Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = X-adrenoleukodystrophies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 860 KiB  
Article
Cost–Effectiveness of Newborn Screening for X-Linked Adrenoleukodystrophy in the Netherlands: A Health-Economic Modelling Study
by Rosalie C. Martens, Hana M. Broulikova, Marc Engelen, Stephan Kemp, Anita Boelen, Robert de Jonge, Judith E. Bosmans and Annemieke C. Heijboer
Int. J. Neonatal Screen. 2025, 11(3), 53; https://doi.org/10.3390/ijns11030053 - 16 Jul 2025
Viewed by 369
Abstract
X-linked adrenoleukodystrophy (ALD) is an inherited metabolic disorder that can cause adrenal insufficiency and cerebral ALD (cALD) in childhood. Early detection prevents adverse health outcomes and can be achieved by newborn screening (NBS) followed by monitoring disease progression. However, monitoring is associated with [...] Read more.
X-linked adrenoleukodystrophy (ALD) is an inherited metabolic disorder that can cause adrenal insufficiency and cerebral ALD (cALD) in childhood. Early detection prevents adverse health outcomes and can be achieved by newborn screening (NBS) followed by monitoring disease progression. However, monitoring is associated with high costs. This study evaluates the cost–effectiveness of NBS for ALD in The Netherlands compared to no screening using a health economic model. A decision tree combined with a Markov model was developed to estimate societal costs, including screening costs, healthcare costs, and productivity losses of parents, and health outcomes over an 18-year time horizon. Model parameters were derived from the literature and expert opinion. A probabilistic sensitivity analysis (PSA) was performed to assess uncertainty. The screening costs of detecting one ALD case by NBS was EUR 40,630. Until the age of 18 years, the total societal cost per ALD case was EUR 120,779 for screening and EUR 62,914 for no screening. Screening gained an average of 1.7 QALYs compared with no screening. This resulted in an incremental cost–effectiveness ratio (ICER) of EUR 34,084 per QALY gained for screening compared to no screening. Although the results are sensitive to uncertainty surrounding costs and effectiveness due to limited data, NBS for ALD is likely to be cost–effective using a willingness-to-pay (WTP) threshold of EUR 50,000– EUR 80,000 per QALY gained. Full article
Show Figures

Graphical abstract

53 pages, 1175 KiB  
Review
Revisiting the Pathogenesis of X-Linked Adrenoleukodystrophy
by Pierre Bougnères and Catherine Le Stunff
Genes 2025, 16(5), 590; https://doi.org/10.3390/genes16050590 - 17 May 2025
Cited by 2 | Viewed by 1590
Abstract
Background: X-ALD is a white matter (WM) disease caused by mutations in the ABCD1 gene encoding the transporter of very-long-chain fatty acids (VLCFAs) into peroxisomes. Strikingly, the same ABCD1 mutation causes either devastating brain inflammatory demyelination during childhood or, more often, progressive spinal [...] Read more.
Background: X-ALD is a white matter (WM) disease caused by mutations in the ABCD1 gene encoding the transporter of very-long-chain fatty acids (VLCFAs) into peroxisomes. Strikingly, the same ABCD1 mutation causes either devastating brain inflammatory demyelination during childhood or, more often, progressive spinal cord axonopathy starting in middle-aged adults. The accumulation of undegraded VLCFA in glial cell membranes and myelin has long been thought to be the central mechanism of X-ALD. Methods: This review discusses studies in mouse and drosophila models that have modified our views of X-ALD pathogenesis. Results: In the Abcd1 knockout (KO) mouse that mimics the spinal cord disease, the late manifestations of axonopathy are rapidly reversed by ABCD1 gene transfer into spinal cord oligodendrocytes (OLs). In a peroxin-5 KO mouse model, the selective impairment of peroxisomal biogenesis in OLs achieves an almost perfect phenocopy of cerebral ALD. A drosophila knockout model revealed that VLCFA accumulation in glial myelinating cells causes the production of a toxic lipid able to poison axons and activate inflammatory cells. Other mouse models showed the critical role of OLs in providing energy substrates to axons. In addition, studies on microglial changing substates have improved our understanding of neuroinflammation. Conclusions: Animal models supporting a primary role of OLs and axonal pathology and a secondary role of microglia allow us to revisit of X-ALD mechanisms. Beyond ABCD1 mutations, pathogenesis depends on unidentified contributors, such as genetic background, cell-specific epigenomics, potential environmental triggers, and stochasticity of crosstalk between multiple cell types among billions of glial cells and neurons. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 3136 KiB  
Article
Generation and Characterization of Human iPSC-Derived Astrocytes with Potential for Modeling X-Linked Adrenoleukodystrophy Phenotypes
by Navtej Kaur and Jaspreet Singh
Int. J. Mol. Sci. 2025, 26(4), 1576; https://doi.org/10.3390/ijms26041576 - 13 Feb 2025
Cited by 1 | Viewed by 1032
Abstract
X-adrenoleukodystrophy (X-ALD) is a peroxisomal metabolic disorder caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). Similar mutations in ABCD1 may result in a spectrum of phenotypes in males with slow progressing adrenomyeloneuropathy (AMN) and fatal cerebral [...] Read more.
X-adrenoleukodystrophy (X-ALD) is a peroxisomal metabolic disorder caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). Similar mutations in ABCD1 may result in a spectrum of phenotypes in males with slow progressing adrenomyeloneuropathy (AMN) and fatal cerebral adrenoleukodystrophy (cALD) dominating most cases. Mouse models of X-ALD do not capture the phenotype differences and an appropriate model to investigate the mechanism of disease onset and progress remains a critical need. Here, we generated induced pluripotent stem cell (iPSC) lines from skin fibroblasts of two each of apparently healthy control, AMN, and cALD patients with non-integrating mRNA-based reprogramming. iPSC lines expanded normally and expressed pluripotency markers Oct4, SOX2, NANOG, SSEA, and TRA-1–60. Expression of markers SOX17, Brachyury, Desmin, OXT2, and beta tubulin III demonstrated the ability of the iPSCs to differentiate into all three germ layers. iPSC-derived lines from CTL, AMN, and cALD male patients were differentiated into astrocytes. Differentiated AMN and cALD astrocytes lacked ABCD1 expression and accumulated saturated very long chain fatty acids (VLCFAs), a hallmark of X-ALD, and demonstrated differential mitochondrial bioenergetics, cytokine gene expression, and differences in STAT3 and AMPK signaling between AMN and cALD astrocytes. These patient astrocytes provide disease-relevant tools to investigate the mechanism of differential neuroinflammatory response in X-ALD and will be valuable cell models for testing new therapeutics. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 1436 KiB  
Review
Emerging Role of Ubiquitin Proteasome System and Autophagy in Pediatric Demyelinating Leukodystrophies and Therapeutic Opportunity
by Dar-Shong Lin and Che-Sheng Ho
Cells 2024, 13(22), 1873; https://doi.org/10.3390/cells13221873 - 12 Nov 2024
Cited by 1 | Viewed by 1651
Abstract
Leukodystrophies represent a heterogeneous group of disorders characterized by specific genetic mutations, metabolic abnormalities, and degeneration of white matter in the central nervous system. These disorders are classified into several categories, with X-linked adrenoleukodystrophy (X-ALD), metachromatic leukodystrophy (MLD), and globoid cell leukodystrophy (GLD) [...] Read more.
Leukodystrophies represent a heterogeneous group of disorders characterized by specific genetic mutations, metabolic abnormalities, and degeneration of white matter in the central nervous system. These disorders are classified into several categories, with X-linked adrenoleukodystrophy (X-ALD), metachromatic leukodystrophy (MLD), and globoid cell leukodystrophy (GLD) being the most prevalent demyelinating leukodystrophies in pediatric populations. Maintaining proteostasis, which is critical for normal cellular function, relies fundamentally on the ubiquitin–proteasome system (UPS) and autophagy for the degradation of misfolded and damaged proteins. Compelling evidence has highlighted the critical roles of UPS and autophagy dysfunction in the pathogenesis of neurodegenerative diseases. Given the complex and poorly understood pathomechanisms underlying demyelinating leukodystrophies, coupled with the pressing need for effective therapeutic strategies, this review aims to systemically analyze the molecular and pathological evidence linking UPS and autophagy dysfunction to demyelinating leukodystrophies, specifically X-ALD and GLD. Furthermore, we will assess the therapeutic potential of autophagy modulators in the management of X-ALD and GLD, with the objective to inspire further research into therapeutic approaches that target autophagy and UPS pathways. Novel therapies that enhance autophagy and UPS function hold promise as complementary regimens in combination therapies aimed at achieving comprehensive correction of the pathogenic mechanisms in demyelinating leukodystrophies. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Graphical abstract

15 pages, 243 KiB  
Article
Psychological Impact of Presymptomatic X-Linked ALD Diagnosis and Surveillance: A Small Qualitative Study of Patient and Parent Experiences
by Cecilie S. Videbæk, Sabine W. Grønborg, Allan M. Lund and Mette L. Olesen
Int. J. Neonatal Screen. 2024, 10(4), 73; https://doi.org/10.3390/ijns10040073 - 24 Oct 2024
Cited by 1 | Viewed by 1551
Abstract
X-linked adrenoleukodystrophy (ALD) is a rare metabolic disorder. Symptoms range from cerebral demyelination (cALD) to adrenal insufficiency and slowly progressive myeloneuropathy. cALD is fatal if not treated with hematopoietic cell transplantation in the early stages of the disease course. This can be achieved [...] Read more.
X-linked adrenoleukodystrophy (ALD) is a rare metabolic disorder. Symptoms range from cerebral demyelination (cALD) to adrenal insufficiency and slowly progressive myeloneuropathy. cALD is fatal if not treated with hematopoietic cell transplantation in the early stages of the disease course. This can be achieved through cascade testing or newborn screening (NBS). Due to the lack of predictive measures of disease trajectory, patients are monitored with frequent MRI scans and hormone testing to ensure timely intervention. With this study, we wanted to explore how the diagnosis of ALD, before the development of cALD, and the follow-up program affected patients and their parents. Using semi-structured interviews, we interviewed seven parents of children with ALD aged 3–11 and four patients with ALD aged 18–25. Because NBS for ALD has not been implemented in Denmark, the patients were identified through either cascade testing or after having presented with adrenal insufficiency. We generated five themes: (I) ALD patients maintained mental resilience despite diagnosis and surveillance; (II) patients’ concerns matured with age and centered around situations that confronted them with their patient status; (III) parents of children with ALD had both short-term and long-term worries for their children’s health; (IV) parents took on a huge psychological burden; and (V) due to its rarity, the diagnosis of ALD evoked a sense of isolation and disease-related loneliness. Overall, we found a large discrepancy in the experiences reported by parents and patients. Despite the small sample size, we identified patterns that suggest that while the early diagnosis took a significant psychological toll on the parents, patients lived relatively carefree lives despite their ALD diagnosis. Full article
(This article belongs to the Special Issue Psychosocial Impact of Positive Newborn Screening)
19 pages, 10825 KiB  
Article
Role of ACSBG1 in Brain Lipid Metabolism and X-Linked Adrenoleukodystrophy Pathogenesis: Insights from a Knockout Mouse Model
by Xiaoli Ye, Yuanyuan Li, Domingo González-Lamuño, Zhengtong Pei, Ann B. Moser, Kirby D. Smith and Paul A. Watkins
Cells 2024, 13(20), 1687; https://doi.org/10.3390/cells13201687 - 12 Oct 2024
Cited by 3 | Viewed by 1702
Abstract
“Bubblegum” acyl-CoA synthetase (ACSBG1) is a pivotal player in lipid metabolism during mouse brain development, facilitating the activation of long-chain fatty acids (LCFA) and their incorporation into lipid species that are crucial for brain function. ACSBG1 converts LCFA into acyl-CoA derivatives, supporting vital [...] Read more.
“Bubblegum” acyl-CoA synthetase (ACSBG1) is a pivotal player in lipid metabolism during mouse brain development, facilitating the activation of long-chain fatty acids (LCFA) and their incorporation into lipid species that are crucial for brain function. ACSBG1 converts LCFA into acyl-CoA derivatives, supporting vital metabolic processes. Fruit fly mutants lacking ACSBG1 exhibited neurodegeneration and had elevated levels of very long-chain fatty acids (VLCFA), characteristics of human X-linked adrenoleukodystrophy (XALD). To explore ACSBG1’s function and potential as a therapeutic target in XALD, we created an ACSBG1 knockout (Acsbg1−/−) mouse and examined the effects on brain FA metabolism during development. Phenotypically, Acsbg1−/− mice resembled wild type (w.t.) mice. ACSBG1 expression was found mainly in tissue affected pathologically in XALD, namely the brain, adrenal gland and testis. ACSBG1 depletion did not significantly reduce the total ACS enzyme activity in these tissue types. In adult mouse brain, ACSBG1 expression was highest in the cerebellum; the low levels detected during the first week of life dramatically increased thereafter. Unexpectedly, lower, rather than higher, saturated VLCFA levels were found in cerebella from Acsbg1−/− vs. w.t. mice, especially after one week of age. Developmental changes in monounsaturated ω9 FA and polyunsaturated ω3 FA levels also differed between w.t. and Acsbg1−/− mice. ACSBG1 deficiency impacted the developmental expression of several cerebellar FA metabolism enzymes, including those required for the synthesis of ω3 polyunsaturated FA, precursors of bioactive signaling molecules like eicosanoids and docosanoids. These changes in membrane lipid FA composition likely affect membrane fluidity and may thus influence the body’s response to inflammation. We conclude that, despite compelling circumstantial evidence, it is unlikely that ACSBG1 directly contributes to the pathology of XALD, decreasing its potential as a therapeutic target. Instead, the effects of ACSBG1 knockout on processes regulated by eicosanoids and/or docosanoids should be further investigated. Full article
(This article belongs to the Special Issue Updates on Peroxisomal Disorders: Development of Targeted Therapies)
Show Figures

Figure 1

13 pages, 1233 KiB  
Article
Nutritional Counseling and Mediterranean Diet in Adrenoleukodystrophy: A Real-Life Experience
by Maria Rita Spreghini, Nicoletta Gianni, Tommaso Todisco, Cristiano Rizzo, Marco Cappa and Melania Manco
Nutrients 2024, 16(19), 3341; https://doi.org/10.3390/nu16193341 - 1 Oct 2024
Cited by 2 | Viewed by 2069
Abstract
Background/Objectives: Adrenoleukodystrophy (X-ALD) is a metabolic disorder caused by dysfunctional peroxisomal beta-oxidation of very-long-chain fatty acids (VLCFAs). A VLCFA-restricted Mediterranean diet has been proposed for patients and carriers to reduce daily VLCFA intake. Methods: We retrospectively evaluated plasma VLCFAs in a [...] Read more.
Background/Objectives: Adrenoleukodystrophy (X-ALD) is a metabolic disorder caused by dysfunctional peroxisomal beta-oxidation of very-long-chain fatty acids (VLCFAs). A VLCFA-restricted Mediterranean diet has been proposed for patients and carriers to reduce daily VLCFA intake. Methods: We retrospectively evaluated plasma VLCFAs in a cohort of 36 patients and 20 carriers at baseline and after 1 year of restricted diet. Results: At T1, compliant adult patients had significantly lower C26:0 levels [1.7 (1.2) vs. 2.5 µmol/L (1.7), p < 0.05], C26:0/C22:0 ratio [0.04 (0.02) vs. 0.06 (0.03), p < 0.05], and triglycerides [93 (56.5) vs. 128 mg/dL (109.5), p < 0.05] than non-compliant ones. C26:0 [2.4 (1.7) vs. 1.7 (1.2) µmol/L, p < 0.05], the C26:0/C22:0 ratio [0.06 (0.04) vs. 0.04 (0.02), p < 0.05], and cholesterol [173.5 (68.3) mg/dL vs. 157 (54) mg/dL, p < 0.05] were significantly reduced in compliant adult patients at T1 vs. baseline. As for carriers, the C26:0/C22:0 ratio was lower [0.02 (0.01) vs. 0.04 (0.009), p < 0.05] at T1 in compliant carriers, as compared to non-compliant ones. The C26:0/C22:0 [0.03 (0.02) vs. 0.02 (0.01) p < 0.05] and C24:0/C22:0 [1.0 (0.2) vs. 0.9 (0.3), p < 0.05] ratios were significantly decreased at T1 vs. T0. Conclusions: A VLCFA-restricted diet is effective in reducing plasma VLCFA levels and their ratios and must be strongly encouraged as support to therapy. Full article
(This article belongs to the Special Issue Diet and Nutrition: Metabolic Diseases)
Show Figures

Figure 1

8 pages, 224 KiB  
Article
Newborn Screening for X-Linked Adrenoleukodystrophy (X-ALD): Biochemical, Molecular, and Clinical Characteristics of Other Genetic Conditions
by Carlos F. Mares Beltran, Christina G. Tise, Rebekah Barrick, Annie D. Niehaus, Rebecca Sponberg, Richard Chang, Gregory M. Enns and Jose E. Abdenur
Genes 2024, 15(7), 838; https://doi.org/10.3390/genes15070838 - 26 Jun 2024
Cited by 1 | Viewed by 2292
Abstract
The state of California (CA) added X-linked adrenoleukodystrophy (X-ALD) to newborn screening (NBS) in 2016 via the measurement of C26:0-lysophosphatidylcholine (C26:0-LPC) in a two-tier fashion, followed by sequencing of the ABCD1 gene. This has resulted in the identification of individuals with genetic conditions [...] Read more.
The state of California (CA) added X-linked adrenoleukodystrophy (X-ALD) to newborn screening (NBS) in 2016 via the measurement of C26:0-lysophosphatidylcholine (C26:0-LPC) in a two-tier fashion, followed by sequencing of the ABCD1 gene. This has resulted in the identification of individuals with genetic conditions beyond X-ALD that can also result in elevated C26:0-LPC by NBS. We describe the biochemical, molecular, and clinical characteristics of nine patients from two metabolic centers in California who screened positive by NBS for elevated C26:0-LPC between 2016 and 2022 and were ultimately diagnosed with a genetic condition other than X-ALD. Seven individuals were diagnosed with Zellweger spectrum disorder (ZSD) due to biallelic variants in PEX genes. One male was diagnosed with Klinefelter syndrome and one female was found to have an X chromosome contiguous gene deletion syndrome after the identification of a heterozygous VUS and hemizygous VUS variant in ABCD1, respectively. Patients with ZSD had significantly higher first- and second-tier C26:0-LPC levels compared to the two non-ZSD cases. Identification of children with ZSD and atypical patterns of ABCD1 variants is a secondary benefit of NBS for X-ALD, leading to earlier diagnosis, prompt therapeutic initiation, and more accurate genetic counseling. As screening for X-ALD continues via the measurement of C26:0-LPC, our knowledge of additional genetic conditions associated with elevated C26:0-LPC will continue to advance, allowing for increased recognition of other genetic disorders for which early intervention is warranted. Full article
(This article belongs to the Special Issue Genetic Newborn Screening)
20 pages, 1653 KiB  
Review
Current Strategies for Increasing Knock-In Efficiency in CRISPR/Cas9-Based Approaches
by Andrés Felipe Leal, Angelica María Herreno-Pachón, Eliana Benincore-Flórez, Amali Karunathilaka and Shunji Tomatsu
Int. J. Mol. Sci. 2024, 25(5), 2456; https://doi.org/10.3390/ijms25052456 - 20 Feb 2024
Cited by 17 | Viewed by 12859
Abstract
Since its discovery in 2012, the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) system has supposed a promising panorama for developing novel and highly precise genome editing-based gene therapy (GT) alternatives, leading to overcoming the challenges associated with [...] Read more.
Since its discovery in 2012, the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) system has supposed a promising panorama for developing novel and highly precise genome editing-based gene therapy (GT) alternatives, leading to overcoming the challenges associated with classical GT. Classical GT aims to deliver transgenes to the cells via their random integration in the genome or episomal persistence into the nucleus through lentivirus (LV) or adeno-associated virus (AAV), respectively. Although high transgene expression efficiency is achieved by using either LV or AAV, their nature can result in severe side effects in humans. For instance, an LV (NCT03852498)- and AAV9 (NCT05514249)-based GT clinical trials for treating X-linked adrenoleukodystrophy and Duchenne Muscular Dystrophy showed the development of myelodysplastic syndrome and patient’s death, respectively. In contrast with classical GT, the CRISPR/Cas9-based genome editing requires the homologous direct repair (HDR) machinery of the cells for inserting the transgene in specific regions of the genome. This sophisticated and well-regulated process is limited in the cell cycle of mammalian cells, and in turn, the nonhomologous end-joining (NHEJ) predominates. Consequently, seeking approaches to increase HDR efficiency over NHEJ is crucial. This manuscript comprehensively reviews the current alternatives for improving the HDR for CRISPR/Cas9-based GTs. Full article
(This article belongs to the Special Issue CRISPR-Cas Systems and Genome Editing)
Show Figures

Figure 1

12 pages, 4370 KiB  
Review
Leukodystrophy Imaging: Insights for Diagnostic Dilemmas
by Rajvi N. Thakkar, Drashti Patel, Ivelina P. Kioutchoukova, Raja Al-Bahou, Pranith Reddy, Devon T. Foster and Brandon Lucke-Wold
Med. Sci. 2024, 12(1), 7; https://doi.org/10.3390/medsci12010007 - 25 Jan 2024
Cited by 7 | Viewed by 6484
Abstract
Leukodystrophies, a group of rare demyelinating disorders, mainly affect the CNS. Clinical presentation of different types of leukodystrophies can be nonspecific, and thus, imaging techniques like MRI can be used for a more definitive diagnosis. These diseases are characterized as cerebral lesions with [...] Read more.
Leukodystrophies, a group of rare demyelinating disorders, mainly affect the CNS. Clinical presentation of different types of leukodystrophies can be nonspecific, and thus, imaging techniques like MRI can be used for a more definitive diagnosis. These diseases are characterized as cerebral lesions with characteristic demyelinating patterns which can be used as differentiating tools. In this review, we talk about these MRI study findings for each leukodystrophy, associated genetics, blood work that can help in differentiation, emerging diagnostics, and a follow-up imaging strategy. The leukodystrophies discussed in this paper include X-linked adrenoleukodystrophy, metachromatic leukodystrophy, Krabbe’s disease, Pelizaeus–Merzbacher disease, Alexander’s disease, Canavan disease, and Aicardi–Goutières Syndrome. Full article
Show Figures

Figure 1

21 pages, 3421 KiB  
Article
Efficacy of HDAC Inhibitors in Driving Peroxisomal β-Oxidation and Immune Responses in Human Macrophages: Implications for Neuroinflammatory Disorders
by Andrea Villoria-González, Bettina Zierfuss, Patricia Parzer, Elisabeth Heuböck, Violetta Zujovic, Petra Waidhofer-Söllner, Markus Ponleitner, Paulus Rommer, Jens Göpfert, Sonja Forss-Petter, Johannes Berger and Isabelle Weinhofer
Biomolecules 2023, 13(12), 1696; https://doi.org/10.3390/biom13121696 - 23 Nov 2023
Cited by 4 | Viewed by 2753
Abstract
Elevated levels of saturated very long-chain fatty acids (VLCFAs) in cell membranes and secreted lipoparticles have been associated with neurotoxicity and, therefore, require tight regulation. Excessive VLCFAs are imported into peroxisomes for degradation by β-oxidation. Impaired VLCFA catabolism due to primary or secondary [...] Read more.
Elevated levels of saturated very long-chain fatty acids (VLCFAs) in cell membranes and secreted lipoparticles have been associated with neurotoxicity and, therefore, require tight regulation. Excessive VLCFAs are imported into peroxisomes for degradation by β-oxidation. Impaired VLCFA catabolism due to primary or secondary peroxisomal alterations is featured in neurodegenerative and neuroinflammatory disorders such as X-linked adrenoleukodystrophy and multiple sclerosis (MS). Here, we identified that healthy human macrophages upregulate the peroxisomal genes involved in β-oxidation during myelin phagocytosis and pro-inflammatory activation, and that this response is impaired in peripheral macrophages and phagocytes in brain white matter lesions in MS patients. The pharmacological targeting of VLCFA metabolism and peroxisomes in innate immune cells could be favorable in the context of neuroinflammation and neurodegeneration. We previously identified the epigenetic histone deacetylase (HDAC) inhibitors entinostat and vorinostat to enhance VLCFA degradation and pro-regenerative macrophage polarization. However, adverse side effects currently limit their use in chronic neuroinflammation. Here, we focused on tefinostat, a monocyte/macrophage-selective HDAC inhibitor that has shown reduced toxicity in clinical trials. By using a gene expression analysis, peroxisomal β-oxidation assay, and live imaging of primary human macrophages, we assessed the efficacy of tefinostat in modulating VLCFA metabolism, phagocytosis, chemotaxis, and immune function. Our results revealed the significant stimulation of VLCFA degradation with the upregulation of genes involved in peroxisomal β-oxidation and interference with immune cell recruitment; however, tefinostat was less potent than the class I HDAC-selective inhibitor entinostat in promoting a regenerative macrophage phenotype. Further research is needed to fully explore the potential of class I HDAC inhibition and downstream targets in the context of neuroinflammation. Full article
Show Figures

Figure 1

10 pages, 1340 KiB  
Article
Diagnosing X-Linked Adrenoleukodystrophy after Implementation of Newborn Screening: A Reference Laboratory Perspective
by Julia Prinzi, Marzia Pasquali, Judith A. Hobert, Rachel Palmquist, Kristen N. Wong, Stephanie Francis and Irene De Biase
Int. J. Neonatal Screen. 2023, 9(4), 64; https://doi.org/10.3390/ijns9040064 - 2 Nov 2023
Cited by 3 | Viewed by 2241
Abstract
Adrenoleukodystrophy (ALD) is caused by pathogenic variants in the ABCD1 gene, encoding for the adrenoleukodystrophy protein (ALDP), leading to defective peroxisomal β-oxidation of very long-chain and branched-chain fatty acids (VLCFA). ALD manifests in both sexes with a spectrum of phenotypes, but approximately 35% [...] Read more.
Adrenoleukodystrophy (ALD) is caused by pathogenic variants in the ABCD1 gene, encoding for the adrenoleukodystrophy protein (ALDP), leading to defective peroxisomal β-oxidation of very long-chain and branched-chain fatty acids (VLCFA). ALD manifests in both sexes with a spectrum of phenotypes, but approximately 35% of affected males develop childhood cerebral adrenoleukodystrophy (CCALD), which is lethal without hematopoietic stem cell transplant performed before symptoms start. Hence, ALD was added to the Recommended Uniform Screening Panel after the successful implementation in New York State (2013–2016). To date, thirty-five states have implemented newborn screening (NBS) for ALD, and a few programs have reported on the successes and challenges experienced. However, the overall impact of NBS on early detection of ALD has yet to be fully determined. Here, we conducted a retrospective analysis of VLCFA testing performed by our reference laboratory (ARUP Laboratories, Salt Lake City, UT, USA) over 10 years. Rate of detection, age at diagnosis, and male-to-female ratio were evaluated in patients with abnormal results before and after NBS implementation. After NBS inclusion, a significant increase in abnormal results was observed (471/6930, 6.8% vs. 384/11,670, 3.3%; p < 0.0001). Patients with ALDP deficiency identified via NBS were significantly younger (median age: 30 days vs. 21 years; p < 0.0001), and males and females were equally represented. ALD inclusion in NBS programs has increased pre-symptomatic detection of this disease, which is critical in preventing adrenal crisis as well as the severe cerebral form. Full article
Show Figures

Figure 1

25 pages, 1523 KiB  
Review
Gene and Cellular Therapies for Leukodystrophies
by Fatima Aerts-Kaya and Niek P. van Til
Pharmaceutics 2023, 15(11), 2522; https://doi.org/10.3390/pharmaceutics15112522 - 24 Oct 2023
Cited by 4 | Viewed by 3981
Abstract
Leukodystrophies are a heterogenous group of inherited, degenerative encephalopathies, that if left untreated, are often lethal at an early age. Although some of the leukodystrophies can be treated with allogeneic hematopoietic stem cell transplantation, not all patients have suitable donors, and new treatment [...] Read more.
Leukodystrophies are a heterogenous group of inherited, degenerative encephalopathies, that if left untreated, are often lethal at an early age. Although some of the leukodystrophies can be treated with allogeneic hematopoietic stem cell transplantation, not all patients have suitable donors, and new treatment strategies, such as gene therapy, are rapidly being developed. Recent developments in the field of gene therapy for severe combined immune deficiencies, Leber’s amaurosis, epidermolysis bullosa, Duchenne’s muscular dystrophy and spinal muscular atrophy, have paved the way for the treatment of leukodystrophies, revealing some of the pitfalls, but overall showing promising results. Gene therapy offers the possibility for overexpression of secretable enzymes that can be released and through uptake, allow cross-correction of affected cells. Here, we discuss some of the leukodystrophies that have demonstrated strong potential for gene therapy interventions, such as X-linked adrenoleukodystrophy (X-ALD), and metachromatic leukodystrophy (MLD), which have reached clinical application. We further discuss the advantages and disadvantages of ex vivo lentiviral hematopoietic stem cell gene therapy, an approach for targeting microglia-like cells or rendering cross-correction. In addition, we summarize ongoing developments in the field of in vivo administration of recombinant adeno-associated viral (rAAV) vectors, which can be used for direct targeting of affected cells, and other recently developed molecular technologies that may be applicable to treating leukodystrophies in the future. Full article
(This article belongs to the Special Issue Gene Therapy for Neurological Disease)
Show Figures

Figure 1

12 pages, 256 KiB  
Article
Attitudes of Patients with Adrenoleukodystrophy towards Sex-Specific Newborn Screening
by Hemmo A. F. Yska, Lidewij Henneman, Rinse W. Barendsen, Marc Engelen and Stephan Kemp
Int. J. Neonatal Screen. 2023, 9(3), 51; https://doi.org/10.3390/ijns9030051 - 2 Sep 2023
Cited by 4 | Viewed by 2210
Abstract
Newborn screening (NBS) for X-linked adrenoleukodystrophy (ALD) can identify affected individuals before the onset of life-threatening manifestations. Some countries have decided to only screen boys (sex-specific screening). This study investigates the attitudes of individuals with ALD towards sex-specific NBS for ALD. A questionnaire [...] Read more.
Newborn screening (NBS) for X-linked adrenoleukodystrophy (ALD) can identify affected individuals before the onset of life-threatening manifestations. Some countries have decided to only screen boys (sex-specific screening). This study investigates the attitudes of individuals with ALD towards sex-specific NBS for ALD. A questionnaire was sent to all patients in the Dutch ALD cohort. Invitees were asked who they thought should be screened for ALD: only boys, both boys and girls or neither. The motives and background characteristics of respondents were compared between screening preferences. Out of 108 invitees, 66 participants (61%), 38 men and 28 women, participated in this study. The majority (n = 53, 80%) favored screening both newborn boys and girls for ALD, while 20% preferred boys only. None of the respondents felt that newborns should not be screened for ALD. There were no differences in the background characteristics of the respondents between screening preferences. Our study revealed a diverse range of motivations underlying respondents’ screening preferences. This study is one of the first to investigate the attitudes of patients towards sex-specific screening for ALD. The outcomes of this study can offer insights to stakeholders engaged in the implementation of NBS programs. ALD patients are important stakeholders who can provide valuable input in this process. Full article
22 pages, 26292 KiB  
Article
ABCD1 Transporter Deficiency Results in Altered Cholesterol Homeostasis
by Agnieszka Buda, Sonja Forss-Petter, Rong Hua, Yorrick Jaspers, Mark Lassnig, Petra Waidhofer-Söllner, Stephan Kemp, Peter Kim, Isabelle Weinhofer and Johannes Berger
Biomolecules 2023, 13(9), 1333; https://doi.org/10.3390/biom13091333 - 31 Aug 2023
Cited by 8 | Viewed by 3685
Abstract
X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disorder, is caused by mutations in the peroxisomal transporter ABCD1, resulting in the accumulation of very long-chain fatty acids (VLCFA). Strongly affected cell types, such as oligodendrocytes, adrenocortical cells and macrophages, exhibit high cholesterol turnover. Here, [...] Read more.
X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disorder, is caused by mutations in the peroxisomal transporter ABCD1, resulting in the accumulation of very long-chain fatty acids (VLCFA). Strongly affected cell types, such as oligodendrocytes, adrenocortical cells and macrophages, exhibit high cholesterol turnover. Here, we investigated how ABCD1 deficiency affects cholesterol metabolism in human X-ALD patient-derived fibroblasts and CNS tissues of Abcd1-deficient mice. Lipidome analyses revealed increased levels of cholesterol esters (CE), containing both saturated VLCFA and mono/polyunsaturated (V)LCFA. The elevated CE(26:0) and CE(26:1) levels remained unchanged in LXR agonist-treated Abcd1 KO mice despite reduced total C26:0. Under high-cholesterol loading, gene expression of SOAT1, converting cholesterol to CE and lipid droplet formation were increased in human X-ALD fibroblasts versus healthy control fibroblasts. However, the expression of NCEH1, catalysing CE hydrolysis and the cholesterol transporter ABCA1 and cholesterol efflux were also upregulated. Elevated Soat1 and Abca1 expression and lipid droplet content were confirmed in the spinal cord of X-ALD mice, where expression of the CNS cholesterol transporter Apoe was also elevated. The extent of peroxisome-lipid droplet co-localisation appeared low and was not impaired by ABCD1-deficiency in cholesterol-loaded primary fibroblasts. Finally, addressing steroidogenesis, progesterone-induced cortisol release was amplified in X-ALD fibroblasts. These results link VLCFA to cholesterol homeostasis and justify further consideration of therapeutic approaches towards reducing VLCFA and cholesterol levels in X-ALD. Full article
Show Figures

Figure 1

Back to TopTop