Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Xanthosoma sagittifolium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 722 KiB  
Article
Nutritional and Bioactive Characterization of Unconventional Food Plants for Sustainable Functional Applications
by Izamara de Oliveira, José Miguel R. T. Salgado, João Krauspenhar Lopes, Marcio Carocho, Tayse F. F. da Silveira, Vitor Augusto dos Santos Garcia, Ricardo C. Calhelha, Celestino Santos-Buelga, Lillian Barros and Sandrina A. Heleno
Sustainability 2025, 17(15), 6718; https://doi.org/10.3390/su17156718 - 23 Jul 2025
Viewed by 310
Abstract
Unconventional food plants (UFPs) are increasingly valued for their nutritional composition and bioactive potential. This study proposes a comprehensive characterization of the chemical and bioactive properties of Pereskia aculeata Miller (Cactaceae) (PA); Xanthosoma sagittifolium (L.) Schott (Araceae) (XS); Stachys byzantina K. Koch (Lamiaceae) [...] Read more.
Unconventional food plants (UFPs) are increasingly valued for their nutritional composition and bioactive potential. This study proposes a comprehensive characterization of the chemical and bioactive properties of Pereskia aculeata Miller (Cactaceae) (PA); Xanthosoma sagittifolium (L.) Schott (Araceae) (XS); Stachys byzantina K. Koch (Lamiaceae) (SB); and inflorescences from three cultivars of Musa acuminata (Musaceae) var. Dwarf Cavendish, var. BRS Platina, and var. BRS Conquista (MAD, MAP, and MAC), including the assessment of physical, nutritional, phytochemical, and biological parameters. Notably, detailed phenolic profiles were established for these species, many of which are poorly documented in the literature. XS was characterized by a unique abundance of C-glycosylated flavones, especially apigenin and luteolin derivatives, rarely described for this species. SB exhibited high levels of phenylethanoid glycosides, particularly verbascoside and its isomers (up to 21.32 mg/g extract), while PA was rich in O-glycosylated flavonols such as quercetin, kaempferol, and isorhamnetin derivatives. Nutritionally, XS had the highest protein content (16.3 g/100 g dw), while SB showed remarkable dietary fiber content (59.8 g/100 g). Banana inflorescences presented high fiber (up to 66.5 g/100 g) and lipid levels (up to 7.35 g/100 g). Regarding bioactivity, PA showed the highest DPPH radical scavenging activity (95.21%) and SB the highest reducing power in the FRAP assay (4085.90 µM TE/g). Cellular antioxidant activity exceeded 2000% in most samples, except for SB. Cytotoxic and anti-inflammatory activities were generally low, with only SB showing moderate effects against Caco-2 and AGS cell lines. SB and PA demonstrated the strongest antimicrobial activity, particularly against Yersinia enterocolitica, methicillin-resistant Staphylococcus aureus (MRSA), and Enterococcus faecalis, with minimum inhibitory concentrations ranging from 0.156 to 0.625 mg/mL. Linear discriminant analysis revealed distinctive chemical patterns among the species, with organic acids (e.g., oxalic up to 7.53 g/100 g) and fatty acids (e.g., linolenic acid up to 52.38%) as key discriminant variables. Overall, the study underscores the nutritional and functional relevance of these underutilized plants and contributes rare quantitative data to the scientific literature regarding their phenolic signatures. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

24 pages, 1433 KiB  
Review
Unconventional Edible Plants of the Amazon: Bioactive Compounds, Health Benefits, Challenges, and Future Trends
by Cynthia Tereza Corrêa da Silva Miranda, Stephanie Dias Soares, Williara Queiroz de Oliveira, Adriana de Souza Lima, Iramaia Angélica Neri Numa and Gláucia Maria Pastore
Foods 2024, 13(18), 2925; https://doi.org/10.3390/foods13182925 - 15 Sep 2024
Cited by 2 | Viewed by 3060
Abstract
The pursuit of an improved quality of life is a major trend in the food market. This is driving the reformulation of the industry’s product portfolio, with the aim of providing nourishment while also contributing to beneficial health metabolic processes. In this context, [...] Read more.
The pursuit of an improved quality of life is a major trend in the food market. This is driving the reformulation of the industry’s product portfolio, with the aim of providing nourishment while also contributing to beneficial health metabolic processes. In this context, the use of local biodiversity and the recovery of the traditional knowledge associated with the consumption of vegetables that grow spontaneously in nature emerge as more sustainable and nutritionally adequate concepts. The Amazon region is known for its abundant biodiversity, housing numerous unconventional food plants whose nutritional and biological properties remain unknown due to a lack of research. Among the different species are Xanthosoma sagittifolium, Acmella oleracea, Talinum triangulare, Pereskia bleo, Bidens bipinnata, and Costus spiralis. These species contain bioactive compounds such as apigenin, syringic acid, spilanthol, and lutein, which provide various health benefits. There are few reports on the biological effects, nutritional composition, bioactive compounds, and market prospects for these species. Therefore, this review provides an overview of their nutritional contribution, bioactive compounds, health benefits, and current market, as well as the use of new technologies that can contribute to the development of functional products/ingredients derived from them. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

18 pages, 1170 KiB  
Systematic Review
Valorization of Taioba Products and By-Products: Focusing on Starch
by Samanta de Paula de Almeida Duarte, Bárbara E. Teixeira-Costa, Rosely Carvalho do Rosário, Edna Regina Amante, Márlia Barbosa Pires and Orquídea Vasconcelo dos Santos
Foods 2024, 13(15), 2415; https://doi.org/10.3390/foods13152415 - 30 Jul 2024
Cited by 2 | Viewed by 1582
Abstract
Unconventional food plants, popularized in Brazil as PANC, remain underutilized globally. In that sense, this study aims to explore the nutritional and functional properties of taioba (Xanthosoma sagittifolium), a plant with edible leaves and tubers, and to investigate its potential for [...] Read more.
Unconventional food plants, popularized in Brazil as PANC, remain underutilized globally. In that sense, this study aims to explore the nutritional and functional properties of taioba (Xanthosoma sagittifolium), a plant with edible leaves and tubers, and to investigate its potential for industrial-scale application as a source of starch. A systematic review was carried out and meta-analysis following the PRISMA guidelines was conducted based on a random effects synthesis of multivariable-adjusted relative risks (RRs). The searches were carried out in seven search sources, among which were Web of Science, Elsevier’s Science Direct, Wiley Online Library, Springer Nature, Taylor & Francis, Hindawi, Scielo, ACS—American Chemical Society, and Google Scholar. The systematic review was guided by a systematic review protocol based on the POT strategy (Population, Outcome, and Types of studies), adapted for use in this research. Mendeley was a resource used for organization, to manage references, and to exclude duplicates of studies selected for review. The findings revealed that taioba leaves are abundant in essential nutrients, proteins, vitamins, and minerals. Additionally, the tubers offer rich starch content along with vitamins and minerals like iron, potassium, and calcium, making them an ideal substitute for conventional sources on an industrial scale. This research highlights the significance of studying the functionalities, applicability, and integration of this PANC in our diets, while also emphasizing its capability as a substitute for traditional starch varieties. Moreover, exploiting this plant’s potential adds value to Amazonian resources, reduces import costs, and diversifies resource utilization across multiple industrial sectors. Full article
(This article belongs to the Special Issue Advanced Research and Development of Carbohydrate from Foods)
Show Figures

Figure 1

21 pages, 26879 KiB  
Article
Leaf on a Film: Mesoporous Silica-Based Epoxy Composites with Superhydrophobic Biomimetic Surface Structure as Anti-Corrosion and Anti-Biofilm Coatings
by Jiunn-Jer Hwang, Pei-Yu Chen, Kun-Hao Luo, Yung-Chin Wang, Ting-Ying Lai, Jolleen Natalie I. Balitaan, Shu-Rung Lin and Jui-Ming Yeh
Polymers 2024, 16(12), 1673; https://doi.org/10.3390/polym16121673 - 12 Jun 2024
Cited by 2 | Viewed by 1916
Abstract
In this study, a series of amine-modified mesoporous silica (AMS)-based epoxy composites with superhydrophobic biomimetic structure surface of Xanthosoma sagittifolium leaves (XSLs) were prepared and applied as anti-corrosion and anti-biofilm coatings. Initially, the AMS was synthesized by the base-catalyzed sol–gel reaction of tetraethoxysilane [...] Read more.
In this study, a series of amine-modified mesoporous silica (AMS)-based epoxy composites with superhydrophobic biomimetic structure surface of Xanthosoma sagittifolium leaves (XSLs) were prepared and applied as anti-corrosion and anti-biofilm coatings. Initially, the AMS was synthesized by the base-catalyzed sol–gel reaction of tetraethoxysilane (TEOS) and triethoxysilane (APTES) through a non-surfactant templating route. Subsequently, a series of AMS-based epoxy composites were prepared by performing the ring-opening polymerization of DGEBA with T-403 in the presence of AMS spheres, followed by characterization through FTIR, TEM, and CA. Furthermore, a nano-casting technique with polydimethylsiloxane (PDMS) as the soft template was utilized to transfer the surface pattern of natural XSLs to AMS-based epoxy composites, leading to the formation of AMS-based epoxy composites with biomimetic structure. From a hydrophilic CA of 69°, the surface of non-biomimetic epoxy significantly increased to 152° upon introducing XSL surface structure to the AMS-based epoxy composites. Based on the standard electrochemical anti-corrosion and anti-biofilm measurements, the superhydrophobic BEAMS3 composite was found to exhibit a remarkable anti-corrosion efficiency of ~99% and antimicrobial efficacy of 82% as compared to that of hydrophilic epoxy coatings. Full article
(This article belongs to the Special Issue The Application of Polymers in Biomimetics)
Show Figures

Figure 1

24 pages, 2308 KiB  
Article
Assessing the Productivity and Socioeconomic Feasibility of Cocoyam and Teak Agroforestry for Food Security
by Aji Winara, Eva Fauziyah, Suhartono, Ary Widiyanto, Sanudin, Aris Sudomo, Mohamad Siarudin, Aditya Hani, Yonky Indrajaya, Budiman Achmad, Dian Diniyati, Wuri Handayani, Endah Suhaendah, Dewi Maharani, Dila Swestiani, Murniati, Tri Sulistyati Widyaningsih, Harry Budi Santoso Sulistiadi, Chotimatul Azmi, Rini Rosliani, Meksy Dianawati, Cheppy Syukur, Dewi Gartika, Agus Ruswandi, Yudha Hadian Nur and Muthya Dianaadd Show full author list remove Hide full author list
Sustainability 2022, 14(19), 11981; https://doi.org/10.3390/su141911981 - 22 Sep 2022
Cited by 9 | Viewed by 4798
Abstract
Limited agricultural land areas combined with increasing demands for food require breakthroughs in land use development using agroforestry systems. Intercropping root crops with trees could be an alternative for food production in forest areas. This study aimed to assess the feasibility of cocoyam [...] Read more.
Limited agricultural land areas combined with increasing demands for food require breakthroughs in land use development using agroforestry systems. Intercropping root crops with trees could be an alternative for food production in forest areas. This study aimed to assess the feasibility of cocoyam (Xanthosoma sagittifolium (L.) Schott) farming on dry land within 12- and 42-year-old teak (Tectona grandis L.f.) forests to support local food security. The feasibility assessment took into account both productivity and socio-economic aspects. The agroforestry land productivity was measured using the land equivalent ratio (LER), and our analysis of the cocoyam farming within the teak stands was carried out using the revenue/cost ratio (R/C) at the demonstration plot scale. Furthermore, we also surveyed farmers’ perceptions of the production of cocoyam for food security. The results showed that the R/C values of cocoyam tuber production in agroforestry systems were lower than 1. However, the production rates of cocoyam tubers in the 12-year-old teak stand (48.3% light intensity) and the 42-year-old teak stand (62.5% light intensity) were 2.64 and 2.76 tons/ha, respectively. The overall yields from the teak and cocoyam agroforestry systems were more profitable than those of the monoculture system, as indicated by the LER values of 1.61 and 1.85. Cocoyam production was socially acceptable (77% of respondents) as a smallholder subsistence agroforestry practice to meet food demand. Increasing cocoyam productivity in teak forests requires the adoption of agroforestry silvicultural technology to achieve food security for rural communities. To increase their farming production and income, farmers could apply intensive silvicultural practices. Governmental support that could be provided includes encouraging product diversification and providing assistance for the processing and marketing of cocoyam products. Full article
Show Figures

Figure 1

13 pages, 3066 KiB  
Article
Physicochemical Characterization of Resistant Starch Type-III (RS3) Obtained by Autoclaving Malanga (Xanthosoma sagittifolium) Flour and Corn Starch
by Vicente Espinosa-Solis, Paul Baruk Zamudio-Flores, Miguel Espino-Díaz, Gilber Vela-Gutiérrez, J. Rodolfo Rendón-Villalobos, María Hernández-González, Francisco Hernández-Centeno, Hayde Yajaira López-De la Peña, René Salgado-Delgado and Adalberto Ortega-Ortega
Molecules 2021, 26(13), 4006; https://doi.org/10.3390/molecules26134006 - 30 Jun 2021
Cited by 14 | Viewed by 4641
Abstract
The feasibility of obtaining resistant starch type III (RS3) from malanga flour (Xanthosoma sagittifolium), as an unconventional source of starch, was evaluated using the hydrothermal treatment of autoclaving. The physicochemical characterization of RS3 made from malanga flour was carried out through [...] Read more.
The feasibility of obtaining resistant starch type III (RS3) from malanga flour (Xanthosoma sagittifolium), as an unconventional source of starch, was evaluated using the hydrothermal treatment of autoclaving. The physicochemical characterization of RS3 made from malanga flour was carried out through the evaluation of the chemical composition, color attributes, and thermal properties. In addition, the contents of the total starch, available starch, resistant starch, and retrograded resistant starch were determined by in vitro enzymatic tests. A commercial corn starch sample was used to produce RS3 and utilized to compare all of the analyses. The results showed that native malanga flour behaved differently in most of the evaluations performed, compared to the commercial corn starch. These results could be explained by the presence of minor components that could interfere with the physicochemical and functional properties of the flour; however, the RS3 samples obtained from malanga flour and corn starch were similar in their thermal and morphological features, which may be related to their similarities in the content and molecular weight of amylose, in both of the samples. Furthermore, the yields for obtaining the autoclaved powders from corn starch and malanga flour were similar (≈89%), which showed that the malanga flour is an attractive raw material for obtaining RS3 with adequate yields, to be considered in the subsequent research. Full article
Show Figures

Figure 1

8 pages, 6917 KiB  
Short Note
Accessible Morphological and Genetic Markers for Identification of Taioba and Taro, Two Forgotten Human Foods
by María Del Pilar Sepúlveda-Nieto, Fernando Bonifacio-Anacleto, Cairo Faleiros de Figueiredo, Rômulo M. De Moraes-Filho and Ana Lilia Alzate-Marin
Horticulturae 2017, 3(4), 49; https://doi.org/10.3390/horticulturae3040049 - 13 Oct 2017
Cited by 6 | Viewed by 7213
Abstract
Some tropical species—such as the domesticated Xanthosoma sagittifolium (L.) Schott (Taioba) and Colocasia esculenta (L.) Schott (Taro)—have similar phenotypic characteristics, especially in the shape and color of the leaves and petioles which generate uncertainty in their identification for use in human food. This [...] Read more.
Some tropical species—such as the domesticated Xanthosoma sagittifolium (L.) Schott (Taioba) and Colocasia esculenta (L.) Schott (Taro)—have similar phenotypic characteristics, especially in the shape and color of the leaves and petioles which generate uncertainty in their identification for use in human food. This study aimed to analyze the morphological and molecular characteristics of X. sagittifolium and C. esculenta that may help in the popular and scientific identification of these species. The principal morphological characteristics of X. sagittifolium were as follows: leaves with subcoriaceous textures, basal insertion of the petiole, green pseudo-stem in the basal portion with exudate being white and the presence of two collector veins. Distinctive morphological characteristics of C. esculenta were as follows: leaves with velvety textures, peltate insertion of the petiole, pink pseudo-stem in the basal portion with pink exudate and presence of one collector vein. The morphological characteristics that can be used to distinguish Taioba from Taro are the basal petiole insertion of the first, against the petiole insertion near the center of the blade of the latter. Molecular analyses using eight Inter-Simple Sequence Repeat (ISSR) molecular markers simultaneously showed distinctive fingerprints for each of the species. These results contribute to the proper identification of the species used as a food source. Full article
Show Figures

Figure 1

Back to TopTop