Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = Wufeng–Longmaxi Formation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 12496 KB  
Article
Pore Structure and Connectivity with Fractal Characterization in Deep Shale of the Wufeng–Longmaxi Formation, Luzhou Block: Insights from MAPS and NMR Technology
by Jamil Khan, Shengxian Zhao, Jian Zhang, Xuefeng Yang, Bo Li, Yuhang Zhang, Shangbin Chen and Xinyao Huang
Processes 2025, 13(12), 3789; https://doi.org/10.3390/pr13123789 - 24 Nov 2025
Viewed by 501
Abstract
The exploration potential, storage capacity, and exploitability of the deep shale-gas reservoirs are governed by various characteristics of their pore networks. Conventional methods cannot fully capture these features across scales, highlighting the need for an integrated, multi-technique approach. In this study, pore structure [...] Read more.
The exploration potential, storage capacity, and exploitability of the deep shale-gas reservoirs are governed by various characteristics of their pore networks. Conventional methods cannot fully capture these features across scales, highlighting the need for an integrated, multi-technique approach. In this study, pore structure and connectivity of the Wufeng–Longmaxi Formation (Luzhou Block) were investigated using Scanning Electron Microscopy (SEM) with the Mosaic Acquisition and Positioning System (MAPS), ImageJ (ImageJ 2.14.0)-based pore analysis, Mercury Intrusion Porosimetry (MIP), and Nuclear Magnetic Resonance (NMR). Based on the samples from eight reservoir layers of Wufeng-WF and Longmaxi-LM111–7, shale pore connectivity was classified into three grades. Grade A layers, with connected pore volumes above 0.0067 cm3/g and porosity exceeding 1.75%, showed trimodal NMR pore-size distributions and strong connectivity among micro, meso, and macropores. Grade B layers exhibited bimodal pore distributions, moderate pore connectivity (0.0057–0.0067 cm3/g; 1.55–1.75% porosity), and sponge-like organic pores with isolated mineral pores. Grade C layers, with connected pore volumes below 0.0057 cm3/g, showed poor connectivity and unimodal NMR responses. Connected pores (1–100 nm) contributed 20–35% of total pore volume, reflecting the strong heterogeneity of the formation. Interconnected inorganic mineral-hosted pores were found to link locally connected organic pores, forming continuous pore networks. The qualitative and quantitative identification of the pore connectivity of shale reservoirs with MAPS, MIP, and NMR approach provides a robust framework for evaluating shale pore connectivity and identifying high-quality reservoir targets. Full article
Show Figures

Figure 1

19 pages, 3641 KB  
Article
The Enrichment of Uranium in Marine Organic-Rich Overmature Shales: Association with Algal Fragments and Implications for High-Productivity Interval
by Guoliang Xie, Kun Jiao, Shugen Liu, Yuehao Ye, Jiayu Wang, Bin Deng, Juan Wu and Xiaokai Feng
Minerals 2025, 15(12), 1238; https://doi.org/10.3390/min15121238 - 23 Nov 2025
Viewed by 489
Abstract
Marine organic-rich shales frequently exhibit anomalously high uranium (U) concentrations, yet the mechanisms governing its enrichment in overmature formations like the Wufeng–Longmaxi shales remain unclear. This study examines the distribution and enrichment patterns of uranium in the Wufeng–Longmaxi shales in typical wells through [...] Read more.
Marine organic-rich shales frequently exhibit anomalously high uranium (U) concentrations, yet the mechanisms governing its enrichment in overmature formations like the Wufeng–Longmaxi shales remain unclear. This study examines the distribution and enrichment patterns of uranium in the Wufeng–Longmaxi shales in typical wells through integrated geochemical and geophysical analyses, supplemented by natural gamma spectral logging data. Key findings include: (1) Multiple (up to three) uranium enrichment events are identified within the Wufeng–Longmaxi sequence, consistently corresponding to shale gas sweet spots. (2) Uranium content shows a clear dependence on organic matter (OM) type, with algal fragments being the primary host of uranium, likely due to incorporation during early diagenesis. Pore-water redox conditions and pH further govern the reduction of U (U6+) and its subsequent sequestration into organic phases. (3) The equivalent vitrinite reflectance (ERo) of uranium-rich shales is 0.11%–0.17% higher than that of non-uranium-rich shales, suggesting that uranium enrichment may slightly enhance OM thermal maturity. (4) Uranium distribution is collectively controlled by reducing conditions, volcanic eruptions (e.g., tuff layers), and OM type. Additionally, uranium enrichment provides chronostratigraphic markers that may aid in timing marine black shales. These findings thus offer a mechanistic understanding of uranium enrichment in overmature shales, with direct implications for targeting productive intervals in shale gas systems. Full article
Show Figures

Figure 1

26 pages, 7763 KB  
Article
Reservoir Characteristics and Influencing Factors of Different Lithofacies of WF-LMX Formation Shale in Zigong Area, Sichuan Basin
by Changchang Wang, Qinghai Xu, Litao Xu, Fancheng Zeng, Huan Li, Zhicheng Huang, Jiayi Li, Kun Wang and Mengyuan Li
Fractal Fract. 2025, 9(11), 706; https://doi.org/10.3390/fractalfract9110706 - 31 Oct 2025
Viewed by 611
Abstract
An integrated analysis including total organic carbon (TOC), X-ray diffraction (XRD), scanning electron microscopy (SEM), and gas adsorption experiments was conducted on core samples from the deep Wufeng–Longmaxi (WF-LMX) Formation in the Zigong area to characterize its lithofacies and reservoir characteristics and their [...] Read more.
An integrated analysis including total organic carbon (TOC), X-ray diffraction (XRD), scanning electron microscopy (SEM), and gas adsorption experiments was conducted on core samples from the deep Wufeng–Longmaxi (WF-LMX) Formation in the Zigong area to characterize its lithofacies and reservoir characteristics and their influencing factors. The results suggest that eight distinct lithofacies are distinguished and argillaceous/calcareous mixed siliceous shale lithofacies (S-1) is the most optimal lithofacies. The pore surface fractal dimension (D) was derived by applying the Frenkel–Halsey–Hil (FHH) model to low-temperature N2 adsorption (LTNA) data. The meso-macropore regime shows higher heterogeneity than the micropore regime (since D2 > D1). Both D1 and D2 show a significant positive relation with TOC and carbonate content, a slight negative correlation with quartz content, and no clear link with clay content. In the initial depositional stage of the LMX Formation, a low-energy, stagnant, and strongly reducing environment facilitated the accumulation of siliceous biogenic sediments, leading to the formation of siliceous shale characterized by high paleoproductivity. In the middle to late stages of LMX Formation deposition, increased input of terrigenous clastic material, shallower water depths, and the gradual disruption of the anoxic conditions resulted in diminished paleoproductivity, causing a transition from siliceous shale to a mixed shale lithofacies. Increased TOC and carbonate content enhance pore heterogeneity, with TOC predominantly influencing micropores and carbonates controlling macropores. In contrast, higher quartz content inhibits pore development. Full article
Show Figures

Figure 1

14 pages, 2659 KB  
Article
Evaluation of Marine Shale Gas Reservoir in Wufeng–Longmaxi Formation, Jiaoshiba Area, Eastern Sichuan Basin
by Qiang Yan, Aiwei Zheng, Li Liu, Jin Wang, Xiaohong Zhan and Zhiheng Shu
Energies 2025, 18(16), 4350; https://doi.org/10.3390/en18164350 - 15 Aug 2025
Viewed by 624
Abstract
The Jiaoshiba area, as an important production capacity contribution block for the Fuling shale gas field, is of great significance for its long-term stable production. This study is based on continuous coring, and uses methods such as whole-rock mineral analysis, porosity and permeability [...] Read more.
The Jiaoshiba area, as an important production capacity contribution block for the Fuling shale gas field, is of great significance for its long-term stable production. This study is based on continuous coring, and uses methods such as whole-rock mineral analysis, porosity and permeability analysis, gas content analysis, and organic geochemistry to systematically analyze the influencing factors of reservoir properties and gas content in the studied interval. Combined with the variation law of TOC and other parameters with depth, the target reservoir is comprehensively evaluated, and the evaluation results are verified based on actual production data. The results show that the influence of minerals on permeability is very weak, and cracks can greatly improve permeability, but their contribution to porosity is not significant. Porosity has a certain impact on gas content, but it is not the main controlling factor. The pores related to quartz (organic silicon) are mostly organic pores, which host a large amount of shale gas, while clay minerals are not conducive to the occurrence of shale gas. Organic matter (OM) maturity contributes more to porosity than OM abundance, but OM abundance has a stronger impact on gas content than its maturity. The research intervals can be divided into four categories: Class I (①–③) is the best, followed by Class II (⑦–⑨); Class III (④–⑥) is poor, and Class IV (top, non-gas-bearing layer) is the worst. Full article
Show Figures

Figure 1

19 pages, 5474 KB  
Article
Structure and Fractal Characteristics of Organic Matter Pores in Wufeng–Lower Longmaxi Formations in Southern Sichuan Basin, China
by Quanzhong Guan, Dazhong Dong, Bin Deng, Cheng Chen, Chongda Li, Kun Jiao, Yuehao Ye, Haoran Liang and Huiwen Yue
Fractal Fract. 2025, 9(7), 410; https://doi.org/10.3390/fractalfract9070410 - 25 Jun 2025
Cited by 1 | Viewed by 1209
Abstract
Organic matter pores constitute a significant storage space in shale gas reservoirs, contributing to approximately 50% of the total porosity. This study employed a comprehensive approach, utilizing scanning electron microscopy, low-pressure N2 adsorption, thermal analysis, image statistics, and fractal theory, to quantitatively [...] Read more.
Organic matter pores constitute a significant storage space in shale gas reservoirs, contributing to approximately 50% of the total porosity. This study employed a comprehensive approach, utilizing scanning electron microscopy, low-pressure N2 adsorption, thermal analysis, image statistics, and fractal theory, to quantitatively characterize the structure and complexity of organic matter pores in the Wufeng–lower Longmaxi Formations (WLLFs). The WLLFs exhibit a high organic matter content, averaging 3.20%. Organic matter pores are typically well-developed, predominantly observed within organic matter clusters, organic matter–clay mineral complexes, and the internal organic matter of pyrite framboid. The morphology of these pores is generally elliptical and spindle-shaped, with the primary pore diameter displaying a bimodal distribution at 10~40 nm and 100~160 nm, potentially influenced by the observational limit of scanning electron microscopy. Shales from greater burial depths within the same gas well contain more organic matter pores; however, the development of organic matter pores in deep gas wells is roughly equivalent to that in medium and shallow gas wells. Fractal dimension values can be utilized to characterize the complexity of organic matter pores, with organic matter macropores (D>50) being more complex than organic matter mesopores (D2–50), which in turn are more complex than organic matter micropores (D<2). The development of macropores and mesopores is a key factor in the heterogeneity of organic matter pores. The complexity of organic matter pores in the same well increases gradually with the burial depth of the shale, and the complexity of organic matter pores in deep gas wells is roughly equivalent to that in medium and shallow gas wells. The structure and fractal characteristics of organic matter pores in shale are primarily controlled by components, diagenesis, tectonism, etc. The lower Longmaxi shale exhibit a high biogenic quartz content and robust hydrocarbon generation from organic matter. This composition effectively shields organic matter pores from multi-directional extrusion, leading to the formation of macropores and mesopores without specific orientation. High-quality shale sections (one and two sublayers) have relatively high fractal dimension D2–50 and D>50 values of organic matter pores and gas content. Consequently, the quality parameters of shale and fractal dimension characteristics can be comprehensively evaluated to identify high-quality shale sections. Full article
Show Figures

Figure 1

29 pages, 10402 KB  
Article
Depositional and Paleoenvironmental Controls on Shale Reservoir Heterogeneity in the Wufeng–Longmaxi Formations: A Case Study from the Changning Area, Sichuan Basin, China
by Chongjie Liao, Lei Chen, Chang Lu, Kelin Chen, Jian Zheng, Xin Chen, Gaoxiang Wang and Jian Cao
Minerals 2025, 15(7), 677; https://doi.org/10.3390/min15070677 - 24 Jun 2025
Cited by 1 | Viewed by 732
Abstract
Numerous uncertainties persist regarding the differential enrichment mechanisms of shale gas reservoirs in southern China. This investigation systematically examines the sedimentary environments and reservoir characteristics of the Wufeng–Longmaxi formations in the Changning area of the Sichuan Basin, through the integration of comprehensive drilling [...] Read more.
Numerous uncertainties persist regarding the differential enrichment mechanisms of shale gas reservoirs in southern China. This investigation systematically examines the sedimentary environments and reservoir characteristics of the Wufeng–Longmaxi formations in the Changning area of the Sichuan Basin, through the integration of comprehensive drilling data, core samples, and analytical measurements. Multivariate sedimentary proxies (including redox conditions, terrigenous detrital influx, basinal water restriction, paleoclimatic parameters, paleowater depth variations, and paleo-marine productivity) were employed to elucidate environmental controls on reservoir development. The research findings demonstrate that during the depositional period of the Wufeng Formation in the Changning area, the bottom water was characterized by suboxic to anoxic conditions under a warm-humid paleoclimate, with limited terrigenous detrital input and strong water column restriction throughout the interval. Within the Longmaxi Formation, the depositional environment evolved from intensely anoxic conditions in the LM1 through suboxic states in the LM3 interval, approaching toxic conditions by the LM2 depositional phase. Concurrently, the paleoclimate transitioned towards warmer and more humid conditions, accompanied by progressively intensified terrigenous input from the LM1-LM6, while maintaining semi-restricted water circulation. Both paleowater depth and paleoproductivity peaked from the Wufeng Formation to the LM1 interval, followed by gradual shallowing of water depth and declining productivity during the LM3–LM6 depositional phases. Comparative analysis of depositional environments and reservoir characteristics reveals that sedimentary conditions exert a controlling influence on multiple reservoir parameters, including shale mineral composition, organic matter enrichment, pore architecture, petrophysical properties (e.g., porosity, permeability), and gas-bearing potential. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

16 pages, 9568 KB  
Article
Enrichment Mechanism and Development Technology of Deep Marine Shale Gas near Denudation Area, SW CHINA: Insights from Petrology, Mineralogy and Seismic Interpretation
by Haijie Zhang, Ziyi Shi, Lin Jiang, Weiming Chen, Tongtong Luo and Lin Qi
Minerals 2025, 15(6), 619; https://doi.org/10.3390/min15060619 - 9 Jun 2025
Viewed by 535
Abstract
As an important target for deep marine shale gas exploration, shale reservoirs near denudation areas have enormous resource potential. Based on the impression method, the sedimentary paleogeomorphology near the denudation area is identified as three units: the first terrace, the second terrace, and [...] Read more.
As an important target for deep marine shale gas exploration, shale reservoirs near denudation areas have enormous resource potential. Based on the impression method, the sedimentary paleogeomorphology near the denudation area is identified as three units: the first terrace, the second terrace, and the third terrace. At the second terrace where Well Z212 is located, the thickness of the Longmaxi Formation first section is only 0.8 m, and the continuous thickness of the target interval is only 4.3 m, making it a typical thin shale reservoir. By integrating petrology, mineralogy and the seismic method, the thin shale reservoir is characterized. Compared to shale reservoirs far away from the denudation area, the Well Z212 (near denudation area) production interval (Wufeng Formation first section) has high porosity (6%–10%), moderate TOC (3%–4%), a high carbonate mineral content (10%–35%), and a high gas content (>7 m3/t). The correlation between the total porosity of shale and the density of high-frequency laminations is the strongest, indicating that the silt laminations have a positive effect on pore preservation. There is a significant positive correlation between carbonate content and the volume of mesopores and macropores, as well as the porosity of inorganic pores. It is suggested that carbonate minerals are the main carrier of inorganic pores in Well Z212, and the pores are mainly composed of mesopores and macropores. Under the condition of being far away from the fault zone, even near the denudation area, it has good shale gas preservation characteristics. The key development technologies consist of integrated geo-steering technology, acidification, and volume fracking technology. Based on geological characteristics, the fracturing process optimization of Well Z212 has achieved shale reservoir stimulation. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

20 pages, 16179 KB  
Article
Source-Reservoir Characteristics and Pore Evolution Model of the Lower Paleozoic Shales in the Neijiang–Rongchang Area, Sichuan Basin
by Shizhen Chen, Zhidian Xi, Fei Huo and Bingcheng Jiang
Minerals 2025, 15(5), 499; https://doi.org/10.3390/min15050499 - 8 May 2025
Viewed by 793
Abstract
The Wufeng–Longmaxi formations in the Sichuan Basin have emerged as China’s principal shale gas exploration target, with drilling results confirming substantial resource potential. Although the Neijiang–Rongchang Block demonstrates promising production, significant performance variations among lithofacies and reservoir types highlight the need for enhanced [...] Read more.
The Wufeng–Longmaxi formations in the Sichuan Basin have emerged as China’s principal shale gas exploration target, with drilling results confirming substantial resource potential. Although the Neijiang–Rongchang Block demonstrates promising production, significant performance variations among lithofacies and reservoir types highlight the need for enhanced understanding of reservoir evolution. This study integrates petrological analyses, SEM imaging, XRD characterization, seismic interpretation, and production data from multiple wells targeting the Wufeng–Long 1-1 Sub-member. Key insights reveal the following: (1) reservoir lithology consists predominantly of siliceous shale (68% occurrence), characterized by high quartz content (48% avg), low carbonates (<15%), and low clay (<30%); (2) organic-rich intervals contain Type I kerogen derived from planktonic algae, with thermal maturity indicating post-mature evolution; (3) premium reservoirs develop multi-scale pore networks combining organic-hosted pores, interparticle pores, and micro-fractures. Despite high brittle mineral content, mechanical competence decreases stratigraphically from the Wufeng Formation (78%) to Long 1-17 (63%); (4) depositional redox conditions facilitated exceptional organic preservation. Core analyses reveal low porosity (5.5% avg) and ultra-low permeability (0.27 × 10⁻3 μm2 avg), classifying reservoirs as multiple tight unconventional systems in the study area. The proposed lithofacies-controlled pore evolution model elucidates reservoir heterogeneity mechanisms, providing critical geological criteria for optimized shale gas development. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

26 pages, 6113 KB  
Article
Geochemical Characteristics of Organic-Enriched Shales in the Upper Ordovician–Lower Silurian in Southeast Chongqing
by Changqing Fu, Zixiang Feng, Chang Xu, Xiaochen Zhao and Yi Du
Minerals 2025, 15(5), 447; https://doi.org/10.3390/min15050447 - 26 Apr 2025
Cited by 1 | Viewed by 1132
Abstract
A variety of variables, such as organic matter input, redox conditions, depositional rates, and terrigenous input, affect the deposition of black shale. Furthermore, because of the significant regional variations in paleodepositional environments, these factors have a complex role in organic matter enrichment. Global [...] Read more.
A variety of variables, such as organic matter input, redox conditions, depositional rates, and terrigenous input, affect the deposition of black shale. Furthermore, because of the significant regional variations in paleodepositional environments, these factors have a complex role in organic matter enrichment. Global geological events influenced sedimentary conditions, organic enrichment, and the development of organic-enriched shales during the Late Ordovician to Early Silurian. The Wufeng–Longmaxi Formation black shales in Southeastern Chongqing were analyzed for X-ray diffraction (XRD), major and trace element geochemistry, and total organic carbon (TOC) data; this led to further analysis of the relationship between the depositional environment and organic matter aggregation and rock type evolution. The primary minerals found in the Wufeng–Longmaxi shale are quartz, feldspar, carbonatite (calcite and dolomite), and clay. The high index of compositional variability (ICV) values (>1) and the comparatively low chemical index of alteration (CIA) values (52.6–72.8) suggest that the sediment source rocks are juvenile and are probably experiencing weak to moderate chemical weathering. The selected samples all show negative Eu anomalies, flat heavy rare earth elements, and mildly enriched light rare earth elements. The ratios of La/Th, La/Sc, Th/Sc, ΣREE-La/Yb, TiO2-Ni, and La/Th-Hf suggest that acidic igneous rocks were the main source of sediment, with minor inputs from ancient sedimentary rocks. The correlations of paleoclimate proxies (Sr/Cu, CIA), redox proxies (V/Cr, V/Ni, V/(V + Ni), Ni/Co, U/Th), paleoproductivity proxies (Baxs, CuEF, NiEF), and water mass restriction proxies (Mo/TOC, UEF, MoEF) suggest a humid–semiarid, anoxic, moderate–high paleoproductivity, and moderate–strongly restricted environment. On the basis of the aforementioned interpretations, the paleoenvironment of the Wufeng–Longmaxi Formations was established, with paleoredox conditions and restricted water masses likely being the primary factors contributing to organic matter enrichment. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

15 pages, 2733 KB  
Article
The Range and Evolution Model of the Xiang-E Submarine Uplifts at the Ordovician–Silurian Transition: Evidence from Black Shale Graptolites
by Zhi Zhou, Hui Zhou, Zhenxue Jiang, Shizhen Li, Shujing Bao and Guihong Xu
J. Mar. Sci. Eng. 2025, 13(4), 739; https://doi.org/10.3390/jmse13040739 - 8 Apr 2025
Viewed by 926
Abstract
Accurately delineating the range of the Xiang-E submarine uplifts is the key to the exploration and development of Silurian shale gas in the Western Hunan–Hubei region. Based on the graptolite stratigraphic division of Well JD1 in Jianshi area, Hubei Province, and combined with [...] Read more.
Accurately delineating the range of the Xiang-E submarine uplifts is the key to the exploration and development of Silurian shale gas in the Western Hunan–Hubei region. Based on the graptolite stratigraphic division of Well JD1 in Jianshi area, Hubei Province, and combined with the GBDB online database (Geobiodiversity Database), the study compared the shale graptolite sequences of the Wufeng Formation and Longmaxi Formation from 23 profile points and 11 wells which cross the Ordovician–Silurian boundary. The range of the Xiang-E submarine uplift was delineated, and its evolution model and formation mechanism at the Ordovician–Silurian transition were discussed. The graptolite stratigraphic correlation results of drillings and profiles confirmed the development of submarine uplifts in the Western Hunan–Hubei region at the Ordovician–Silurian transition–Xiang-E submarine uplift. Under the joint control of the Guangxi movement and the global sea-level variation caused by the condensation and melting of polar glaciers, the overall evolution of the Xiang-E submarine uplift is characterized by continuous uplift from the Katian Age to the early Rhuddanian Age, with the influence gradually expanding, and then gradually shrinking back in the middle and late Rhuddanian Age. The initial form of the Xiang-E submarine uplift may have originated from the Guangxi movement, and the global sea-level variation caused by polar glacier condensation and melting is the main controlling factor for the changes in its influence range. Within the submarine uplifts range, the Wufeng–Longmaxi Formations generally lack at least two graptolite zone organic-rich shales in the WF2-LM4, and the shale gas reservoir has a poor hydrocarbon generation material foundation, posing a high risk for shale gas exploration. The Silurian in Xianfeng, Lichuan, Yichang of Hubei and Wushan of Chongqing has good potential for shale gas exploration and development. Full article
Show Figures

Figure 1

29 pages, 12050 KB  
Article
Quantitative Classification of Shale Lithofacies and Gas Enrichment in Deep-Marine Shale of the Late Ordovician Wufeng Formation and Early Silurian Longyi1 Submember, Sichuan Basin, China
by Liyu Fang, Fanghao Xu, Guosheng Xu, Jiaxin Liu, Haoran Liang and Xin Gong
Energies 2025, 18(7), 1835; https://doi.org/10.3390/en18071835 - 4 Apr 2025
Cited by 3 | Viewed by 734
Abstract
The classification of shale lithofacies, pore structure characteristics, and controlling factors of gas enrichment in deep-marine shale are critical for deep shale gas exploration and development. This study investigates the Late Ordovician Wufeng Formation (448–444 Ma) and Early Silurian Longyi1 submember (444–440 [...] Read more.
The classification of shale lithofacies, pore structure characteristics, and controlling factors of gas enrichment in deep-marine shale are critical for deep shale gas exploration and development. This study investigates the Late Ordovician Wufeng Formation (448–444 Ma) and Early Silurian Longyi1 submember (444–440 Ma) in the western Chongqing area, southern Sichuan Basin, China. Using experimental data from deep-marine shale samples, including total organic carbon (TOC) content analysis, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), low-pressure N2 and CO2 adsorption, gas content measurement, and three-quartile statistical analysis, a lithofacies classification scheme for deep-marine shale was established. The differences between various global marine shale formations were compared, and the main controlling factors of gas enrichment and advantageous lithofacies for deep shale were identified. The results show that six main lithofacies were identified: organic-rich siliceous shale (S1), organic-rich mixed shale (M1), medium-organic siliceous shale (S2), medium-organic mixed shale (M2), organic-lean siliceous shale (S3), and organic-lean mixed shale (M3). Deep-marine shale gas mainly occurs in micropores, and the development degree of micropores determines the gas content. Micropore development is jointly controlled by the TOC content, felsic mineral content, and clay mineral content. TOC content directly controls the development degree of micropores, whereas the felsic and clay mineral contents control the preservation and destruction of micropores during deep burial. The large-scale productivity of siliceous organisms during the Late Ordovician Wufeng period to the Early Silurian Longmaxi period had an important influence on the formation of S1. By comparing the pore structure parameters and gas contents of different lithofacies, it is concluded that S1 should be the first choice for deep-marine shale gas exploration, followed by S2. Full article
Show Figures

Figure 1

25 pages, 8170 KB  
Article
Linking Volcanism, Hydrothermal Venting, and Ordovician/Silurian Marine Organic-Rich Sediments in the Eastern Sichuan Basin, Southwest China
by Shaojie Li, Zhou Zhu, Qilin Xiao, Suyang Cai and Huan Li
J. Mar. Sci. Eng. 2025, 13(3), 483; https://doi.org/10.3390/jmse13030483 - 28 Feb 2025
Viewed by 1163
Abstract
The Ordovician/Silurian boundary (Wufeng/Longmaxi formations) in the Shizhu region, eastern Sichuan Basin, China hosts organic-rich black shales which are frequently interbedded with bentonite and hydrothermal minerals (e.g., pyrite). This study investigated the mineralogical, total organic carbon (TOC), total sulfur (TS), and major and [...] Read more.
The Ordovician/Silurian boundary (Wufeng/Longmaxi formations) in the Shizhu region, eastern Sichuan Basin, China hosts organic-rich black shales which are frequently interbedded with bentonite and hydrothermal minerals (e.g., pyrite). This study investigated the mineralogical, total organic carbon (TOC), total sulfur (TS), and major and trace element compositions of organic-rich samples. Non-visible volcanic input is identified to influence organic matter accumulation, as shown by the correlations between TOC and proxies, including Zr and Hf contents and the Cr/Al2O3, V/Al2O3, Ni/Al2O3, and SiO2/Al2O3 ratios. Redox indicators (V/Cr, v/v + Ni, degree of pyritization (DOP), U/Th, and Mo contents) display positive correlations with TOC values, suggesting that an oxygen-depleted environment is necessary for organic matter (OM) preservation. The TOC values exhibit better regression coefficients (R2) against redox indicators, including DOP (0.43), U/Th (0.70), and Mo contents (0.62), than V/Cr (0.16) and v/v + Ni (0.21). This may because some V, Cr, and Ni is hosted in non-volcanic ashes within shales but not inherited from contemporaneous water columns. The greater scatter in TOC-DOP and TOC-Mo relative to TOC-U/Th relations may result from hydrothermal venting in shales, evidenced by the coexistence of framboid and euhedral pyrite and the previous finding of hydrothermally altered dolomites in the studied sections. There is no systematic relation between TOC and Ni/Co ratios, and this means that portions of Ni are contributed by non-visible volcanic ashes and Ni and Co are redistributed during the precipitation of hydrothermal pyrites due to their strong chalcophile affinities. Such a feature may further suggest that most pyrites are precipitated during hydrothermal venting. The DOP displays broad correlations with non-visible volcanic indicators, supporting that hydrothermal venting may be triggered by volcanic activities. The outcomes of this study highlight that caution is necessary when evaluating the sedimentary facies features of volcanism-affected organic-rich black shales with the used metallic proxies. Full article
Show Figures

Figure 1

19 pages, 14658 KB  
Article
The Heterogeneity Characterization of Lacustrine Shale Pores in the Daanzhai Member of the Ziliujing Formation in the Yuanba Area, Sichuan Basin
by Haiyan Hu, Daxing Wang, Wangpeng Li, Gengen Zhu and Xiaoyu Chen
Minerals 2025, 15(1), 11; https://doi.org/10.3390/min15010011 - 26 Dec 2024
Cited by 3 | Viewed by 830
Abstract
To investigate the heterogeneous characteristics of the shale pore size distribution (PSD) of the Daanzhai Member in the Ziliujing Formation in the Sichuan Basin and its influencing factors, an analysis of its shale components, pore structure, and morphology was conducted. The analysis methods [...] Read more.
To investigate the heterogeneous characteristics of the shale pore size distribution (PSD) of the Daanzhai Member in the Ziliujing Formation in the Sichuan Basin and its influencing factors, an analysis of its shale components, pore structure, and morphology was conducted. The analysis methods included the determination of total organic carbon (TOC), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), LP-CO2GA, and LT-N2GA. The heterogeneity of the PSD was further analyzed via multifractal theory. The results indicate that the PSDs of both micropores and mesopores in shale exhibit multifractal features. The heterogeneity of mesopores is higher than that of micropores, but the pore connectivity is lower in mesopores than in micropores. Additionally, the degree of dispersion is higher in mesopores than in micropores. The PSD of micropores is influenced mainly by pores in the range of 0.30~0.70 nm in diameter. The distribution of mesopores is significantly affected by pores within the range of 2~10 nm in diameter. The pore connectivity and heterogeneity of mesopores are influenced primarily by the specific surface area (SSA) of the shale. In the case of micropores, both the SSA and pore volume (PV) contribute to the pore connectivity and heterogeneity. The effects of the rock components on the pore heterogeneity and connectivity vary significantly, with mineral components being the primary factors influencing pore heterogeneity. Compared with those of the mature Bakken Formation and the overmature Wufeng–Longmaxi Formation, the shale of the high-maturity Daanzhai Member has higher small-scale pore heterogeneity but weaker mesopore heterogeneity. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

18 pages, 9297 KB  
Article
Characteristics of Lamination in Deep Marine Shale and Its Influence on Mechanical Properties: A Case Study on the Wufeng-Longmaxi Formation in Sichuan Basin
by Jingqiang Tan, Baojian Shen, Huricha Wu, Yaohua Wang, Xinyao Ma, Xiao Ma and Wenhui Liu
Minerals 2024, 14(12), 1249; https://doi.org/10.3390/min14121249 - 9 Dec 2024
Cited by 3 | Viewed by 1222
Abstract
The extensive development of lamination structures in shale significantly influences its mechanical properties. However, a systematic analysis of how laminae affect the macroscopic mechanical behavior of rocks remains absent. In this study, field emission scanning electron microscopy (FE-SEM), thin section observation, X-ray diffraction [...] Read more.
The extensive development of lamination structures in shale significantly influences its mechanical properties. However, a systematic analysis of how laminae affect the macroscopic mechanical behavior of rocks remains absent. In this study, field emission scanning electron microscopy (FE-SEM), thin section observation, X-ray diffraction (XRD), triaxial compression and Brazilian tests were carried out on the deep marine shale of the Wufeng-Longmaxi Formation in Sichuan Basin. The results reveal four distinct laminasets: grading thin silt–thick mud (GSM1), grading medium thick silt–mud (GSM2), grading thick silt–thin mud (GSM3) and alternating thick silt–thin mud (ASM). GSM3 and ASM laminasets exhibit the weakest mechanical properties and the simplest fracture patterns, while GSM2 demonstrates moderate mechanical properties and more complex fracture patterns. GSM1 shows the highest mechanical strength and the most intricate fracture patterns. Mechanical properties are positively correlated with siliceous mineral content and negatively correlated with clay mineral content and scale of laminae development (average density and thickness), revealing that lamination plays a key role in fracture behavior, with more intensively developed laminasets leading to the concentrated distribution of brittle silty minerals, facilitating microcrack propagation. Moreover, microstructure has an important effect on both mechanical properties and fracture pattern. In grain-supported structures, closely packed silty brittle mineral grains reduce the energy required for crack extension. In matrix-supported structures, widespread silty brittle mineral grains increase energy requirements for crack extension, leading to more irregular and complex fracture networks. This study enhances the understanding of the effects of lamination on the rock mechanical behavior of shales, optimizing hydraulic fracturing design in shale reservoirs. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

31 pages, 23830 KB  
Article
Characteristics and Paleoenvironment of the Niutitang Shale Reservoir in the Zhenba Area
by Tao Tian, Wei Chang, Pei Zhang, Jiahui Yang, Li Zhang and Tianzi Wang
Processes 2024, 12(11), 2595; https://doi.org/10.3390/pr12112595 - 18 Nov 2024
Cited by 1 | Viewed by 1331
Abstract
The lack of in-depth analysis on the reservoir characteristics and the paleoenvironmental conditions of the Niutitang Formation in the study area has led to an unclear understanding of its geological background. In this study, core samples from well SZY1 were selected, and X-ray [...] Read more.
The lack of in-depth analysis on the reservoir characteristics and the paleoenvironmental conditions of the Niutitang Formation in the study area has led to an unclear understanding of its geological background. In this study, core samples from well SZY1 were selected, and X-ray diffraction (XRD), scanning electron microscopy (SEM), and quantitative elemental analysis were employed to systematically investigate the reservoir properties and paleoenvironment of the shales. The results indicate that the Niutitang Formation shales form a low-porosity, low-permeability reservoir. By utilizing indicators such as the chemical index of alteration (CIA) and elemental ratios, the study delves into the paleoclimate and paleoproductivity of the region. The (La/Yb)n ratio is approximately 1, indicating a rapid deposition rate that is beneficial for the accumulation and preservation of organic matter. The chondrite-normalized and North American Shale Composite (NASC)-normalized rare earth element (REE) distribution patterns of the shales show consistent trends with minimal variation, reflecting the presence of mixed sources for the sediments in the study area. Analysis reveals that the Niutitang Formation shales are enriched in light rare-earth elements (LREEs) with a negative europium anomaly, and the primary source rocks are sedimentary and granitic, located far from areas of seafloor hydrothermal activity. The NiEF and CuEF values suggest high paleoproductivity, and the shales were deposited in an anoxic-reducing environment. The depositional environments of the Marcellus and Utica shales in the United States, the Wufeng-Longmaxi black shales in the Changning area of the Sichuan Basin, and the shales in the study area are similar, characterized by anoxic reducing conditions and well-developed fractures. The thermal evolution degree of the study area is relatively moderate, currently in the peak gas generation stage, with the reservoir quality rated as medium to high, indicating good potential for hydrocarbon accumulation and promising exploration prospects. Full article
(This article belongs to the Special Issue Shale Gas and Coalbed Methane Exploration and Practice)
Show Figures

Figure 1

Back to TopTop