports. XPS studies of Pd catalysts indicated that commercial anatase with better photocatalytic properties provided easier reduction of Pd2+ to active Pd0 particles. The Pd catalyst supported on commercial anatase demonstrated the highest activity in the hydrogenation process. The WC≡C rate achieved 2.6 × 10−6, 9.0 × 10−6 and 35.7 × 10−6 mol/s for hydrogenation of 2-hexyne-1-ol, 5-hexyne-1-ol and 2-hexyne, respectively. The selectivity of the catalyst to target olefinic compounds was 94–96%. In addition, the hydrogenation rate was found to be significantly affected by reaction conditions such as hydrogen concentration and solvent composition. The WC≡C rate decreased linearly with decreasing hydrogen concentration in a H2:He gas mixture (30–100 vol%). Performing the reaction in 0.10 M NaOH ethanolic solution resulted in increasing the WC≡C rate and selectivity of the process. The Pd catalyst was reused in an alkali medium (NaOH in ethanol) for 35 runs without significant degradation in its catalytic activity. Thus, the results obtained in this work can be useful in photocatalytic transfer hydrogenation. Full article
(This article belongs to the Special Issue Novel Catalytic Materials for Hydrogen Storage and Generation)
Show Figures

Figure 1

15 pages, 4342 KB  
Article
Development of a Screening Platform for Optimizing Chemical Nanosensor Materials
by Larissa Egger, Lisbeth Reiner, Florentyna Sosada-Ludwikowska, Anton Köck, Hendrik Schlicke, Sören Becker, Öznur Tokmak, Jan Steffen Niehaus, Alexander Blümel, Karl Popovic and Martin Tscherner
Sensors 2024, 24(17), 5565; https://doi.org/10.3390/s24175565 - 28 Aug 2024
Cited by 2 | Viewed by 1618
Abstract
Chemical sensors, relying on changes in the electrical conductance of a gas-sensitive material due to the surrounding gas, typically react with multiple target gases and the resulting response is not specific for a certain analyte species. The purpose of this study was the [...] Read more.
Chemical sensors, relying on changes in the electrical conductance of a gas-sensitive material due to the surrounding gas, typically react with multiple target gases and the resulting response is not specific for a certain analyte species. The purpose of this study was the development of a multi-sensor platform for systematic screening of gas-sensitive nanomaterials. We have developed a specific Si-based platform chip, which integrates a total of 16 sensor structures. Along with a newly developed measurement setup, this multi-sensor platform enables simultaneous performance characterization of up to 16 different sensor materials in parallel in an automated gas measurement setup. In this study, we chose the well-established ultrathin SnO2 films as base material. In order to screen the sensor performance towards type and areal density of nanoparticles on the SnO2 films, the films are functionalized by ESJET printing Au-, NiPt-, and Pd-nanoparticle solutions with five different concentrations. The functionalized sensors have been tested toward the target gases: carbon monoxide and a specific hydrogen carbon gas mixture of acetylene, ethane, ethne, and propene. The measurements have been performed in three different humidity conditions (25%, 50% and 75% r.h.). We have found that all investigated types of NPs (except Pd) increase the responses of the sensors towards CO and HCmix and reach a maximum for an NP type specific concentration. Full article
Show Figures

Figure 1

24 pages, 4637 KB  
Article
Biogas Cleaning via Vacuum Swing Adsorption Using a Calcium Metal–Organic Framework Adsorbent: A Multiscale Simulation Study
by Madison Lasich, Victoria T. Adeleke and Kaniki Tumba
ChemEngineering 2024, 8(3), 62; https://doi.org/10.3390/chemengineering8030062 - 14 Jun 2024
Viewed by 2762
Abstract
Purifying biogas can enhance the performance of distributed smart grid systems while potentially yielding clean feedstock for downstream usage such as steam reforming. Recently, a novel anion-pillared metal–organic framework (MOF) was reported in the literature that shows good capacity to separate acetylene from [...] Read more.
Purifying biogas can enhance the performance of distributed smart grid systems while potentially yielding clean feedstock for downstream usage such as steam reforming. Recently, a novel anion-pillared metal–organic framework (MOF) was reported in the literature that shows good capacity to separate acetylene from carbon dioxide. The present study assesses the usefulness of this adsorbent for separating a typical biogas mixture (consisting of methane, nitrogen, oxygen, hydrogen, carbon dioxide, and hydrogen sulphide) using a multiscale approach. This approach couples atomistic Monte Carlo simulations in the grand canonical ensemble with the batch equilibrium modelling of a pressure swing adsorption system. The metal–organic framework displays selectivity at low pressures for carbon dioxide and especially hydrogen sulphide. An analysis of adsorption isotherm models coupled with statistical distributions of surface–gas interaction energies determined that both CH4 and CO2 exhibited Langmuir-type adsorption, while H2S displayed Langmuir-type behaviour at low pressures, with increasing adsorption site heterogeneity at high pressures. Batch equilibrium modelling of a vacuum swing adsorption system to purify a CH4/CO2 feedstock demonstrated that such a system can be incorporated into a solar biogas reforming process since the target purity of 93–94 mol-% methane for incorporation into the process was readily achievable. Full article
(This article belongs to the Special Issue Green and Sustainable Separation and Purification Technologies)
Show Figures

Figure 1

14 pages, 2817 KB  
Article
Construction of Conjugated Organic Polymers for Efficient Photocatalytic Hydrogen Peroxide Generation with Adequate Utilization of Water Oxidation
by Qinzhe Liu, Yuyan Huang and Yu-xin Ye
Materials 2024, 17(11), 2709; https://doi.org/10.3390/ma17112709 - 3 Jun 2024
Cited by 3 | Viewed by 1778
Abstract
The visible-light-driven photocatalytic production of hydrogen peroxide (H2O2) is currently an emerging approach for transforming solar energy into chemical energy. In general, the photocatalytic process for producing H2O2 includes two pathways: the water oxidation reaction (WOR) [...] Read more.
The visible-light-driven photocatalytic production of hydrogen peroxide (H2O2) is currently an emerging approach for transforming solar energy into chemical energy. In general, the photocatalytic process for producing H2O2 includes two pathways: the water oxidation reaction (WOR) and the oxygen reduction reaction (ORR). However, the utilization efficiency of ORR surpasses that of WOR, leading to a discrepancy with the low oxygen levels in natural water and thereby impeding their practical application. Herein, we report a novel donor–bridge–acceptor (D-B-A) organic polymer conjugated by the Sonogashira–Hagihara coupling reaction with tetraphenylethene (TPE) units as the electron donors, acetylene (A) as the connectors and pyrene (P) moieties as the electron acceptors. Notably, the resulting TPE-A-P exhibits a remarkable solar-to-chemical conversion of 1.65% and a high BET-specific surface area (1132 m2·g−1). Furthermore, even under anaerobic conditions, it demonstrates an impressive H2O2 photosynthetic efficiency of 1770 μmol g−1 h−1, exceeding the vast majority of previously reported photosynthetic systems of H2O2. The outstanding performance is attributed to the effective separation of electrons and holes, along with the presence of sufficient reaction sites facilitated by the incorporation of alkynyl electronic bridges. This protocol presents a successful method for generating H2O2 via a water oxidation reaction, signifying a significant advancement towards practical applications in the natural environment. Full article
Show Figures

Figure 1

20 pages, 7989 KB  
Article
Au Nanoparticles Supported on Hydrotalcite-Based MMgAlOx (M=Cu, Ni, and Co) Composite: Influence of Dopants on the Catalytic Activity for Semi-Hydrogenation of C2H2
by Xun Sun, Wenrui Lv, Yanan Cheng, Huijuan Su, Libo Sun, Lijun Zhao, Zifan Wang and Caixia Qi
Catalysts 2024, 14(5), 315; https://doi.org/10.3390/catal14050315 - 10 May 2024
Viewed by 2026
Abstract
Semi-hydrogenation of acetylene to ethylene over metal oxide-supported Au nanoparticles is an interesting topic. Here, a hydrotalcite-based MMgAlOx (M=Cu, Ni, and Co) composite oxide was exploited by introducing different Cu, Ni, and Co dopants with unique properties, and then used as support [...] Read more.
Semi-hydrogenation of acetylene to ethylene over metal oxide-supported Au nanoparticles is an interesting topic. Here, a hydrotalcite-based MMgAlOx (M=Cu, Ni, and Co) composite oxide was exploited by introducing different Cu, Ni, and Co dopants with unique properties, and then used as support to obtain Au/MMgAlOx catalysts via a modified deposition–precipitation method. XRD, BET, ICP-OES, TEM, Raman, XPS, and TPD were employed to investigate their physic-chemical properties and catalytic performances for the semi-hydrogenation of acetylene to ethylene. Generally, the catalytic activity of the Cu-modified Au/CuMgAlOx catalyst was higher than that of the other modified catalysts. The TOR for Au/CuMgAlOx was 0.0598 h−1, which was 30 times higher than that of Au/MgAl2O4. The SEM and XRD results showed no significant difference in structure or morphology after introducing the dopants. These dopants had an unfavorable effect on the Au particle size, as confirmed by the TEM studies. Accordingly, the effects on catalytic performance of the M dopant of the obtained Au/MMgAlOx catalyst were improved. Results of Raman, NH3-TPD, and CO2-TPD confirmed that the Au/CuMgAlOx catalyst had more basic sites, which is beneficial for less coking on the catalyst surface after the reaction. XPS analysis showed that gold nanoparticles exhibited a partially oxidized state at the edges and surfaces of CuMgAlOx. Besides an increased proportion of basic sites on Au/CuMgAlOx catalysts, the charge transfer from nanogold to the Cu-doped matrix support probably played a positive role in the selective hydrogenation of acetylene. The stability and deactivation of Au/CuMgAlOx catalysts were also discussed and a possible reaction mechanism was proposed. Full article
(This article belongs to the Special Issue Nanomaterials in Catalysis: Design, Characterization and Applications)
Show Figures

Figure 1

6 pages, 5236 KB  
Communication
Transfer Hydrogenation of Vinyl Arenes and Aryl Acetylenes with Ammonia Borane Catalyzed by Schiff Base Cobalt(II) Complexes
by Maciej Skrodzki, Maciej Zaranek, Giuseppe Consiglio and Piotr Pawluć
Int. J. Mol. Sci. 2024, 25(8), 4363; https://doi.org/10.3390/ijms25084363 - 15 Apr 2024
Cited by 2 | Viewed by 1686
Abstract
A series of bench-stable Co(II) complexes containing hydrazone Schiff base ligands were evaluated in terms of their activity and selectivity in carbon-carbon multiple bond transfer hydrogenation. These cobalt complexes, especially a Co(II) precatalyst bearing pyridine-2-yl-N(Me)N=C-(1-methyl)imidazole-2-yl ligand, activated by LiHBEt3, were successfully [...] Read more.
A series of bench-stable Co(II) complexes containing hydrazone Schiff base ligands were evaluated in terms of their activity and selectivity in carbon-carbon multiple bond transfer hydrogenation. These cobalt complexes, especially a Co(II) precatalyst bearing pyridine-2-yl-N(Me)N=C-(1-methyl)imidazole-2-yl ligand, activated by LiHBEt3, were successfully used in the transfer hydrogenation of substituted styrenes and phenylacetylenes with ammonia borane as a hydrogen source. Key advantages of the reported catalytic system include mild reaction conditions, high selectivity and tolerance to functional groups of substrates. Full article
15 pages, 5134 KB  
Article
Electrochemiluminescence Sensor Based on CTS-MoS2 and AB@CTS with Functionalized Luminol for Detection of Malathion Pesticide Residues
by Zhiping Yu, Chengqiang Li, Jiashuai Sun, Xia Sun and Guodong Hu
Foods 2023, 12(23), 4363; https://doi.org/10.3390/foods12234363 - 3 Dec 2023
Cited by 4 | Viewed by 2573
Abstract
The accumulation of pesticide residues poses a significant threat to the health of people and the surrounding ecological systems. However, traditional methods are not only costly but require expertise in analysis. An electrochemiluminescence (ECL) aptasensor was developed using chitosan and molybdenum disulfide (CTS-MoS [...] Read more.
The accumulation of pesticide residues poses a significant threat to the health of people and the surrounding ecological systems. However, traditional methods are not only costly but require expertise in analysis. An electrochemiluminescence (ECL) aptasensor was developed using chitosan and molybdenum disulfide (CTS-MoS2), along with acetylene black (AB@CTS) for the rapid detection of malathion residues. Due to the weak interaction force, simple composite may lead to uneven dispersion; MoS2 and AB were dissolved in CTS solution, respectively, and utilized the biocompatibility of CTS to interact with each other on the electrode. The MoS2 nanosheets provided a large specific surface area, enhancing the utilization rate of catalytic materials, while AB exhibited excellent conductivity. Additionally, the dendritic polylysine (PLL) contained numerous amino groups to load abundant luminol to catalyze hydrogen peroxide (H2O2) and generate reactive oxygen species (ROS). The proposed ECL aptasensor obtained a low detection limit of 2.75 × 10−3 ng/mL (S/N = 3) with a good detection range from 1.0 × 10−2 ng/mL to 1.0 × 103 ng/mL, demonstrating excellent specificity, repeatability, and stability. Moreover, the ECL aptasensor was successfully applied for detecting malathion pesticide residues in authentic samples with recovery rates ranging from 94.21% to 99.63% (RSD < 2.52%). This work offers valuable insights for advancing ECL sensor technology in future applications. Full article
(This article belongs to the Special Issue Advanced Biosensor for Rapid Detection of Food Safety)
Show Figures

Figure 1

20 pages, 6001 KB  
Review
Application of Metal-Based Catalysts for Semi-Hydrogenation of Alkynol: A Review
by Pengxian Wang, Yue Ma, Yiran Shi, Fangying Duan and Meng Wang
Materials 2023, 16(23), 7409; https://doi.org/10.3390/ma16237409 - 28 Nov 2023
Cited by 6 | Viewed by 2903
Abstract
Alkynol semi-hydrogenation plays a vital role in industrial processes, due to the significance of its main product, enol, in high-end chemical synthesis, such as medicine, pesticide, food additives, and polymer monomer synthesis. Multiple intermediates are formed through a complex series of parallel or [...] Read more.
Alkynol semi-hydrogenation plays a vital role in industrial processes, due to the significance of its main product, enol, in high-end chemical synthesis, such as medicine, pesticide, food additives, and polymer monomer synthesis. Multiple intermediates are formed through a complex series of parallel or continuous reactions under varying conditions. However, the selectivity and efficiency of catalysts for producing these products still pose significant challenges. This review aims to thoroughly discuss the challenges and advancements in catalysts using different species and supports under various reaction conditions. Furthermore, strategies to enhance the yield and rate of enols are summarized based on noble metals, non-noble metals, and metal comparisons. By addressing diverse catalysts and reaction conditions, this review provides valuable insights into improving the semi-hydrogenation of acetylenic alcohols to enols. Full article
Show Figures

Figure 1

Back to TopTop