Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = absolutely optimal portfolio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 843 KB  
Article
A Scalarized Entropy-Based Model for Portfolio Optimization: Balancing Return, Risk and Diversification
by Florentin Șerban and Silvia Dedu
Mathematics 2025, 13(20), 3311; https://doi.org/10.3390/math13203311 - 16 Oct 2025
Viewed by 490
Abstract
Portfolio optimization is a cornerstone of modern financial decision-making, traditionally based on the mean–variance model introduced by Markowitz. However, this framework relies on restrictive assumptions—such as normally distributed returns and symmetric risk preferences—that often fail in real-world markets, particularly in volatile and non-Gaussian [...] Read more.
Portfolio optimization is a cornerstone of modern financial decision-making, traditionally based on the mean–variance model introduced by Markowitz. However, this framework relies on restrictive assumptions—such as normally distributed returns and symmetric risk preferences—that often fail in real-world markets, particularly in volatile and non-Gaussian environments such as cryptocurrencies. To address these limitations, this paper proposes a novel multi-objective model that combines expected return maximization, mean absolute deviation (MAD) minimization, and entropy-based diversification into a unified optimization structure: the Mean–Deviation–Entropy (MDE) model. The MAD metric offers a robust alternative to variance by capturing the average magnitude of deviations from the mean without inflating extreme values, while entropy serves as an information-theoretic proxy for portfolio diversification and uncertainty. Three entropy formulations are considered—Shannon entropy, Tsallis entropy, and cumulative residual Sharma–Taneja–Mittal entropy (CR-STME)—to explore different notions of uncertainty and structural diversity. The MDE model is formulated as a tri-objective optimization problem and solved via scalarization techniques, enabling flexible trade-offs between return, deviation, and entropy. The framework is empirically tested on a cryptocurrency portfolio composed of Bitcoin (BTC), Ethereum (ETH), Solana (SOL), and Binance Coin (BNB), using daily data over a 12-month period. The empirical setting reflects a high-volatility, high-skewness regime, ideal for testing entropy-driven diversification. Comparative outcomes reveal that entropy-integrated models yield more robust weightings, particularly when tail risk and regime shifts are present. Comparative results against classical mean–variance and mean–MAD models indicate that the MDE model achieves improved diversification, enhanced allocation stability, and greater resilience to volatility clustering and tail risk. This study contributes to the literature on robust portfolio optimization by integrating entropy as a formal objective within a scalarized multi-criteria framework. The proposed approach offers promising applications in sustainable investing, algorithmic asset allocation, and decentralized finance, especially under high-uncertainty market conditions. Full article
(This article belongs to the Section E5: Financial Mathematics)
Show Figures

Figure 1

22 pages, 1000 KB  
Article
Modeling Portfolio Selection Under Intuitionistic Fuzzy Environments
by Tusan Derya, Mehveş Güliz Kelce and Kumru Didem Atalay
Mathematics 2025, 13(20), 3303; https://doi.org/10.3390/math13203303 - 16 Oct 2025
Viewed by 292
Abstract
Portfolio optimization is a multifaceted process aimed at achieving a balance between investors’ risk tolerance and expected returns. However, the inherent uncertainty and unpredictability of financial markets significantly hinder the attainment of this balance. Therefore, there is an increasing need for models capable [...] Read more.
Portfolio optimization is a multifaceted process aimed at achieving a balance between investors’ risk tolerance and expected returns. However, the inherent uncertainty and unpredictability of financial markets significantly hinder the attainment of this balance. Therefore, there is an increasing need for models capable of representing these uncertainties in a more realistic manner. In this study, novel intuitionistic fuzzy mathematical models are proposed to provide alternative portfolio options that align with diverse investor expectations and risk perceptions. By utilizing mathematical programming formulations incorporating intuitionistic fuzzy parameters, the study contributes to the theoretical framework and enables the analysis of portfolio structures that vary in response to imprecisely defined return levels. The intuitionistic fuzzy parameters are modeled using appropriate membership and non-membership functions, and mean absolute deviation is employed as the risk measure within the proposed models. Various alternative solutions are generated by considering different lower and upper bound constraints, thereby allowing for the construction of flexible investment strategies suitable for different investor profiles. The practical applicability of the proposed models is demonstrated using real-world stock data obtained from Borsa Istanbul. The empirical results reveal that the models provide solutions that are sensitive to individual risk preferences and adaptable to changing market conditions. Accordingly, the developed intuitionistic fuzzy models serve as effective tools for determining optimal portfolio allocations and developing resilient investment strategies. Full article
(This article belongs to the Section E5: Financial Mathematics)
Show Figures

Figure 1

30 pages, 7088 KB  
Article
Cascade Hydropower Plant Operational Dispatch Control Using Deep Reinforcement Learning on a Digital Twin Environment
by Erik Rot Weiss, Robert Gselman, Rudi Polner and Riko Šafarič
Energies 2025, 18(17), 4660; https://doi.org/10.3390/en18174660 - 2 Sep 2025
Viewed by 693
Abstract
In this work, we propose the use of a reinforcement learning (RL) agent for the control of a cascade hydropower plant system. Generally, this job is handled by power plant dispatchers who manually adjust power plant electricity production to meet the changing demand [...] Read more.
In this work, we propose the use of a reinforcement learning (RL) agent for the control of a cascade hydropower plant system. Generally, this job is handled by power plant dispatchers who manually adjust power plant electricity production to meet the changing demand set by energy traders. This work explores the more fundamental problem with the cascade hydropower plant operation of flow control for power production in a highly nonlinear setting on a data-based digital twin. Using deep deterministic policy gradient (DDPG), twin delayed DDPG (TD3), soft actor-critic (SAC), and proximal policy optimization (PPO) algorithms, we can generalize the characteristics of the system and determine the human dispatcher level of control of the entire system of eight hydropower plants on the river Drava in Slovenia. The creation of an RL agent that makes decisions similar to a human dispatcher is not only interesting in terms of control but also in terms of long-term decision-making analysis in an ever-changing energy portfolio. The specific novelty of this work is in training an RL agent on an accurate testing environment of eight real-world cascade hydropower plants on the river Drava in Slovenia and comparing the agent’s performance to human dispatchers. The results show that the RL agent’s absolute mean error of 7.64 MW is comparable to the general human dispatcher’s absolute mean error of 5.8 MW at a peak installed power of 591.95 MW. Full article
Show Figures

Figure 1

18 pages, 4633 KB  
Article
Comparison of the CAPM and Multi-Factor Fama–French Models for the Valuation of Assets in the Industries with the Highest Number of Transactions in the US Market
by Karime Chahuán-Jiménez, Luis Muñoz-Rojas, Sebastián Muñoz-Pizarro and Erik Schulze-González
Int. J. Financial Stud. 2025, 13(3), 126; https://doi.org/10.3390/ijfs13030126 - 4 Jul 2025
Viewed by 4065
Abstract
This study comparatively evaluated the Capital Asset Pricing Model (CAPM), the Fama and French three-factor model (FF3), and the Fama and French five-factor model (FF5) in key US market sectors (finance, energy, and utilities). The goals were to optimize financial decisions and reduce [...] Read more.
This study comparatively evaluated the Capital Asset Pricing Model (CAPM), the Fama and French three-factor model (FF3), and the Fama and French five-factor model (FF5) in key US market sectors (finance, energy, and utilities). The goals were to optimize financial decisions and reduce valuation errors. The historical daily returns of ten-stock portfolios, selected from sectors with the highest trading volume in the S&P 500 Index between 2020 and 2024, were analyzed. Companies with the lowest beta were prioritized. Models were compared based on the metrics of the root mean square error (RMSE) and mean absolute error (MAE). The results demonstrate the superiority of the multifactor models (FF3 and FF5) over the CAPM in explaining returns in the analyzed sectors. Specifically, the FF3 model was the most accurate in the financial sector; the FF5 model was the most accurate in the energy and utilities sectors; and the FF4 model, with the SMB factor eliminated in the adjustment of the FF5 model, was the least error-prone. The CAPM’s consistent inferiority highlights the need to consider factors beyond market risk. In conclusion, selecting the most appropriate asset valuation model for the US market depends on each sector’s inherent characteristics, favoring multifactor models. Full article
Show Figures

Figure 1

15 pages, 272 KB  
Article
Sustainable Portfolio Rebalancing Under Uncertainty: A Multi-Objective Framework with Interval Analysis and Behavioral Strategies
by Florentin Șerban
Sustainability 2025, 17(13), 5886; https://doi.org/10.3390/su17135886 - 26 Jun 2025
Cited by 1 | Viewed by 965
Abstract
This paper introduces a novel multi-objective optimization framework for sustainable portfolio rebalancing under uncertainty. The model simultaneously targets return maximization, downside risk control, and liquidity preservation, addressing the complex trade-offs faced by investors in volatile markets. Unlike traditional static approaches, the framework allows [...] Read more.
This paper introduces a novel multi-objective optimization framework for sustainable portfolio rebalancing under uncertainty. The model simultaneously targets return maximization, downside risk control, and liquidity preservation, addressing the complex trade-offs faced by investors in volatile markets. Unlike traditional static approaches, the framework allows for dynamic asset reallocation and explicitly incorporates nonlinear transaction costs, offering a more realistic representation of trading frictions. Key financial parameters—including expected returns, volatility, and liquidity—are modeled using interval arithmetic, enabling a flexible, distribution-free depiction of uncertainty. Risk is measured through semi-absolute deviation, providing a more intuitive and robust assessment of downside exposure compared to classical variance. A core innovation lies in the behavioral modeling of investor preferences, operationalized through three strategic configurations, pessimistic, optimistic, and mixed, implemented via convex combinations of interval bounds. The framework is empirically validated using a diversified cryptocurrency portfolio consisting of Bitcoin, Ethereum, Solana, and Binance Coin, observed over a six-month period. The simulation results confirm the model’s adaptability to shifting market conditions and investor sentiment, consistently generating stable and diversified allocations. Beyond its technical rigor, the proposed framework aligns with sustainability principles by enhancing portfolio resilience, minimizing systemic concentration risks, and supporting long-term decision-making in uncertain financial environments. Its integrated design makes it particularly suitable for modern asset management contexts that require flexibility, robustness, and alignment with responsible investment practices. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
11 pages, 220 KB  
Article
A Multi-Period Optimization Framework for Portfolio Selection Using Interval Analysis
by Florentin Șerban
Mathematics 2025, 13(10), 1552; https://doi.org/10.3390/math13101552 - 8 May 2025
Cited by 1 | Viewed by 876
Abstract
This paper presents a robust multi-period portfolio optimization framework that integrates interval analysis, entropy-based diversification, and downside risk control. In contrast to classical models relying on precise probabilistic assumptions, our approach captures uncertainty through interval-valued parameters for asset returns, risk, and liquidity—particularly suitable [...] Read more.
This paper presents a robust multi-period portfolio optimization framework that integrates interval analysis, entropy-based diversification, and downside risk control. In contrast to classical models relying on precise probabilistic assumptions, our approach captures uncertainty through interval-valued parameters for asset returns, risk, and liquidity—particularly suitable for volatile markets such as cryptocurrencies. The model seeks to maximize terminal portfolio wealth over a finite investment horizon while ensuring compliance with return, risk, liquidity, and diversification constraints at each rebalancing stage. Risk is modeled using semi-absolute deviation, which better reflects investor sensitivity to downside outcomes than variance-based measures, and diversification is promoted through Shannon entropy to prevent excessive concentration. A nonlinear multi-objective formulation ensures computational tractability while preserving decision realism. To illustrate the practical applicability of the proposed framework, a simulated case study is conducted on four major cryptocurrencies—Bitcoin (BTC), Ethereum (ETH), Solana (SOL), and Binance Coin (BNB). The model evaluates three strategic profiles based on investor risk attitude: pessimistic (lower return bounds and upper risk bounds), optimistic (upper return bounds and lower risk bounds), and mixed (average values). The resulting final terminal wealth intervals are [1085.32, 1163.77] for the pessimistic strategy, [1123.89, 1245.16] for the mixed strategy, and [1167.42, 1323.55] for the optimistic strategy. These results demonstrate the model’s adaptability to different investor preferences and its empirical relevance in managing uncertainty under real-world volatility conditions. Full article
(This article belongs to the Section E: Applied Mathematics)
15 pages, 646 KB  
Article
An Optimal Investment Decision Problem Under the HARA Utility Framework
by Aiyin Wang, Xiao Ji, Lu Zhang, Guodong Li and Wenjie Li
Symmetry 2025, 17(2), 311; https://doi.org/10.3390/sym17020311 - 19 Feb 2025
Viewed by 797
Abstract
This paper is dedicated to studying the optimal investment proportions of three types of assets with symmetry, namely, risky assets, risk-free assets, and wealth management products, when the stochastic expenditure process follows a jump-diffusion model. The stochastic expenditure process is treated as an [...] Read more.
This paper is dedicated to studying the optimal investment proportions of three types of assets with symmetry, namely, risky assets, risk-free assets, and wealth management products, when the stochastic expenditure process follows a jump-diffusion model. The stochastic expenditure process is treated as an exogenous cash flow and is assumed to follow a stochastic differential process with jumps. Under the Cox–Ingersoll–Ross interest rate term structure, it is presumed that the prices of multiple risky assets evolve according to a multi-dimensional geometric Brownian motion. By employing stochastic control theory, the Hamilton–Jacobi–Bellman (HJB) equation for the household portfolio problem is formulated. Considering various risk-preference functions, particularly the Hyperbolic Absolute Risk Aversion (HARA) function, and given the algebraic form of the objective function through the terminal-value maximization condition, an explicit solution for the optimal investment strategy is derived. The findings indicate that when household investment behavior is characterized by random expenditures and symmetry, as the risk-free interest rate rises, the optimal proportion of investment in wealth-management products also increases, whereas the proportion of investment in risky assets continually declines. As the expected future expenditure increases, households will decrease their acquisition of risky assets, and the proportion of risky-asset purchases is sensitive to changes in the expectation of unexpected expenditures. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

21 pages, 2964 KB  
Article
Traditional Prediction Techniques and Machine Learning Approaches for Financial Time Series Analysis
by Claudia Cappello, Antonella Congedi, Sandra De Iaco and Leonardo Mariella
Mathematics 2025, 13(3), 537; https://doi.org/10.3390/math13030537 - 6 Feb 2025
Cited by 7 | Viewed by 3584
Abstract
Accurate financial time series forecasting is critical for effective decision making in areas such as risk management, portfolio optimization, and trading. Given the complexity and volatility of financial markets, traditional forecasting methods often fail to capture the underlying dynamics. Recent advances in artificial [...] Read more.
Accurate financial time series forecasting is critical for effective decision making in areas such as risk management, portfolio optimization, and trading. Given the complexity and volatility of financial markets, traditional forecasting methods often fail to capture the underlying dynamics. Recent advances in artificial neural network (ANN) forecasting research indicate that ANNs present a valuable alternative to traditional linear methods, such as autoregressive integrated moving average (ARIMA). However, time series are typically influenced by a combination of factors which require to consider both linear and non-linear characteristics. This paper proposes a new hybrid model that integrates ARIMA and ANN models such as long short-term memory and gated recurrent unit neural network to leverage the distinct strengths of both linear and non-linear modeling. Moreover, the goodness of the proposed model is evaluated through a comparative analysis of the ARIMA, ANN and Zhang hybrid model, using three financial datasets (i.e., Unicredit SpA stock price, EUR/USD exchange rate and Bitcoin closing price). Various absolute and relative error metrics, computed to evaluate the performance of models, can support the use of the proposed approach. The Diebold–Mariano (DM) test is also implemented to asses the significance of the obtained differences of the hybrid model with respect to the other competing models. Full article
(This article belongs to the Special Issue Applied Statistics in Real-World Problems)
Show Figures

Figure 1

13 pages, 1640 KB  
Article
Automated Machine Learning for Optimized Load Forecasting and Economic Impact in the Greek Wholesale Energy Market
by Nikolaos Koutantos, Maria Fotopoulou and Dimitrios Rakopoulos
Appl. Sci. 2024, 14(21), 9766; https://doi.org/10.3390/app14219766 - 25 Oct 2024
Cited by 3 | Viewed by 2302
Abstract
This study investigates the use of automated machine learning to forecast the demand of electrical loads. A stochastic optimization algorithm minimizes the cost and risk of the traded asset across different markets using a generic framework for trading activities of load portfolios. Assuming [...] Read more.
This study investigates the use of automated machine learning to forecast the demand of electrical loads. A stochastic optimization algorithm minimizes the cost and risk of the traded asset across different markets using a generic framework for trading activities of load portfolios. Assuming an always overbought condition in the Day-Ahead as well as in the Futures Market, the excess energy returns without revenue to the market, and the results are compared with a standard contract in Greece, which stands as the lowest as far as the billing price is concerned. The analysis achieved a mean absolute percentage error (MAPE) of 12.89% as the best fitted model and without using any kind of pre-processing methods. Full article
(This article belongs to the Special Issue Recent Advances in Automated Machine Learning: 2nd Edition)
Show Figures

Figure 1

18 pages, 2101 KB  
Review
Robust Portfolio Mean-Variance Optimization for Capital Allocation in Stock Investment Using the Genetic Algorithm: A Systematic Literature Review
by Diandra Chika Fransisca, Sukono, Diah Chaerani and Nurfadhlina Abdul Halim
Computation 2024, 12(8), 166; https://doi.org/10.3390/computation12080166 - 18 Aug 2024
Cited by 5 | Viewed by 5246
Abstract
Traditional mean-variance (MV) models, considered effective in stable conditions, often prove inadequate in uncertain market scenarios. Therefore, there is a need for more robust and better portfolio optimization methods to handle the fluctuations and uncertainties in asset returns and covariances. This study aims [...] Read more.
Traditional mean-variance (MV) models, considered effective in stable conditions, often prove inadequate in uncertain market scenarios. Therefore, there is a need for more robust and better portfolio optimization methods to handle the fluctuations and uncertainties in asset returns and covariances. This study aims to perform a Systematic Literature Review (SLR) on robust portfolio mean-variance (RPMV) in stock investment utilizing genetic algorithms (GAs). The SLR covered studies from 1995 to 2024, allowing a thorough analysis of the evolution and effectiveness of robust portfolio optimization methods over time. The method used to conduct the SLR followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The result of the SLR presented a novel strategy to combine robust optimization methods and a GA in order to enhance RPMV. The uncertainty parameters, cardinality constraints, optimization constraints, risk-aversion parameters, robust covariance estimators, relative and absolute robustness, and parameters adopted were unable to develop portfolios capable of maintaining performance despite market uncertainties. This led to the inclusion of GAs to solve the complex optimization problems associated with RPMV efficiently, as well as fine-tuning parameters to improve solution accuracy. In three papers, the empirical validation of the results was conducted using historical data from different global capital markets such as Hang Seng (Hong Kong), Data Analysis Expressions (DAX) 100 (Germany), the Financial Times Stock Exchange (FTSE) 100 (U.K.), S&P 100 (USA), Nikkei 225 (Japan), and the Indonesia Stock Exchange (IDX), and the results showed that the RPMV model optimized with a GA was more stable and provided higher returns compared with traditional MV models. Furthermore, the proposed method effectively mitigated market uncertainties, making it a valuable tool for investors aiming to optimize portfolios under uncertain conditions. The implications of this study relate to handling uncertainty in asset returns, dynamic portfolio parameters, and the effectiveness of GAs in solving portfolio optimization problems under uncertainty, providing near-optimal solutions with relatively lower computational time. Full article
(This article belongs to the Special Issue Quantitative Finance and Risk Management Research: 2nd Edition)
Show Figures

Figure 1

16 pages, 3320 KB  
Article
Analyzing the Influence of Risk Models and Investor Risk-Aversion Disparity on Portfolio Selection in Community Solar Projects: A Comparative Case Study
by Mahmoud Shakouri, Chukwuma Nnaji, Saeed Banihashemi and Khoung Le Nguyen
Risks 2024, 12(5), 75; https://doi.org/10.3390/risks12050075 - 30 Apr 2024
Viewed by 1861
Abstract
This study examines the impact of risk models and investors’ risk aversion on the selection of community solar portfolios. Various risk models to account for the volatility in the electrical power output of community solar, namely variance (Var), SemiVariance (SemiVar), mean absolute deviation [...] Read more.
This study examines the impact of risk models and investors’ risk aversion on the selection of community solar portfolios. Various risk models to account for the volatility in the electrical power output of community solar, namely variance (Var), SemiVariance (SemiVar), mean absolute deviation (MAD), and conditional value at risk (CVaR), were considered. A statistical model based on modern portfolio theory was employed to simulate investors’ risk aversion in the context of community solar portfolio selection. The results of this study showed that the choice of risk model that aligns with investors’ risk-aversion level plays a key role in realizing more return and safeguarding against volatility in power generation. In particular, the findings of this research revealed that the CVaR model provides higher returns at the cost of greater volatility in power generation compared to other risk models. In contrast, the MAD model offered a better tradeoff between risk and return, which can appeal more to risk-averse investors. Based on the simulation results, a new approach was proposed for optimizing the portfolio selection process for investors with divergent risk-aversion levels by averaging the utility functions of investors and identifying the most probable outcome. Full article
Show Figures

Figure 1

17 pages, 2694 KB  
Article
Study of Potential Impact of Wind Energy on Electricity Price Using Regression Techniques
by Neeraj Kumar, Madan Mohan Tripathi, Saket Gupta, Majed A. Alotaibi, Hasmat Malik and Asyraf Afthanorhan
Sustainability 2023, 15(19), 14448; https://doi.org/10.3390/su151914448 - 3 Oct 2023
Cited by 4 | Viewed by 2881
Abstract
This paper seeks to investigate the impact analysis of wind energy on electricity prices in an integrated renewable energy market, using regression models. This is especially important as wind energy is hard to predict and its integration into electricity markets is still in [...] Read more.
This paper seeks to investigate the impact analysis of wind energy on electricity prices in an integrated renewable energy market, using regression models. This is especially important as wind energy is hard to predict and its integration into electricity markets is still in an early stage. Price forecasting has been performed with consideration of wind energy generation to optimize energy portfolio investment and create an efficient energy-trading landscape. It provides an insight into future market trends which allow traders to price their products competitively and manage their risks within the volatile market. Through the analysis of an available dataset from the Austrian electricity market, it was found that the Decision Tree (DT) regression model performed better than the Linear Regression (LR), Random Forest (RF), and Least Absolute Shrinkage Selector Operator (LASSO) models. The accuracy of the model was evaluated using the Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). The MAE values considering wind energy generation and without wind energy generation for the Decision Tree model were found to be lowest (2.08 and 2.20, respectively) among all proposed models for the available dataset. The increasing deployment of wind energy in the European grid has led to a drop in prices and helped in achieving energy security and sustainability. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Renewable Energy Applications)
Show Figures

Figure 1

17 pages, 6409 KB  
Article
Multistage Micropump System towards Vacuum Pressure
by Martin Richter, Daniel Anheuer, Axel Wille, Yuecel Congar and Martin Wackerle
Actuators 2023, 12(6), 227; https://doi.org/10.3390/act12060227 - 31 May 2023
Cited by 4 | Viewed by 3358
Abstract
Fraunhofer EMFT’s research and manufacturing portfolio includes piezoelectrically actuated silicon micro diaphragm pumps with passive flap valves. Research and development in the field of microfluidics have been dedicated for many years to the use of micropumps for generating positive and negative pressures, as [...] Read more.
Fraunhofer EMFT’s research and manufacturing portfolio includes piezoelectrically actuated silicon micro diaphragm pumps with passive flap valves. Research and development in the field of microfluidics have been dedicated for many years to the use of micropumps for generating positive and negative pressures, as well as delivering various media. However, for some applications, only small amounts of fluid need to be pumped, compressed, or evacuated, and until now, only macroscopic pumps with high power consumption have been able to achieve the necessary flow rate and pressure, especially for compressible media such as air. To address these requirements, one potential approach is to use a multistage of high-performing micropumps optimized to negative pressure. In this paper, we present several possible ways to cascade piezoelectric silicon micropumps with passive flap valves to achieve these stringent requirements. Initially, simulations are conducted to generate negative pressures with different cascading methods. The first multistage option assumes pressure equalization over the piezo-actuator by the upstream pump, while for the second case, the actuator diaphragm operates against atmospheric pressure. Subsequently, measurement results for the generation of negative gas pressures down to −82.1 kPa relative to atmospheric pressure (19.2 kPa absolute) with a multistage of three micropumps are presented. This research enables further miniaturization of many applications with high-performance requirements for micropumps, achievable with these multistage systems. Full article
(This article belongs to the Special Issue Cooperative Microactuator Devices and Systems)
Show Figures

Figure 1

15 pages, 3128 KB  
Article
An Improved DCC Model Based on Large-Dimensional Covariance Matrices Estimation and Its Applications
by Yan Zhang, Jiyuan Tao, Yongyao Lv and Guoqiang Wang
Symmetry 2023, 15(4), 953; https://doi.org/10.3390/sym15040953 - 21 Apr 2023
Cited by 3 | Viewed by 3115
Abstract
The covariance matrix estimation plays an important role in portfolio optimization and risk management. It is well-known that portfolio is essentially a convex quadratic programming problem, which is also a special case of symmetric cone optimization. Accurate covariance matrix estimation will lead to [...] Read more.
The covariance matrix estimation plays an important role in portfolio optimization and risk management. It is well-known that portfolio is essentially a convex quadratic programming problem, which is also a special case of symmetric cone optimization. Accurate covariance matrix estimation will lead to more reasonable asset weight allocation. However, some existing methods do not consider the influence of time-varying factor on the covariance matrix estimations. To remedy this, in this article, we propose an improved dynamic conditional correlation model (DCC) by using nonconvex optimization model under smoothly clipped absolute deviation and hard-threshold penalty functions. We first construct a nonconvex optimization model to obtain the optimal covariance matrix estimation, and then we use this covariance matrix estimation to replace the unconditional covariance matrix in the DCC model. The result shows that the loss of the proposed estimator is smaller than other variants of the DCC model in numerical experiments. Finally, we apply our proposed model to the classic Markowitz portfolio. The results show that the improved dynamic conditional correlation model performs better than the current DCC models. Full article
(This article belongs to the Special Issue Symmetry in Optimization Theory, Algorithm and Applications)
Show Figures

Figure 1

26 pages, 4244 KB  
Article
Forecasting Stock Market Indices Using the Recurrent Neural Network Based Hybrid Models: CNN-LSTM, GRU-CNN, and Ensemble Models
by Hyunsun Song and Hyunjun Choi
Appl. Sci. 2023, 13(7), 4644; https://doi.org/10.3390/app13074644 - 6 Apr 2023
Cited by 63 | Viewed by 12853
Abstract
Various deep learning techniques have recently been developed in many fields due to the rapid advancement of technology and computing power. These techniques have been widely applied in finance for stock market prediction, portfolio optimization, risk management, and trading strategies. Forecasting stock indices [...] Read more.
Various deep learning techniques have recently been developed in many fields due to the rapid advancement of technology and computing power. These techniques have been widely applied in finance for stock market prediction, portfolio optimization, risk management, and trading strategies. Forecasting stock indices with noisy data is a complex and challenging task, but it plays an important role in the appropriate timing of buying or selling stocks, which is one of the most popular and valuable areas in finance. In this work, we propose novel hybrid models for forecasting the one-time-step and multi-time-step close prices of DAX, DOW, and S&P500 indices by utilizing recurrent neural network (RNN)–based models; convolutional neural network-long short-term memory (CNN-LSTM), gated recurrent unit (GRU)-CNN, and ensemble models. We propose the averaging of the high and low prices of stock market indices as a novel feature. The experimental results confirmed that our models outperformed the traditional machine-learning models in 48.1% and 40.7% of the cases in terms of the mean squared error (MSE) and mean absolute error (MAE), respectively, in the case of one-time-step forecasting and 81.5% of the cases in terms of the MSE and MAE in the case of multi-time-step forecasting. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop