Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = XBee

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2169 KB  
Proceeding Paper
Comparative Performance Analysis of Data Transmission Protocols for Sensor-to-Cloud Applications: An Experimental Evaluation
by Filip Tsvetanov and Martin Pandurski
Eng. Proc. 2025, 104(1), 35; https://doi.org/10.3390/engproc2025104035 - 25 Aug 2025
Viewed by 1059
Abstract
This paper examines some of the most popular protocols for transmitting sensor data to cloud structures from publish/subscribe and request/response IoT models. The selection of a highly efficient message transmission protocol is essential, as it depends on the specific characteristics and purpose of [...] Read more.
This paper examines some of the most popular protocols for transmitting sensor data to cloud structures from publish/subscribe and request/response IoT models. The selection of a highly efficient message transmission protocol is essential, as it depends on the specific characteristics and purpose of the developed IoT system, which includes communication requirements, message size and format, energy efficiency, reliability, and cloud specifications. No standardized protocol can cover all the diverse application scenarios; therefore, for each developed project, the most appropriate protocol must be selected that meets the project’s specific requirements. This work focuses on finding the most appropriate protocol for integrating sensor data into a suitable open-source IoT platform, ThingsBoard. First, we conduct a comparative analysis of the studied protocols. Then, we propose a project that represents an experiment for transmitting data from a stationary XBee sensor network to the ThingsBoard cloud via HTTP, MQTT-SN, and CoAP protocols. We observe the parameters’ influence on the delayed transmission of packets and their load on the CPU and RAM. The results of the experimental studies for stationary sensor networks collecting environmental data give an advantage to the MQTT-SN protocol. This protocol is preferable to the other two protocols due to the lower delay and load on the processor and memory, which leads to higher energy efficiency and longer life of the sensors and sensor networks. These results can help users make operational judgments for their IoT applications. Full article
Show Figures

Figure 1

19 pages, 13424 KB  
Article
A Comprehensive Analysis of Security Challenges in ZigBee 3.0 Networks
by Akbar Ghobakhlou, Duaa Zuhair Al-Hamid, Sara Zandi and James Cato
Sensors 2025, 25(15), 4606; https://doi.org/10.3390/s25154606 - 25 Jul 2025
Cited by 2 | Viewed by 5478
Abstract
ZigBee, a wireless technology standard for the Internet of Things (IoT) devices based on IEEE 802.15.4, faces significant security challenges that threaten the confidentiality, integrity, and availability of its networks. Despite using 128-bit Advanced Encryption Standard (AES) with symmetric keys for node authentication [...] Read more.
ZigBee, a wireless technology standard for the Internet of Things (IoT) devices based on IEEE 802.15.4, faces significant security challenges that threaten the confidentiality, integrity, and availability of its networks. Despite using 128-bit Advanced Encryption Standard (AES) with symmetric keys for node authentication and data confidentiality, ZigBee’s design constraints, such as low cost and low power, have allowed security issues to persist. While ZigBee 3.0 introduces enhanced security features such as install codes and trust centre link key updates, there remains a lack of empirical research evaluating their effectiveness in real-world deployments. This research addresses the gap by conducting a comprehensive, hardware-based analysis of ZigBee 3.0 networks using XBee 3 radio modules and ZigBee-compatible devices. We investigate the following three core security issues: (a) the security of symmetric keys, focusing on vulnerabilities that could allow attackers to obtain these keys; (b) the impact of compromised symmetric keys on network confidentiality; and (c) susceptibility to Denial-of-Service (DoS) attacks due to insufficient protection mechanisms. Our experiments simulate realistic attack scenarios under both Centralised and Distributed Security Models to assess the protocol’s resilience. The findings reveal that while ZigBee 3.0 improves upon earlier versions, certain vulnerabilities remain exploitable. We also propose practical security controls and best practices to mitigate these attacks and enhance network security. This work contributes novel insights into the operational security of ZigBee 3.0, offering guidance for secure IoT deployments and advancing the understanding of protocol-level defences in constrained environments. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

22 pages, 3828 KB  
Article
A Sleep Sensor Made with Electret Condenser Microphones
by Teru Kamogashira, Tatsuya Yamasoba, Shu Kikuta and Kenji Kondo
Clocks & Sleep 2025, 7(2), 28; https://doi.org/10.3390/clockssleep7020028 - 31 May 2025
Viewed by 1368
Abstract
Measurement of respiratory patterns during sleep plays a critical role in assessing sleep quality and diagnosing sleep disorders such as sleep apnea syndrome, which is associated with many adverse health outcomes, including cardiovascular disease, diabetes, and cognitive impairments. Traditional methods for measuring breathing [...] Read more.
Measurement of respiratory patterns during sleep plays a critical role in assessing sleep quality and diagnosing sleep disorders such as sleep apnea syndrome, which is associated with many adverse health outcomes, including cardiovascular disease, diabetes, and cognitive impairments. Traditional methods for measuring breathing often rely on expensive and complex sensors, such as polysomnography equipment, which can be cumbersome and costly and are typically confined to clinical settings. These factors limit the performance of respiratory monitoring in routine settings and prevent convenient and extensive screening. Recognizing the need for accessible and cost-effective solutions, we developed a portable sleep sensor that uses an electret condenser microphone (ECM), which is inexpensive and easy to obtain, to measure nasal airflows. Constant current circuits that bias the ECM and circuit constants suitable for measurement enable special uses of the ECM. Furthermore, data transmission through the XBee wireless communication module, which employs the ZigBee short-range wireless communication standard, enables highly portable measurements. This customized configuration allows the ECM to detect subtle changes in airflow associated with breathing patterns, enabling the monitoring of respiratory activity with minimal invasiveness and complexity. Furthermore, the wireless module not only reduces the size and weight of the device, but also facilitates continuous data collection during sleep without disturbing user comfort. This portable wireless sensor runs on batteries, providing approximately 50 h of uptime, a ±50 Pa pressure range, and 20 Hz real-time sampling. Our portable sleep sensor is a practical and efficient solution for respiratory monitoring outside of the traditional clinical setting. Full article
(This article belongs to the Section Computational Models)
Show Figures

Figure 1

20 pages, 10700 KB  
Article
A 2.4 GHz IEEE 802.15.4 Multi-Hop Network for Mountainous Forest and Watercourse Environments: Sensor Node Deployment and Performance Evaluation
by Apidet Booranawong, Puwasit Hirunkitrangsri, Dujdow Buranapanichkit, Charernkiat Pochaiya, Nattha Jindapetch and Hiroshi Saito
Signals 2024, 5(4), 774-793; https://doi.org/10.3390/signals5040043 - 20 Nov 2024
Cited by 2 | Viewed by 2169
Abstract
In this paper, we demonstrate the realistic test of a 2.4 GHz multi-hop wireless network for mountainous forest and watercourse environments. A multi-hop network using IEEE 802.15.4 XBee3 micro-modules and a communication protocol among nodes were developed. A wireless node deployment solution was [...] Read more.
In this paper, we demonstrate the realistic test of a 2.4 GHz multi-hop wireless network for mountainous forest and watercourse environments. A multi-hop network using IEEE 802.15.4 XBee3 micro-modules and a communication protocol among nodes were developed. A wireless node deployment solution was introduced for practical testing. The proposed system’s communication reliability was tested in two different scenarios: a mountainous forest with sloping areas and trees and a watercourse, which referred to environmental and flooding monitoring applications. Wireless network performances were evaluated through the received signal strength indicator (RSSI) level of each wireless link, a packet delivery ratio (PDR), as the successful rate of packet transmission, and the end-to-end delay (ETED) of all data packets from the transmitter to the receiver. The experimental results demonstrate the success of the multi-hop WSN deployment and communication in both scenarios, where the RSSI of each link was kept at the accepted level and the PDR achieved the highest result. Furthermore, as a real-time response, the data from the source could be sent to the sink with a small ETED. Full article
Show Figures

Figure 1

18 pages, 9899 KB  
Article
Experimental Outdoor Vehicle Acoustic Testing Based on ISO-362 Pass-by-Noise and Tyre Noise Contribution for Electric Vehicles
by Daniel O’Boy, Simon Tuplin and Kambiz Ebrahimi
World Electr. Veh. J. 2024, 15(11), 485; https://doi.org/10.3390/wevj15110485 - 26 Oct 2024
Cited by 1 | Viewed by 2930
Abstract
This paper focuses on the novel and unique training provision of acoustics relevant for noise, vibration, and harshness (NVH), focused on the ISO-362 standard highlighting important design aspects for electric vehicles. A case study of the practical implementation of off-site vehicle testing supporting [...] Read more.
This paper focuses on the novel and unique training provision of acoustics relevant for noise, vibration, and harshness (NVH), focused on the ISO-362 standard highlighting important design aspects for electric vehicles. A case study of the practical implementation of off-site vehicle testing supporting an acoustics module is described, detailing a time-constrained test for automotive pass-by-noise and tyre-radiated noise with speed. Industrial test standards are discussed, with education as a primary motivation. The connections between low-cost, accessible equipment and future electric vehicle acoustics are made. The paper contains a full equipment breakdown to demonstrate the ability to link digital data transfer, analogue-to-digital communication, telemetry, and acquisition skills. The benchmark results of novel pass-by-noise and tyre testing are framed around discussion points for assessments. Inexpensive Arduino Uno boards provide data acquisition with class 1 sound pressure meters, XBee radios provide telemetry to a vehicle, and a vehicle datalogger provides GPS position with CANBUS data. Data acquisition is triggered through the implementation of light gate sensors on the test track, with the whole test lasting 90 minutes. Full article
Show Figures

Figure 1

29 pages, 17407 KB  
Article
Development and Field Testing of a Wireless Data Relay System for Amphibious Drones
by Atsushi Suetsugu, Hirokazu Madokoro, Takeshi Nagayoshi, Takero Kikuchi, Shunsuke Watanabe, Makoto Inoue, Makoto Yoshida, Hitoshi Osawa, Nobumitsu Kurisawa and Osamu Kiguchi
Drones 2024, 8(2), 38; https://doi.org/10.3390/drones8020038 - 25 Jan 2024
Cited by 1 | Viewed by 4470
Abstract
Amphibious (air and water) drones, capable of both aerial and aquatic operations, have the potential to provide valuable drone applications in aquatic environments. However, the limited range of wireless data transmission caused by the low antenna height on water and reflection from the [...] Read more.
Amphibious (air and water) drones, capable of both aerial and aquatic operations, have the potential to provide valuable drone applications in aquatic environments. However, the limited range of wireless data transmission caused by the low antenna height on water and reflection from the water surface (e.g., 45 m for vertical half-wave dipole antennas with the XBee S2CTM, estimated using the two-ray ground reflection model) persists as a formidable challenge for amphibious systems. To overcome this difficulty, we developed a wireless data relay system for amphibious drones using the mesh-type networking functions of the XBeeTM. We then conducted field tests of the developed system in a large marsh pond to provide experimental evidence of the efficiency of the multiple-drone network in amphibious settings. In these tests, hovering relaying over water was attempted for extension and bypassing obstacles using the XBee S2CTM (6.3 mW, 2.4 GHz). During testing, the hovering drone (<10 m height from the drone controller) successfully relayed water quality data from the transmitter to the receiver located approximately 757 m away, but shoreline vegetation decreased the reachable distance. A bypassing relay test for vegetation indicated the need to confirm a connected path formed by pair(s) of mutually observable drones. Full article
(This article belongs to the Special Issue Wireless Networks and UAV)
Show Figures

Figure 1

27 pages, 8494 KB  
Article
A Comprehensive Analysis: Evaluating Security Characteristics of Xbee Devices against Zigbee Protocol
by Vlad Gavra, Ovidiu A. Pop and Ionut Dobra
Sensors 2023, 23(21), 8736; https://doi.org/10.3390/s23218736 - 26 Oct 2023
Cited by 8 | Viewed by 2816
Abstract
In recent times, the security of sensor networks, especially in the field of IoT, has become a priority. This article focuses on the security features of the Zigbee protocol in Xbee devices developed by Digi International, specifically in the Xbee 3 (XB3-24) devices. [...] Read more.
In recent times, the security of sensor networks, especially in the field of IoT, has become a priority. This article focuses on the security features of the Zigbee protocol in Xbee devices developed by Digi International, specifically in the Xbee 3 (XB3-24) devices. Using the TI LaunchXL-CC26X2R1 kit, we intercepted and analyzed packets in real-time using the Wireshark application. The study encompasses various stages of network formation, packet transmission and analysis of security key usage, considering scenarios as follows: without security, distributed security mode and centralized security mode. Our findings highlight the differences in security features of Xbee devices compared to the Zigbee protocol, validating and invalidating methods of establishing security keys, vulnerabilities, strengths, and recommended security measures. We also discovered that security features of the Xbee 3 devices are built around a global link key preconfigured therefore constituting a vulnerability, making those devices suitable for man-in-the-middle and reply attacks. This work not only elucidates the complexities of Zigbee security in Xbee devices but also provides direction for future research for authentication methods using asymmetric encryption algorithms such as digital signature based on RSA and ECDSA. Full article
(This article belongs to the Special Issue Communication, Security, and Privacy in IoT)
Show Figures

Figure 1

27 pages, 10559 KB  
Article
Buildings’ Biaxial Tilt Assessment Using Inertial Wireless Sensors and a Parallel Training Model
by Luis Pastor Sánchez-Fernández, Luis Alejandro Sánchez-Pérez, José Juan Carbajal-Hernández, Mario Alberto Hernández-Guerrero and Lucrecia Pérez-Echazabal
Sensors 2023, 23(11), 5352; https://doi.org/10.3390/s23115352 - 5 Jun 2023
Cited by 4 | Viewed by 2087
Abstract
Applications of MEMS-based sensing technology are beneficial and versatile. If these electronic sensors integrate efficient processing methods, and if supervisory control and data acquisition (SCADA) software is also required, then mass networked real-time monitoring will be limited by cost, revealing a research gap [...] Read more.
Applications of MEMS-based sensing technology are beneficial and versatile. If these electronic sensors integrate efficient processing methods, and if supervisory control and data acquisition (SCADA) software is also required, then mass networked real-time monitoring will be limited by cost, revealing a research gap related to the specific processing of signals. Static and dynamic accelerations are very noisy, and small variations of correctly processed static accelerations can be used as measurements and patterns of the biaxial inclination of many structures. This paper presents a biaxial tilt assessment for buildings based on a parallel training model and real-time measurements using inertial sensors, Wi-Fi Xbee, and Internet connectivity. The specific structural inclinations of the four exterior walls and their severity of rectangular buildings in urban areas with differential soil settlements can be supervised simultaneously in a control center. Two algorithms, combined with a new procedure using successive numeric repetitions designed especially for this work, process the gravitational acceleration signals, improving the final result remarkably. Subsequently, the inclination patterns based on biaxial angles are generated computationally, considering differential settlements and seismic events. The two neural models recognize 18 inclination patterns and their severity using an approach in cascade with a parallel training model for the severity classification. Lastly, the algorithms are integrated into monitoring software with 0.1° resolution, and their performance is verified on a small-scale physical model for laboratory tests. The classifiers had a precision, recall, F1-score, and accuracy greater than 95%. Full article
(This article belongs to the Special Issue Application of MEMS/NEMS-Based Sensing Technology)
Show Figures

Figure 1

16 pages, 5162 KB  
Article
A Wearable-Sensor System with AI Technology for Real-Time Biomechanical Feedback Training in Hammer Throw
by Ye Wang, Gongbing Shan, Hua Li and Lin Wang
Sensors 2023, 23(1), 425; https://doi.org/10.3390/s23010425 - 30 Dec 2022
Cited by 19 | Viewed by 6757
Abstract
Developing real-time biomechanical feedback systems for in-field applications will transfer human motor skills’ learning/training from subjective (experience-based) to objective (science-based). The translation will greatly improve the efficiency of human motor skills’ learning and training. Such a translation is especially indispensable for the hammer-throw [...] Read more.
Developing real-time biomechanical feedback systems for in-field applications will transfer human motor skills’ learning/training from subjective (experience-based) to objective (science-based). The translation will greatly improve the efficiency of human motor skills’ learning and training. Such a translation is especially indispensable for the hammer-throw training which still relies on coaches’ experience/observation and has not seen a new world record since 1986. Therefore, we developed a wearable wireless sensor system combining with artificial intelligence for real-time biomechanical feedback training in hammer throw. A framework was devised for developing such practical wearable systems. A printed circuit board was designed to miniaturize the size of the wearable device, where an Arduino microcontroller, an XBee wireless communication module, an embedded load cell and two micro inertial measurement units (IMUs) could be inserted/connected onto the board. The load cell was for measuring the wire tension, while the two IMUs were for determining the vertical displacements of the wrists and the hip. After calibration, the device returned a mean relative error of 0.87% for the load cell and the accuracy of 6% for the IMUs. Further, two deep neural network models were built to estimate selected joint angles of upper and lower limbs related to limb coordination based on the IMUs’ measurements. The estimation errors for both models were within an acceptable range, i.e., approximately ±12° and ±4°, respectively, demonstrating strong correlation existed between the limb coordination and the IMUs’ measurements. The results of the current study suggest a remarkable novelty: the difficulty-to-measure human motor skills, especially in those sports involving high speed and complex motor skills, can be tracked by wearable sensors with neglect movement constraints to the athletes. Therefore, the application of artificial intelligence in a wearable system has shown great potential of establishing real-time biomechanical feedback training in various sports. To our best knowledge, this is the first practical research of combing wearables and machine learning to provide biomechanical feedback in hammer throw. Hopefully, more wearable biomechanical feedback systems integrating artificial intelligence would be developed in the future. Full article
(This article belongs to the Special Issue Recent Advances in Robotics and Intelligent Mechatronics Systems)
Show Figures

Figure 1

29 pages, 8539 KB  
Article
Multiple Industrial Induction Motors Fault Diagnosis Model within Powerline System Based on Wireless Sensor Network
by Saud Altaf, Shafiq Ahmad, Mazen Zaindin, Shamsul Huda, Sofia Iqbal and Muhammad Waseem Soomro
Sustainability 2022, 14(16), 10079; https://doi.org/10.3390/su141610079 - 15 Aug 2022
Cited by 3 | Viewed by 2260
Abstract
The voltage supply of induction motors of various sizes is typically provided by a shared power bus in an industrial production powerline network. A single motor’s dynamic behavior produces a signal that travels along the powerline. Powerline networks are efficient at transmitting and [...] Read more.
The voltage supply of induction motors of various sizes is typically provided by a shared power bus in an industrial production powerline network. A single motor’s dynamic behavior produces a signal that travels along the powerline. Powerline networks are efficient at transmitting and receiving signals. This could be an indication that there is a problem with the motor down immediately from its location. It is possible for the consolidated network signal to become confusing. A mathematical model is used to measure and determine the possible known routing of various signals in an electricity network based on attenuation and estimate the relationship between sensor signals and known fault patterns. A laboratory WSN based induction motors testbed setup was developed using Xbee devices and microcontroller along with the variety of different-sized motors to verify the progression of faulty signals and identify the type of fault. These motors were connected in parallel to the main powerline through this architecture, which provided an excellent concept for an industrial multi-motor network modeling lab setup. A method for the extraction of Xbee node-level features has been developed, and it can be applied to a variety of datasets. The accuracy of the real-time data capture is demonstrated to be very close data analyses between simulation and testbed measurements. Experimental results show a comparison between manual data gathering and capturing Xbee sensor nodes to validate the methodology’s applicability and accuracy in locating the faulty motor within the power network. Full article
(This article belongs to the Special Issue Electric Power Equipment Sustainable Development)
Show Figures

Figure 1

23 pages, 3506 KB  
Article
Comprehensive Performance Analysis of Zigbee Communication: An Experimental Approach with XBee S2C Module
by Khandaker Foysal Haque, Ahmed Abdelgawad and Kumar Yelamarthi
Sensors 2022, 22(9), 3245; https://doi.org/10.3390/s22093245 - 23 Apr 2022
Cited by 36 | Viewed by 9149
Abstract
The recent development of wireless communications has prompted many diversified applications in both industrial and medical sectors. Zigbee is a short-range wireless communication standard that is based on IEEE 802.15.4 and is vastly used in both indoor and outdoor applications. Its performance depends [...] Read more.
The recent development of wireless communications has prompted many diversified applications in both industrial and medical sectors. Zigbee is a short-range wireless communication standard that is based on IEEE 802.15.4 and is vastly used in both indoor and outdoor applications. Its performance depends on networking parameters, such as baud rates, transmission power, data encryption, hopping, deployment environment, and transmission distances. For optimized network deployment, an extensive performance analysis is necessary. This would facilitate a clear understanding of the trade-offs of the network performance metrics, such as the packet delivery ratio (PDR), power consumption, network life, link quality, latency, and throughput. This work presents an extensive performance analysis of both the encrypted and unencrypted Zigbee with the stated metrics in a real-world testbed, deployed in both indoor and outdoor scenarios. The major contributions of this work include (i) evaluating the most optimized transmission power level of Zigbee, considering packet delivery ratio and network lifetime; (ii) formulating an algorithm to find the network lifetime from the measured current consumption of packet transmission; and (iii) identifying and quantizing the trade-offs of the multi-hop communication and data encryption with latency, transmission range, and throughput. Full article
(This article belongs to the Special Issue Reliability Analysis of Wireless Sensor Network)
Show Figures

Figure 1

26 pages, 7287 KB  
Article
HVAC Control System Using Predicted Mean Vote Index for Energy Savings in Buildings
by Daniel Fernando Espejel-Blanco, José Antonio Hoyo-Montaño, Jaime Arau, Guillermo Valencia-Palomo, Abel García-Barrientos, Héctor Ricardo Hernández-De-León and Jorge Luis Camas-Anzueto
Buildings 2022, 12(1), 38; https://doi.org/10.3390/buildings12010038 - 3 Jan 2022
Cited by 24 | Viewed by 7203
Abstract
Nowadays, reducing energy consumption is the fastest way to reduce the use of fossil fuels and, therefore, greenhouse gas emissions. Heating, Ventilation, and Air Conditioning (HVAC) systems are used to maintain an indoor environment in comfortable conditions for its occupants. The combination of [...] Read more.
Nowadays, reducing energy consumption is the fastest way to reduce the use of fossil fuels and, therefore, greenhouse gas emissions. Heating, Ventilation, and Air Conditioning (HVAC) systems are used to maintain an indoor environment in comfortable conditions for its occupants. The combination of these two factors, energy efficiency and comfort, is a considerable challenge for building operations. This paper introduces a design approach to control an HVAC, focused on an energy consumption reduction in the operation of the HVAC system of a building. The architecture was developed using a Raspberry Pi as a coordinator node and wireless connection with sensor nodes for environmental variables and electrical measurement nodes. The data received by the coordinator node is sent to the cloud for storage and further processing. The control system manages the setpoint of the HVAC equipment, as well as the turning on and off the HVAC compressor using an XBee-based solid state relay. The HVAC temperature control system is based on the Predicted Mean Vote (PMV) index calculation, which is used by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) to find the appropriate setpoint to meet the thermal comfort of 80% of users. This method combines the values of humidity and temperature to define comfort zones. The coordinator node makes the compressor control decisions depending on the value obtained in the PMV index. The proposed PMV-based temperature control system for the HVAC equipment achieves energy savings ranging from 33% to 44% against the built-in control of the HVAC equipment, when operating with the same setpoint of 26.5 grades centigrade. Full article
Show Figures

Figure 1

20 pages, 2880 KB  
Review
Mobile Detection and Alarming Systems for Hazardous Gases and Volatile Chemicals in Laboratories and Industrial Locations
by Mohammed Faeik Ruzaij Al-Okby, Sebastian Neubert, Thomas Roddelkopf and Kerstin Thurow
Sensors 2021, 21(23), 8128; https://doi.org/10.3390/s21238128 - 4 Dec 2021
Cited by 33 | Viewed by 11704
Abstract
The leakage of hazardous gases and chemical vapors is considered one of the dangerous accidents that can occur in laboratories, workshops, warehouses, and industrial sites that use or store these substances. The early detection and alarming of hazardous gases and volatile chemicals are [...] Read more.
The leakage of hazardous gases and chemical vapors is considered one of the dangerous accidents that can occur in laboratories, workshops, warehouses, and industrial sites that use or store these substances. The early detection and alarming of hazardous gases and volatile chemicals are significant to keep the safety conditions for the people and life forms who are work in and live around these places. In this paper, we investigate the available mobile detection and alarming systems for toxic, hazardous gases and volatile chemicals, especially in the laboratory environment. We included papers from January 2010 to August 2021 which may have the newest used sensors technologies and system components. We identified (236) papers from Clarivate Web of Science (WoS), IEEE, ACM Library, Scopus, and PubMed. Paper selection has been done based on a fast screening of the title and abstract, then a full-text reading was applied to filter the selected papers that resulted in (42) eligible papers. The main goal of this work is to discuss the available mobile hazardous gas detection and alarming systems based on several technical details such as the used gas detection technology (simple element, integrated, smart, etc.), sensor manufacturing technology (catalytic bead, MEMS, MOX, etc.) the sensor specifications (warm-up time, lifetime, response time, precision, etc.), processor type (microprocessor, microcontroller, PLC, etc.), and type of the used communication technology (Bluetooth/BLE, Wi-Fi/RF, ZigBee/XBee, LoRa, etc.). In this review, attention will be focused on the improvement of the detection and alarming system of hazardous gases with the latest invention in sensors, processors, communication, and battery technologies. Full article
(This article belongs to the Special Issue Intelligent IoT Platforms for Wellbeing)
Show Figures

Figure 1

28 pages, 3740 KB  
Article
Reliable Control Applications with Wireless Communication Technologies: Application to Robotic Systems
by Isidro Calvo, Eneko Villar, Cristian Napole, Aitor Fernández, Oscar Barambones and José Miguel Gil-García
Sensors 2021, 21(21), 7107; https://doi.org/10.3390/s21217107 - 26 Oct 2021
Cited by 12 | Viewed by 4200
Abstract
The nature of wireless propagation may reduce the QoS of the applications, such that some packages can be delayed or lost. For this reason, the design of wireless control applications must be faced in a holistic way to avoid degrading the performance of [...] Read more.
The nature of wireless propagation may reduce the QoS of the applications, such that some packages can be delayed or lost. For this reason, the design of wireless control applications must be faced in a holistic way to avoid degrading the performance of the control algorithms. This paper is aimed at improving the reliability of wireless control applications in the event of communication degradation or temporary loss at the wireless links. Two controller levels are used: sophisticated algorithms providing better performance are executed in a central node, whereas local independent controllers, implemented as back-up controllers, are executed next to the process in case of QoS degradation. This work presents a reliable strategy for switching between central and local controllers avoiding that plants may become uncontrolled. For validation purposes, the presented approach was used to control a planar robot. A Fuzzy Logic control algorithm was implemented as a main controller at a high performance computing platform. A back-up controller was implemented on an edge device. This approach avoids the robot becoming uncontrolled in case of communication failure. Although a planar robot was chosen in this work, the presented approach may be extended to other processes. XBee 900 MHz communication technology was selected for control tasks, leaving the 2.4 GHz band for integration with cloud services. Several experiments are presented to analyze the behavior of the control application under different circumstances. The results proved that our approach allows the use of wireless communications, even in critical control applications. Full article
Show Figures

Figure 1

23 pages, 4752 KB  
Article
Design and Performance of a XBee 900 MHz Acquisition System Aimed at Industrial Applications
by Isidro Calvo, José Miguel Gil-García, Eneko Villar, Aitor Fernández, Javier Velasco, Oscar Barambones, Cristian Napole and Pablo Fernández-Bustamante
Appl. Sci. 2021, 11(17), 8174; https://doi.org/10.3390/app11178174 - 3 Sep 2021
Cited by 5 | Viewed by 3489
Abstract
Wireless technologies are being introduced in industrial applications since they provide certain benefits, such as the flexibility to modify the layout of the nodes, improving connectivity with monitoring and decision nodes, adapting to mobile devices and reducing or eliminating cabling. However, companies are [...] Read more.
Wireless technologies are being introduced in industrial applications since they provide certain benefits, such as the flexibility to modify the layout of the nodes, improving connectivity with monitoring and decision nodes, adapting to mobile devices and reducing or eliminating cabling. However, companies are still reluctant to use them in time-critical applications, and consequently, more research is needed in order to be massively deployed in industrial environments. This paper goes in this direction by presenting a novel wireless acquisition system aimed at industrial applications. This system embeds a low-cost technology, such as XBee, not frequently considered for deterministic applications, for deploying industrial applications that must fulfill certain QoS requirements. The use of XBee 900 MHz modules allows for the use of the 2.4 GHz band for other purposes, such as connecting to cloud services, without causing interferences with critical applications. The system implements a time-slotted media access (TDMA) approach with a timely transmission scheduling of the messages on top of the XBee 900 MHz technology. The paper discusses the details of the acquisition system, including the topology, the nodes involved, the so-called coordinator node and smart measuring nodes, and the design of the frames. Smart measuring nodes are implemented by an original PCB which were specifically designed and manufactured. This board eases the connection of the sensors to the acquisition system. Experimental tests were carried out to validate the presented wireless acquisition system. Its applicability is shown in an industrial scenario for monitoring the positioning of an aeronautical reconfigurable tooling prototype. Both wired and wireless technologies were used to compare the variables monitored. The results proved that the followed approach may be an alternative for monitoring big machinery in indoor industrial environments, becoming especially suitable for acquiring values from sensors located in mobile parts or difficult-to-reach places. Full article
(This article belongs to the Special Issue Secure and Intelligent Mobile Systems)
Show Figures

Figure 1

Back to TopTop