Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = acetylated starch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4201 KiB  
Article
Comparative Effects of the Single and Binary Fermentations of Latilactobacillus sakei and Staphylococcus carnosus on the Growth and Metabolomic Profiles of Fermented Beef Sausages
by Xuan Li, Yangyi Zheng, Wenming Cui, Xueyuan Bai, Chaozhi Zhu and Gaiming Zhao
Microorganisms 2025, 13(7), 1523; https://doi.org/10.3390/microorganisms13071523 - 29 Jun 2025
Viewed by 310
Abstract
Latilactobacillus sakei (L. sakei) and Staphylococcus carnosus (S. carnosus) are common starters for fermented sausages. However, the mechanism underlying the effects of these two microorganisms on co-cultivation in sausages remains unclear. This study compared the changes in metabolomics following [...] Read more.
Latilactobacillus sakei (L. sakei) and Staphylococcus carnosus (S. carnosus) are common starters for fermented sausages. However, the mechanism underlying the effects of these two microorganisms on co-cultivation in sausages remains unclear. This study compared the changes in metabolomics following fermentation by L. sakei and S. carnosus individually and in combination. After two days of fermentation, the pH values of the LS (Latilactobacillus Single), SC (Staphylococcus Single), and LSSC (Latilactobacillus-Staphylococcus Combined) groups were 4.59, 5.19, and 4.86. By comparing the common differential metabolites among the three groups, it was found that the content of N2-acetyl-L-ornithine decreased after single fermentation with L. sakei, while the content of N2-acetyl-L-ornithine increased after single fermentation with S. carnosus and combined fermentation with L. sakei. Additionally, KEGG pathway analysis identified eight key metabolic pathways, including purine metabolism, starch and sucrose metabolism. In addition, it was found that L. sakei produced D-Galactose during fermentation, which could be utilized by S. carnosus. The co-fermentation of L. sakei and S. carnosus promoted the production of D-sorbitol. Our results suggest that the metabolic interactions between L. sakei and S. carnosus increase the number of functional metabolites in co-fermented sausages. These findings provide valuable insights and new research directions for the study of LAB and CNS interactions, as well as for the development of fermentation agents. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

17 pages, 4710 KiB  
Article
Differential Pasting and Rheological Properties of Diverse Underutilized Starches Modified by Acetic Anhydride and Vinyl Acetate
by Song Xu, Bilatu Agza Gebre, Chuangchuang Zhang, Solomon Abate Mekonnen, Mengting Ma, Hui Zhang, Zhongquan Sui and Harold Corke
Foods 2025, 14(13), 2227; https://doi.org/10.3390/foods14132227 - 24 Jun 2025
Viewed by 391
Abstract
Underutilized starch sources are gaining increasing recognition. However, the inherent functional deficiencies of native starch have limited its application in food industry. To counteract the deficiencies in its native characteristics, starch can be modified by acetylation. Two waxy starches (proso millet and amaranth) [...] Read more.
Underutilized starch sources are gaining increasing recognition. However, the inherent functional deficiencies of native starch have limited its application in food industry. To counteract the deficiencies in its native characteristics, starch can be modified by acetylation. Two waxy starches (proso millet and amaranth) and four non-waxy starches (foxtail millet, quinoa, buckwheat, and oat) were modified by acetic anhydride and vinyl acetate, respectively. Degree of substitution of acetylated starches revealed that granule size did not significantly affect acetylation efficiency in starches from different plant origins. Acetylation increased peak and final viscosity of starches, with vinyl acetate exhibiting a more pronounced effect than acetic anhydride. Acetic anhydride decreased K and increased n values of non-waxy starches, showing reduced thickening ability. In contrast, vinyl acetate modification showed opposite trends, suggesting increased viscosity and pseudoplasticity. For non-waxy starches, G′25°C, G′0.1Hz, G′20Hz and gel hardness decreased after acetylation, indicating that acetylation contributed to a less solid and less elastic gel network. The extent of change in vinyl acetate modification was more pronounced than that of acetic anhydride. For waxy starch, vinyl acetate modification decreased tan δ25°C and increased gel hardness. In summary, acetylation reagent type was the major factor determining the pasting properties of acetylated starch, but the presence or absence of amylose would influence the rheological and gel properties of acetic anhydride and vinyl acetate modified starches. These findings could help unlock the potential applications of acetylated underutilized starches in the food industry. Full article
(This article belongs to the Special Issue Starch: Properties and Functionality in Food Systems)
Show Figures

Figure 1

12 pages, 1360 KiB  
Article
Pharmacological Effect of Water-Extractable (Poly)Phenolic Polysaccharide–Protein Complexes from Prunus spinosa L. Wild Fruits
by Šutovská Martina, Miroslava Molitorisová, Jozef Mažerik, Iveta Uhliariková and Peter Capek
Int. J. Mol. Sci. 2025, 26(13), 5993; https://doi.org/10.3390/ijms26135993 - 22 Jun 2025
Viewed by 360
Abstract
Wild fruits are distributed worldwide, but are consumed mainly in developing countries, where they are an important part of the diet. Still, in many other countries, they are consumed only locally. Blackthorn (Prunus spinosa L.) is an underutilized species rich in fibres [...] Read more.
Wild fruits are distributed worldwide, but are consumed mainly in developing countries, where they are an important part of the diet. Still, in many other countries, they are consumed only locally. Blackthorn (Prunus spinosa L.) is an underutilized species rich in fibres and phenolic compounds, making it suitable as a potential functional food for supporting human health. Cold (Cw) and hot (Hw) water-extracted (poly)phenolic polysaccharide–protein complexes, differing in carbohydrate, phenolic and protein contents, were isolated from blackthorn fruits and characterized. The complexes exhibited molecular weights of 235,200 g/mol (Cw) and 218,400 g/mol (Hw), and were rich in pectic polymers containing galacturonic acid, arabinose, galactose and rhamnose, indicating a dominance of homogalacturonan (HG) [→4)-α-D-GalA(1→4)-α-D-GalA(1→]n and a low content of RGI [→2)-α-L-Rha(1→4)-α-D-GalA(1→2)-α-L-Rha(1→]n sequences associated with arabinan or arabinogalactan. Minor content of glucan, probably starch-derived, was also solubilized. Pectic polysaccharides were highly esterified and partly acetylated. Pharmacological testing was performed in male Dunkin–Hartley guinea pigs, a model with human-like airway reflexes. Both complexes affected airway defense mechanisms. Particularly, Hw significantly suppressed citric acid-induced cough, similar to codeine, and reduced bronchoconstriction comparably to salbutamol in a dose-dependent manner. These findings support further exploration of Hw as a natural antitussive and bronchodilatory agent. Full article
Show Figures

Figure 1

29 pages, 2290 KiB  
Review
Beyond the Gut: Unveiling Butyrate’s Global Health Impact Through Gut Health and Dysbiosis-Related Conditions: A Narrative Review
by Arda Erkan Kalkan, Mona N. BinMowyna, António Raposo, Md Faruque Ahmad, Faiyaz Ahmed, Abdullah Y. Otayf, Conrado Carrascosa, Ariana Saraiva and Sercan Karav
Nutrients 2025, 17(8), 1305; https://doi.org/10.3390/nu17081305 - 9 Apr 2025
Cited by 6 | Viewed by 5341
Abstract
Short-chain fatty acids (SCFAs), mainly produced by gut microbiota through the fermentation process of dietary fibers and proteins, are crucial to human health, with butyrate, a famous four-carbon SCFA, standing out for its inevitably regulatory impact on both gut and immune functions. Within [...] Read more.
Short-chain fatty acids (SCFAs), mainly produced by gut microbiota through the fermentation process of dietary fibers and proteins, are crucial to human health, with butyrate, a famous four-carbon SCFA, standing out for its inevitably regulatory impact on both gut and immune functions. Within this narrative review, the vital physiological functions of SCFAs were examined, with emphasis on butyrate’s role as an energy source for colonocytes and its ability to enhance the gut barrier while exhibiting anti-inflammatory effects. Knowledge of butyrate synthesis, primarily generated by Firmicutes bacteria, can be influenced by diets with specifically high contents of resistant starches and fiber. Butyrate can inhibit histone deacetylase, modulate gene expression, influence immune functionality, and regulate tight junction integrity, supporting the idea of its role in gut barrier preservation. Butyrate possesses systemic anti-inflammatory properties, particularly, its capacity to reduce pro-inflammatory cytokines and maintain immune homeostasis, highlighting its therapeutic potential in managing dysbiosis and inflammatory diseases. Although butyrate absorption into circulation is typically minimal, its broader health implications are substantial, especially regarding obesity and type 2 diabetes through its influence on metabolic regulation and inflammation. Furthermore, this narrative review thoroughly examines butyrate’s growing recognition as a modulator of neurological health via its interaction with the gut–brain axis. Additionally, butyrate’s neuroprotective effects are mediated through activation of specific G-protein-coupled receptors, such as FFAR3 and GPR109a, and inhibition of histone deacetylases (HDACs). Research indicates that butyrate can alleviate neurological disorders, including Alzheimer’s, Parkinson’s, autism spectrum disorder, and Huntington’s disease, by reducing neuroinflammation, enhancing neurotransmitter modulation, and improving histone acetylation. This focus will help unlock its full therapeutic potential for metabolic and neurological health, rather than exclusively on its well-known benefits for gut health, as these are often interconnected. Full article
Show Figures

Figure 1

24 pages, 8588 KiB  
Article
Saprotrophic Wood Decay Ability and Plant Cell Wall Degrading Enzyme System of the White Rot Fungus Crucibulum laeve: Secretome, Metabolome and Genome Investigations
by Alexander V. Shabaev, Olga S. Savinova, Konstantin V. Moiseenko, Olga A. Glazunova and Tatyana V. Fedorova
J. Fungi 2025, 11(1), 21; https://doi.org/10.3390/jof11010021 - 31 Dec 2024
Cited by 2 | Viewed by 1228
Abstract
The basidiomycete Crucibulum laeve strain LE-BIN1700 (Agaricales, Nidulariaceae) is able to grow on agar media supplemented with individual components of lignocellulose such as lignin, cellulose, xylan, xyloglucan, arabinoxylan, starch and pectin, and also to effectively destroy and digest birch, alder and pine sawdust. [...] Read more.
The basidiomycete Crucibulum laeve strain LE-BIN1700 (Agaricales, Nidulariaceae) is able to grow on agar media supplemented with individual components of lignocellulose such as lignin, cellulose, xylan, xyloglucan, arabinoxylan, starch and pectin, and also to effectively destroy and digest birch, alder and pine sawdust. C. laeve produces a unique repertoire of proteins for the saccharification of the plant biomass, including predominantly oxidative enzymes such as laccases (family AA1_1 CAZymes), GMC oxidoreductases (family AA3_2 CAZymes), FAD-oligosaccharide oxidase (family AA7 CAZymes) and lytic polysaccharide monooxygenases (family LPMO X325), as well as accompanying acetyl esterases and loosenine-like expansins. Metabolomic analysis revealed that, specifically, monosaccharides and carboxylic acids were the key low molecular metabolites in the C. laeve culture liquids in the experimental conditions. The proportion of monosaccharides and polyols in the total pool of identified compounds increased on the sawdust-containing media. Multiple copies of the family AA1_1, AA3_2, AA7 and LPMOs CAZyme genes, as well as eight genes encoding proteins of the YvrE superfamily (COG3386), which includes sugar lactone lactonases, were predicted in the C. laeve genome. According to metabolic pathway analysis, the litter saprotroph C. laeve can catabolize D-gluconic and D-galacturonic acids, and possibly other aldonic acids, which seems to confer certain ecological advantages. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

16 pages, 2343 KiB  
Article
Study on Starch-Based Thickeners in Chyme for Dysphagia Use
by Youdong Li, Lingying Li, Guoyan Liu, Li Liang, Xiaofang Liu, Jixian Zhang, Chaoting Wen and Xin Xu
Foods 2025, 14(1), 26; https://doi.org/10.3390/foods14010026 - 25 Dec 2024
Viewed by 1026
Abstract
A dysphagia diet is a special dietary programme. The development and design of foods for dysphagia should consider both swallowing safety and food nutritional quality. In this study, we investigated the rheological properties (viscosity, thixotropy, and viscoelasticity), textural properties, and swallowing behaviour of [...] Read more.
A dysphagia diet is a special dietary programme. The development and design of foods for dysphagia should consider both swallowing safety and food nutritional quality. In this study, we investigated the rheological properties (viscosity, thixotropy, and viscoelasticity), textural properties, and swallowing behaviour of commercially available natural, pregelatinised, acetylated, and phosphorylated maize starch and tapioca starch. The results showed that all the samples belonged to food grade 3 in the framework of the International Dysphagia Dietary Standardization Initiative (IDDSI) and exhibited shear-thinning behaviour in favour of dysphagia patients, except for the sample containing pregelatinised starch, which was grade 2. Rheological tests showed that the samples had good structural recovery properties. At the same starch concentration, the elastic modulus of phosphorylated cassava starch FSMP was significantly greater than that of the starch solution, whereas that of acetylated starch was significantly less than that of the starch solution, and the combination of acetylated starch and protein led to a significant viscosity reduction phenomenon, resulting in FSMPs with good stability and fluidity; this may provide an opportunity for the incorporation of more high-energy substructures. The textural results showed that all the samples possessed textural properties of low hardness, low adhesion, and high cohesion, all of which could be used as food for dysphagia patients. This study may provide a theoretical basis for the creation and design of novel nutritional foods for dysphagia. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

20 pages, 1921 KiB  
Article
Surface Activity of Hydrophobized Modified Starch Hydrolysates in Mixed Systems
by Emilia Konował, Marta Sybis and Krystyna Prochaska
Materials 2024, 17(22), 5526; https://doi.org/10.3390/ma17225526 - 12 Nov 2024
Cited by 2 | Viewed by 944
Abstract
The manuscript presents research focusing on the adsorption and emulsion properties of starch hydrolysates modified through acetylation, oxidation, and cross-linking. The techniques used in this study included measurements of equilibrium surface tension (du Noüy ring) dynamic surface tension (drop shape analysis), and the [...] Read more.
The manuscript presents research focusing on the adsorption and emulsion properties of starch hydrolysates modified through acetylation, oxidation, and cross-linking. The techniques used in this study included measurements of equilibrium surface tension (du Noüy ring) dynamic surface tension (drop shape analysis), and the preparation and evaluation of emulsion stability (TURBISCAN). The surface activity of the acetylated starch hydrolysates is affected by the degree of acetylation. The acetylated starch 0.02Ac-H exhibited higher surface activity than the more highly substituted derivative 0.1Ac-H. Furthermore, it was shown that the surface activity of the components increased as the acetylated oxidized starch underwent hydrolysis. The fractions collected after 180 min using a membrane with a low separation capability (8 kDa) revealed the highest capacity for reducing surface tension. In binary systems consisting of starch derivatives and surfactants, synergistic effects in reducing surface tension were particularly noticeable in systems containing ionic surfactants. The addition of a cationic surfactant to the modified starch hydrolysate solution (1:6 mol/mol) resulted in a significantly more efficient saturation of the air/water interface. This study demonstrated that emulsions stabilized with modified starch hydrolysates remained stable over time, even when these hydrolysates constituted up to 60% of the emulsifier mixture. Full article
(This article belongs to the Special Issue Advances in Biomass-Based Materials and Their Applications)
Show Figures

Graphical abstract

16 pages, 4334 KiB  
Article
A Talc- and Kaolin-Enriched Acetylated Starch Biocoating: An Alternative to Single-Use Plastic for the Food Industry
by Antonio Veloso-Fernández, José Manuel Laza, Leyre Pérez-Álvarez and José Luis Vilas-Vilela
Polysaccharides 2024, 5(4), 656-671; https://doi.org/10.3390/polysaccharides5040042 - 7 Nov 2024
Cited by 1 | Viewed by 2023
Abstract
The increasing production of plastics, driven by modern societal development, has resulted in a significant rise in plastic waste, which poses serious environmental concerns due to its lengthy degradation times. The growing issue of single-use plastics (SUPs), such as packaging for food items [...] Read more.
The increasing production of plastics, driven by modern societal development, has resulted in a significant rise in plastic waste, which poses serious environmental concerns due to its lengthy degradation times. The growing issue of single-use plastics (SUPs), such as packaging for food items and disposable utensils, has led to their reduction and potential future prohibition in the European Union. Cellulose, a natural biopolymer sourced from nature, has been proposed as a viable alternative to SUPs because it degrades without toxicity. However, its limited barrier properties against water and grease have restricted its effectiveness as a substitute. This study focuses on developing an environmentally friendly alternative to SUPs by combining cellulose with acetylated starch and incorporating inorganic fillers like kaolin and talc. These fillers enhance the material’s barrier properties and reduce production costs. The results indicate that the addition of kaolin significantly lowers moisture absorption and water vapor permeability, while a mixture of kaolin and talc provides superior grease resistance. Additionally, incorporating D-sorbitol as a plasticizer improves the mechanical properties of the coated sheets, preventing cracking and enhancing strength. Overall, these coatings offer a promising alternative for packaging applications, such as for sugar, candies, or chocolate. Full article
Show Figures

Graphical abstract

18 pages, 5772 KiB  
Article
Indole-3-Acetic Acid Esterified with Waxy, Normal, and High-Amylose Maize Starches: Comparative Study on Colon-Targeted Delivery and Intestinal Health Impact
by Qian Gong, Xinyan Qu, Yisheng Zhao, Xingjing Zhang, Shuhua Cao, Xiao Wang, Yingying Song, Charles R. Mackay and Quanbo Wang
Nutrients 2024, 16(20), 3446; https://doi.org/10.3390/nu16203446 - 11 Oct 2024
Cited by 1 | Viewed by 2463
Abstract
Abstract: Background: Accumulating research suggests that metabolites produced by gut microbiota are essential for maintaining a balanced gut and immune system. Indole-3-acetic acid (IAA), one of tryptophan metabolites from gut microbiota, is critical for gut health through mechanisms such as activating aryl hydrocarbon [...] Read more.
Abstract: Background: Accumulating research suggests that metabolites produced by gut microbiota are essential for maintaining a balanced gut and immune system. Indole-3-acetic acid (IAA), one of tryptophan metabolites from gut microbiota, is critical for gut health through mechanisms such as activating aryl hydrocarbon receptor. Delivery of IAA to colon is beneficial for treatment of gastrointestinal diseases, and one promising strategy is IAA esterified starch, which is digested by gut microbes in colon and releases loaded IAA. Amylose content is a key structural characteristic that controls the physicochemical properties and digestibility of starch. Methods: In the current study, IAA was esterified with three typical starches with distinct amylose content to obtain indolyl acetylated waxy maize starch (WMSIAA), indolyl acetylated normal maize starch (NMSIAA), and indolyl acetylated high-amylose maize starch (HAMSIAA). The study comparatively analyzed their respective physicochemical properties, how they behave under in vitro digestion conditions, their ability to deliver IAA directly to the colon, and their effects on the properties of the gut microbiota. Results: The new characteristic peak of 1H NMR at 10.83 ppm, as well as the new characteristic peak of FTIR spectra at 1729 cm−1, represented the successful esterification of IAA on starch backbone. The following in vitro digestion study further revealed that treatment with indolyl acetylation significantly elevated the resistant starch content in the starch samples. In vivo experimental results demonstrated that WMSIAA exhibited the most significant increase in IAA levels in the stomach, whereas HAMSIAA and NMSIAA demonstrated the most remarkable increases in IAA levels in the small intestine and colon, respectively. The elevated IAA levels in the colon are conducive to promoting the growth of beneficial intestinal bacteria and significantly alleviating DSS-induced colitis. Conclusions: This research presents innovative insights and options for the advancement of colon-specific drug delivery systems aimed at preventing and curing gastrointestinal disorders. Full article
(This article belongs to the Special Issue Dietary Nutrients and Additives on Gut Microbiota and Immunity)
Show Figures

Figure 1

11 pages, 1431 KiB  
Article
Efficient Catalytic Conversion of Acetate to Citric Acid and Itaconic Acid by Engineered Yarrowia lipolytica
by Yuchen Ning, Renwei Zhang, Huan Liu, Yue Yu, Li Deng and Fang Wang
Catalysts 2024, 14(10), 710; https://doi.org/10.3390/catal14100710 - 10 Oct 2024
Cited by 1 | Viewed by 1793
Abstract
The bioconversion of agricultural and industrial wastes is considered a green and sustainable alternative method for producing high-value biochemicals. As a major catalytic product of greenhouse gases and a by-product in the fermentation and lignocellulose processing industries, acetate is a promising bioconversion raw [...] Read more.
The bioconversion of agricultural and industrial wastes is considered a green and sustainable alternative method for producing high-value biochemicals. As a major catalytic product of greenhouse gases and a by-product in the fermentation and lignocellulose processing industries, acetate is a promising bioconversion raw material. In this work, endogenous and heterologous enzymes were manipulated in Yarrowia lipolytica to achieve the conversion of acetate to high-value citric acid and itaconic acid, respectively. After the combinational expression of the key enzymes in the acetate metabolic pathway, the citric acid synthesis pathway, and the mitochondrial transport system, acetate could be efficiently converted to citric acid. Coupled with the down-regulation of fatty acid synthase expression in the competitive pathway, more acetyl-CoA flowed into the synthesis of citric acid, and the titer reached 15.11 g/L with a productivity of 0.51 g/g acetate by the engineered Y. lipolytica, which is comparable to the results using glucose as the substrate. On this basis, the heterologous cis-aconitate decarboxylase from Aspergillus terreus was introduced into the engineered Y. lipolytica to achieve the catalytic synthesis of itaconic acid from acetate. Combined with investigating the effects of multiple enzymes in the synthesis pathway, the titer of itaconic acid reached 1.87 g/L with a yield of 0.43 g/g DCW by the final engineered strain, which is the highest reported titer of itaconic acid derived from acetate by engineered microbes in shake flasks. It is demonstrated that acetate has the potential to replace traditional starch-based raw materials for the synthesis of high-value organic acids and our work lays a foundation for the rational utilization of industrial wastes and the catalytic products of greenhouse gases. Full article
(This article belongs to the Special Issue Recent Advances in Biocatalysis and Enzyme Engineering)
Show Figures

Figure 1

25 pages, 6515 KiB  
Article
Modulation of the Arabidopsis Starch Metabolic Network by the Cytosolic Acetyl-CoA Pathway in the Context of the Diurnal Illumination Cycle
by Lei Wang, Carol M. Foster, Wieslawa I. Mentzen, Rezwan Tanvir, Yan Meng, Basil J. Nikolau, Eve Syrkin Wurtele and Ling Li
Int. J. Mol. Sci. 2024, 25(19), 10850; https://doi.org/10.3390/ijms251910850 - 9 Oct 2024
Viewed by 1519
Abstract
The starch metabolic network was investigated in relation to other metabolic processes by examining a mutant with altered single-gene expression of ATP citrate lyase (ACL), an enzyme responsible for generating cytosolic acetyl-CoA pool from citrate. Previous research has shown that transgenic antisense plants [...] Read more.
The starch metabolic network was investigated in relation to other metabolic processes by examining a mutant with altered single-gene expression of ATP citrate lyase (ACL), an enzyme responsible for generating cytosolic acetyl-CoA pool from citrate. Previous research has shown that transgenic antisense plants with reduced ACL activity accumulate abnormally enlarged starch granules. In this study, we explored the underlying molecular mechanisms linking cytosolic acetyl-CoA generation and starch metabolism under short-day photoperiods. We performed transcriptome and quantification of starch accumulation in the leaves of wild-type and antisense seedlings with reduced ACL activity. The antisense-ACLA mutant accumulated more starch than the wild type under short-day conditions. Zymogram analyses were conducted to compare the activities of starch-metabolizing enzymes with transcriptomic changes in the seedling. Differential expression between wild-type and antisense-ACLA plants was detected in genes implicated in starch and acetyl-CoA metabolism, and cell wall metabolism. These analyses revealed a strong correlation between the transcript levels of genes responsible for starch synthesis and degradation, reflecting coordinated regulation at the transcriptomic level. Furthermore, our data provide novel insights into the regulatory links between cytosolic acetyl-CoA metabolism and starch metabolic pathways. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

24 pages, 11411 KiB  
Article
Effects of Different Types of Starch on Physicochemical Properties and Microstructure of Beef during Cold Storage
by Shulin Zhang, Lina Wang, Qiuyu Wang, Yuqi Wang, Linlin Wang and Rongsheng Du
Foods 2024, 13(17), 2767; https://doi.org/10.3390/foods13172767 - 30 Aug 2024
Cited by 2 | Viewed by 2073
Abstract
The purpose of this study was to identify the most effective method for enhancing the quality of beef gel during refrigeration. To achieve this objective, the effects of various types of starch on the physicochemical properties and microstructure of beef gel during refrigeration [...] Read more.
The purpose of this study was to identify the most effective method for enhancing the quality of beef gel during refrigeration. To achieve this objective, the effects of various types of starch on the physicochemical properties and microstructure of beef gel during refrigeration were investigated. In this study, ground beef gel was chosen as the research subject, and six different types of starch were added: 6% tapioca starch, cassava-modified starch (acetylated distarch phosphate, ADSP), potato starch (PSP), modified potato starch (acetate starch, SA), corn starch (CSP), and modified corn starch (hydroxypropyl distarch phosphate, HPDSP). The quality indicators of ground beef were measured and analyzed throughout the cold storage at 4 °C on days 1, 3, 5, 7, and 9. The results demonstrated that the water capacity of beef mince supplemented with PSP and HPDSP was significantly greater (p < 0.05). Additionally, the gel strength was found to be the highest, while the mesh structure formed in the ADSP group was the greatest. Furthermore, HPDSP, PSP, and SA effectively inhibited the oxidation of meat fat, with SA showing a relatively good effect on delaying the oxidation of meat mince protein. The addition of starch can, to a certain extent, inhibit lipid and protein oxidation in meat mince. In conclusion, starch significantly enhances the quality of beef mince by improving water retention, gel strength, and microstructure during refrigeration. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

20 pages, 4756 KiB  
Article
The Physiological and Molecular Mechanisms of Exogenous Melatonin Promote the Seed Germination of Maize (Zea mays L.) under Salt Stress
by Jiajie Wang, Di Yan, Rui Liu, Ting Wang, Yijia Lian, Zhenzong Lu, Yue Hong, Ye Wang and Runzhi Li
Plants 2024, 13(15), 2142; https://doi.org/10.3390/plants13152142 - 2 Aug 2024
Cited by 11 | Viewed by 2638
Abstract
Salt stress caused by high concentrations of Na+ and Cl- in soil is one of the most important abiotic stresses in agricultural production, which seriously affects grain yield. The alleviation of salt stress through the application of exogenous substances is important [...] Read more.
Salt stress caused by high concentrations of Na+ and Cl- in soil is one of the most important abiotic stresses in agricultural production, which seriously affects grain yield. The alleviation of salt stress through the application of exogenous substances is important for grain production. Melatonin (MT, N-acetyl-5-methoxytryptamine) is an indole-like small molecule that can effectively alleviate the damage caused by adversity stress on crops. Current studies have mainly focused on the effects of MT on the physiology and biochemistry of crops at the seedling stage, with fewer studies on the gene regulatory mechanisms of crops at the germination stage. The aim of this study was to explain the mechanism of MT-induced salt tolerance at physiological, biochemical, and molecular levels and to provide a theoretical basis for the resolution of MT-mediated regulatory mechanisms of plant adaptation to salt stress. In this study, we investigated the germination, physiology, and transcript levels of maize seeds, analyzed the relevant differentially expressed genes (DEGs), and examined salt tolerance-related pathways. The results showed that MT could increase the seed germination rate by 14.28–19.04%, improve seed antioxidant enzyme activities (average increase of 11.61%), and reduce reactive oxygen species accumulation and membrane oxidative damage. In addition, MT was involved in regulating the changes of endogenous hormones during the germination of maize seeds under salt stress. Transcriptome results showed that MT affected the activity of antioxidant enzymes, response to stress, and seed germination-related genes in maize seeds under salt stress and regulated the expression of genes related to starch and sucrose metabolism and phytohormone signal transduction pathways. Taken together, the results indicate that exogenous MT can affect the expression of stress response-related genes in salt-stressed maize seeds, enhance the antioxidant capacity of the seeds, reduce the damage induced by salt stress, and thus promote the germination of maize seeds under salt stress. The results provide a theoretical basis for the MT-mediated regulatory mechanism of plant adaptation to salt stress and screen potential candidate genes for molecular breeding of salt-tolerant maize. Full article
Show Figures

Figure 1

18 pages, 4465 KiB  
Article
New Derivatives of Modified Starch for Food Technology
by Emilia Konował, Joanna Sulej-Chojnacka and Krystyna Prochaska
Molecules 2024, 29(14), 3292; https://doi.org/10.3390/molecules29143292 - 12 Jul 2024
Cited by 3 | Viewed by 2191
Abstract
The food industry extensively uses chemically modified starches and their hydrolysates, which is mainly due to their emulsification ability. Therefore, it becomes inevitable to develop new starch derivatives, including modified starch hydrolysates, and effective preparation methods to meet the increasing demands of producers, [...] Read more.
The food industry extensively uses chemically modified starches and their hydrolysates, which is mainly due to their emulsification ability. Therefore, it becomes inevitable to develop new starch derivatives, including modified starch hydrolysates, and effective preparation methods to meet the increasing demands of producers, consumers, and technology. This study comprehensively researches the physical, chemical, and functional properties (such as the water-binding capacity, swelling power, solubility, and fat absorption capacity) of chemically modified biopolymers and their enzymatic hydrolysis products. We utilized oxidized and acetylated potato and waxy-corn starches with varying degrees of substitution by carboxyl and acetyl groups in our research. The process of enzymatic hydrolysis was performed in a recirculated membrane reactor (CRMR). Our findings indicated that the physicochemical properties of starch derivatives and their hydrolysates depended on the biological origin of the biopolymer and the type and degree of modification. However, the presence of carboxyl groups in the modified starch molecules is critical and affects the rheological properties and water-binding capacity of the starch preparations. For example, in the case of waxy-corn starch preparations with a lower content of carboxyl groups (i.e., derivatives with a low degree of oxidation), the water-binding capacity (WBC) increases when compared to native starch. The highest WBC value of 206.3% was noted for the doubly modified waxy-corn starch with an oxidation degree of 0.2% and an acetylation degree of 2.5%, while native waxy-corn starch shows a WBC of 161.4%. In contrast, it was observed that preparations with a higher content of carboxyl groups, i.e., derivatives with an oxidation degree of 2.5%, show a lower swelling power compared to native waxy starch. Full article
Show Figures

Figure 1

17 pages, 4084 KiB  
Article
Comprehensive Proteome and Acetylome Analysis of Needle Senescence in Larix gmelinii
by Xuting Zhang, Jinyuan Shan, Jiaxiu Wang, Yanxia Zhang, Feiyun Yang, Bin Liu, Lifeng Zhang, Guojing Li and Ruigang Wang
Int. J. Mol. Sci. 2024, 25(13), 6824; https://doi.org/10.3390/ijms25136824 - 21 Jun 2024
Viewed by 1147
Abstract
Leaf senescence is essential for the growth and development of deciduous trees in the next season. Larix gmelinii, a deciduous coniferous tree, exhibits its most distinctive feature by turning yellow in the autumn and eventually shedding its leaves, resulting in significant changes [...] Read more.
Leaf senescence is essential for the growth and development of deciduous trees in the next season. Larix gmelinii, a deciduous coniferous tree, exhibits its most distinctive feature by turning yellow in the autumn and eventually shedding its leaves, resulting in significant changes in its appearance during the fall. Lysine acetylation plays an important role in diverse cellular processes; however, limited knowledge is available regarding acetylations in the needle senescence of L. gmelinii. In this study, the proteomics and acetylated modification omics of two phenotypic leaves, yellow and green (senescent and non-senescent) needles, were analyzed before autumn defoliation. In total, 5022 proteins and 4469 unique acetylation sites in 2414 lysine acylated proteins were identified, and this resulted in the discovery of 1335 differentially expressed proteins (DEPs) and 605 differentially expressed acetylated proteins (DAPs) in yellow versus green needles. There are significant differences between the proteome and acetylome; only 269 proteins were found to be DEP and DAP, of which 136 proteins were consistently expressed in both the DEP and DAP, 91 proteins were upregulated, and 45 proteins were down-regulated. The DEPs participate in the metabolism of starch and sucrose, while the DAPs are involved in glycolysis and the tricarboxylic acid cycle. Among them, DEPs underwent significant changes in glycolysis and citric acid cycling. Most of the enzymes involved in glycolysis and the citrate cycle were acetylated. DAPs were down-regulated in glycolysis and up-regulated in the citrate cycle. In all, the results of this study reveal the important role of lysine acetylation in the senescence of L. gmelinii needles and provide a new perspective for understanding the molecular mechanism of leaf senescence and tree seasonal growth. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop