Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (211)

Search Parameters:
Keywords = Wireless Body Area Networks (WBANs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1217 KiB  
Article
Optimization Scheme for Modulation of Data Transmission Module in Endoscopic Capsule
by Meiyuan Miao, Chen Ye, Zhiping Xu, Laiding Zhao and Jiafeng Yao
Sensors 2025, 25(15), 4738; https://doi.org/10.3390/s25154738 - 31 Jul 2025
Viewed by 136
Abstract
The endoscopic capsule is a miniaturized device used for medical diagnosis, which is less invasive compared to traditional gastrointestinal endoscopy and can reduce patient discomfort. However, it faces challenges in communication transmission, such as high power consumption, serious signal interference, and low data [...] Read more.
The endoscopic capsule is a miniaturized device used for medical diagnosis, which is less invasive compared to traditional gastrointestinal endoscopy and can reduce patient discomfort. However, it faces challenges in communication transmission, such as high power consumption, serious signal interference, and low data transmission rate. To address these issues, this paper proposes an optimized modulation scheme that is low-cost, low-power, and robust in harsh environments, aiming to improve its transmission rate. The scheme is analyzed in terms of the in-body channel. The analysis and discussion for the scheme in wireless body area networks (WBANs) are divided into three aspects: bit error rate (BER) performance, energy efficiency (EE), and spectrum efficiency (SE), and complexity. These correspond to the following issues: transmission rate, communication quality, and low power consumption. The results demonstrate that the optimized scheme is more suitable for improving the communication performance of endoscopic capsules. Full article
Show Figures

Figure 1

16 pages, 2468 KiB  
Article
Temperature State Awareness-Based Energy-Saving Routing Protocol for Wireless Body Area Network
by Yu Mu, Guoqiang Zheng, Xintong Wang, Mengting Zhu and Huahong Ma
Appl. Sci. 2025, 15(13), 7477; https://doi.org/10.3390/app15137477 - 3 Jul 2025
Viewed by 292
Abstract
As an emerging information technology, Wireless Body Area Networks (WBANs) provide a lot of convenience for the development of the medical field. A WBAN is composed of many miniature sensor nodes in the form of an ad hoc network, which can realize remote [...] Read more.
As an emerging information technology, Wireless Body Area Networks (WBANs) provide a lot of convenience for the development of the medical field. A WBAN is composed of many miniature sensor nodes in the form of an ad hoc network, which can realize remote medical monitoring. However, the data transmission between sensor nodes in the WBAN not only consumes the energy of the node but also causes the temperature of the node to rise, thereby causing human tissue damage. Therefore, in response to the energy consumption problem in the Wireless Body Area Network and the hot node problem in the transmission path, this paper proposes a temperature state awareness-based energy-saving routing protocol (TSAER). The protocol senses the temperature state of nodes and then calculates the data receiving probability of nodes in different temperature state intervals. A benefit function based on several parameters such as the residual energy of the node, the distance to sink, and the probability of receiving data was constructed. The neighbor node with the maximum benefit function was selected as the best forwarding node, and the data was forwarded. The simulation results show that compared with the existing M-ATTEPMT and iM-SIMPLE protocols, TSAER effectively prolongs the network lifetime and controls the formation of hot nodes in the network. Full article
Show Figures

Figure 1

13 pages, 3752 KiB  
Article
Design of a Compact Dual-Band and Dual-Mode Wearable Antenna for WBAN Applications
by Wei Zhang, Wenran Li, Xiaoyu Feng, Chen Zhao, Yan Li and Xiaoyi Liao
Sensors 2025, 25(11), 3361; https://doi.org/10.3390/s25113361 - 27 May 2025
Viewed by 561
Abstract
This paper presents a novel design of a compact dual-band dual-mode wearable antenna. The antenna is fed through a single coaxial feed probe, which excites TM01 and TM11 modes at 2.45 GHz and 5.8 GHz, respectively. These modes exhibit distinct radiation [...] Read more.
This paper presents a novel design of a compact dual-band dual-mode wearable antenna. The antenna is fed through a single coaxial feed probe, which excites TM01 and TM11 modes at 2.45 GHz and 5.8 GHz, respectively. These modes exhibit distinct radiation characteristics. The omnidirectional TM01 mode at 2.45 GHz is suitable for on-body communication, while the directional TM11 mode at 5.8 GHz is more appropriate for off-body communication. The antenna prototype was fabricated and measured. The measured performance is consistent with the simulations. Additionally, further simulations and measurements were conducted to verify the interactions between the proposed antenna and the human body. The results demonstrate that the proposed antenna exhibits significant potential as a candidate for wireless body area network (WBAN) communications. Full article
Show Figures

Figure 1

17 pages, 2545 KiB  
Article
Modeling and Analysis of Intrabody Communication for Biometric Identity in Wireless Body Area Networks
by Igor Khromov, Leonid Voskov and Mikhail Komarov
Appl. Sci. 2025, 15(8), 4126; https://doi.org/10.3390/app15084126 - 9 Apr 2025
Viewed by 930
Abstract
Intrabody communication (IBC) establishes a wireless connection between devices in a Wireless Body Area Network (WBAN) by utilizing the human body as a transmission medium. The characteristics of the IBC channel are significantly influenced by the geometric and biological features of the human [...] Read more.
Intrabody communication (IBC) establishes a wireless connection between devices in a Wireless Body Area Network (WBAN) by utilizing the human body as a transmission medium. The characteristics of the IBC channel are significantly influenced by the geometric and biological features of the human body and tissues. This paper analyzes a dataset with experimental real subjects’ data on signal loss in a galvanic IBC channel, models IBC identification using the K-Nearest Neighbors (KNN) algorithm, and proposes a novel IBC WBAN architecture incorporating an identification function. The analysis of the dataset revealed that the IBC channel gain exhibits a wide range of variations depending on individual human body characteristics such as height, weight, body mass index, and body composition. Consequently, biometric identification can be leveraged within the IBC WBAN paradigm. Through modeling IBC identification on cleaned and labeled data, we demonstrated an identification accuracy of 99.9% based on the results of our modeling. The proposed IBC WBAN architecture with an integrated identification function is anticipated to enhance the application scope and accelerate the development of IBC WBANs. Full article
(This article belongs to the Special Issue Advancement in Smart Manufacturing and Industry 4.0)
Show Figures

Figure 1

43 pages, 5343 KiB  
Review
Wearable and Flexible Sensor Devices: Recent Advances in Designs, Fabrication Methods, and Applications
by Shahid Muhammad Ali, Sima Noghanian, Zia Ullah Khan, Saeed Alzahrani, Saad Alharbi, Mohammad Alhartomi and Ruwaybih Alsulami
Sensors 2025, 25(5), 1377; https://doi.org/10.3390/s25051377 - 24 Feb 2025
Cited by 11 | Viewed by 9039
Abstract
The development of wearable sensor devices brings significant benefits to patients by offering real-time healthcare via wireless body area networks (WBANs). These wearable devices have gained significant traction due to advantageous features, including their lightweight nature, comfortable feel, stretchability, flexibility, low power consumption, [...] Read more.
The development of wearable sensor devices brings significant benefits to patients by offering real-time healthcare via wireless body area networks (WBANs). These wearable devices have gained significant traction due to advantageous features, including their lightweight nature, comfortable feel, stretchability, flexibility, low power consumption, and cost-effectiveness. Wearable devices play a pivotal role in healthcare, defence, sports, health monitoring, disease detection, and subject tracking. However, the irregular nature of the human body poses a significant challenge in the design of such wearable systems. This manuscript provides a comprehensive review of recent advancements in wearable and flexible smart sensor devices that can support the next generation of such sensor devices. Further, the development of direct ink writing (DIW) and direct writing (DW) methods has revolutionised new high-resolution integrated smart structures, enabling the design of next-generation soft, flexible, and stretchable wearable sensor devices. Recognising the importance of keeping academia and industry informed about cutting-edge technology and time-efficient fabrication tools, this manuscript also provides a thorough overview of the latest progress in various fabrication methods for wearable sensor devices utilised in WBAN and their evaluation using body phantoms. An overview of emerging challenges and future research directions is also discussed in the conclusion. Full article
Show Figures

Figure 1

17 pages, 6210 KiB  
Article
A Small Implantable Compact Antenna for Wireless Telemetry Applied to Wireless Body Area Networks
by Zongsheng Gan, Dan Wang, Lu Liu, Xiaofeng Fu, Xinju Wang and Peng Chen
Appl. Sci. 2025, 15(3), 1385; https://doi.org/10.3390/app15031385 - 29 Jan 2025
Viewed by 2824
Abstract
Wireless Body Area Networks (WBANs) are human-centric wireless networks, and implantable antennas represent a vital communication component within WBANs. The dielectric properties of human tissue are highly complex, with each layer exhibiting distinct dielectric constants that significantly influence the performance of implanted antennas. [...] Read more.
Wireless Body Area Networks (WBANs) are human-centric wireless networks, and implantable antennas represent a vital communication component within WBANs. The dielectric properties of human tissue are highly complex, with each layer exhibiting distinct dielectric constants that significantly influence the performance of implanted antennas. It is therefore imperative that a compact broadband implantable antenna be designed in order to address the instability in communication of medical implant devices. The antenna, coated in silicone, is a single-layer structure fed by a coaxial cable, with a volume of just 6 mm × 6 mm× 0.53 mm. A metallic patch is etched on the upper surface of the substrate, and the compact antenna design is enhanced with the introduction of S-shaped, F-shaped, and rectangular slots on the patch. The bottom side of the substrate is etched with rectangular ground planes, which broaden the impedance bandwidth of the antenna. The simulation results demonstrate that the antenna attains an impedance bandwidth of 23.8% (2.08–2.64 GHz), encompassing the entirety of the Industrial, Scientific, and Medical (ISM) band (2.4–2.48 GHz). In order to simulate the working environment of the antenna within the human body, physical tests were conducted on the antenna in pork tissue. The test results demonstrate that the antenna exhibits a measured bandwidth of 28% (2.3–3.03 GHz), with a radiation pattern that displays omnidirectional radiation characteristics. The antenna’s impedance matching and radiation characteristics remain essentially consistent in both bent and unbent states, indicating structural robustness. In comparison to other implantable antennas, this antenna displays a wider impedance bandwidth, a lower Specific Absorption Rate (SAR), and superior implant performance. Full article
(This article belongs to the Special Issue Recent Advances in Antennas and Propagation)
Show Figures

Figure 1

29 pages, 3041 KiB  
Article
Empowering WBANs: Enhanced Energy Efficiency Through Cluster-Based Routing and Swarm Optimization
by Sureshkumar S, Santhosh Babu A. V, Joseph James S and Priya R
Symmetry 2025, 17(1), 80; https://doi.org/10.3390/sym17010080 - 7 Jan 2025
Cited by 1 | Viewed by 831
Abstract
Wireless body area networks (WBANs) have great potential to supply society with vital technical services, but the low power of network nodes severely hampers their development. To solve this problem, Energy-Efficient, a low-power cluster-based routing system intended for precise biological data gathering in [...] Read more.
Wireless body area networks (WBANs) have great potential to supply society with vital technical services, but the low power of network nodes severely hampers their development. To solve this problem, Energy-Efficient, a low-power cluster-based routing system intended for precise biological data gathering in WBANs, is presented in this study. This approach comprises three main stages: data aggregation, cluster head (CH) selection, and cluster creation. The suggested approach balances biosensor energy and optimizes energy usage by utilizing the modified snake swarm optimization algorithm (MSSOA) for routing and the adaptive binary bird swarm optimization algorithm (ABBSOA) for cluster formation and CH selection. The suggested technique outperforms the most recent WBAN routing protocols, including MT-MAC, ALOC, DHCO, and M-GWO, by using a power-balancing routing tree and considering biosensor distance and remaining energy. The experimental results demonstrate that the proposed ABBSOA-MSSOA model achieves a jitter protocol value of 0.3 ms at 100 nodes, a buffer occupancy ratio of 2.5%, a cluster lifetime of 600 s, a cluster building time of 12.2 s, an energy consumption of 42 mJ, a communication overhead of 8.3%, a packet delivery ratio of 98.2%, and an average end-to-end delay of 25 ms compared to other existing methods. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

31 pages, 3762 KiB  
Review
A Comprehensive Review and Analysis of the Design Aspects, Structure, and Applications of Flexible Wearable Antennas
by Sunaina Singh, Ranjan Mishra, Ankush Kapoor and Soni Singh
Telecom 2025, 6(1), 3; https://doi.org/10.3390/telecom6010003 - 3 Jan 2025
Cited by 5 | Viewed by 2687
Abstract
This review provides a comprehensive analysis of the design, materials, fabrication techniques, and applications of flexible wearable antennas, with a primary focus on their roles in Wireless Body Area Networks (WBANs) and healthcare technologies. Wearable antennas are increasingly vital for applications that require [...] Read more.
This review provides a comprehensive analysis of the design, materials, fabrication techniques, and applications of flexible wearable antennas, with a primary focus on their roles in Wireless Body Area Networks (WBANs) and healthcare technologies. Wearable antennas are increasingly vital for applications that require seamless integration with the human body while maintaining optimal performance under deformation and environmental stress. Return loss, gain, bandwidth, efficiency, and the SAR are some of the most important parameters that define the performance of an antenna. Their interactions with human tissues are also studied in greater detail. Such studies are essential to ensure that wearable and body-centric communication systems perform optimally, remain safe, and are in compliance with regulatory standards. Advanced materials, including textiles, polymers, and conductive composites, are analyzed for their electromagnetic properties and mechanical resilience. This study also explores innovative fabrication techniques, such as inkjet printing, screen printing, and embroidery, which enable scalable and cost-effective production. Additionally, solutions for SAR optimization, including the use of metamaterials, electromagnetic band gap (EBG) structures, and frequency-selective surfaces (FSSs), are discussed. This review highlights the transformative potential of wearable antennas in healthcare, the IoT, and next-generation communication systems, emphasizing their adaptability for real-time monitoring and advanced wireless technologies, such as 5G and 6G. The integration of energy harvesting, biocompatible materials, and sustainable manufacturing processes is identified as a future direction, paving the way for wearable antennas to become integral to the evolution of smart healthcare and connected systems. Full article
Show Figures

Figure 1

18 pages, 5670 KiB  
Article
An All-Digital Dual-Mode Clock and Data Recovery Circuit for Human Body Communication Systems
by Yoon Heo and Won-Young Lee
Electronics 2024, 13(23), 4832; https://doi.org/10.3390/electronics13234832 - 7 Dec 2024
Cited by 1 | Viewed by 1307
Abstract
This paper describes an all-digital clock and data recovery (CDR) circuit for implementing edge processing with a wireless body area network (WBAN). The CDR circuit performs delay-locked loop (DLL)-based and phase-locked loop (PLL)-based operations depending on the use of an external reference clock [...] Read more.
This paper describes an all-digital clock and data recovery (CDR) circuit for implementing edge processing with a wireless body area network (WBAN). The CDR circuit performs delay-locked loop (DLL)-based and phase-locked loop (PLL)-based operations depending on the use of an external reference clock and is implemented using a digital method that is robust against external noise. The clock generator circuit shared by the two operation methods is described in detail, and the CDR circuit recovers 42 Mb/s input data and a 42 MHz clock, which are the specifications of human body communication (HBC). In DLL-based CDR operation, the clock generator operates as a digitally controlled delay line (DCDL) that delays the reference clock by more than one period. In PLL-based CDR operations, it operates as a digitally controlled oscillator (DCO) that oscillates the 42 MHz clock and adjusts the clock frequency. The proposed all-digital CDR is fabricated in 65 nm CMOS technology with an area of 0.091 mm2 and operates with a supply voltage of 1.0 V. Post-layout simulation results show that the lock time for DLL-based CDR operation is 1.6 μs, the clock peak-to-peak jitter is 0.38 ns, and the power consumption is 341.8 μW. For PLL-based CDR operations, the lock time is 6 μs, the clock peak-to-peak jitter is 2.92 ns, and the power consumption is 280.2 μW, respectively. Full article
Show Figures

Figure 1

20 pages, 4101 KiB  
Article
IEEE 802.15.6 and LoRaWAN for WBAN in Healthcare: A Comparative Study on Communication Efficiency and Energy Optimization
by Soleen Jaladet Al-Sofi, Salih Mustafa S. Atroshey and Ismail Amin Ali
Computers 2024, 13(12), 313; https://doi.org/10.3390/computers13120313 - 26 Nov 2024
Cited by 2 | Viewed by 2278
Abstract
Wireless body area networks (WBANs), which continually gather and transmit patient health data in real time, are essential for improving healthcare administration. Patient outcomes can be improved by sending these data to medical professionals for prompt review and treatment. For the effective deployment [...] Read more.
Wireless body area networks (WBANs), which continually gather and transmit patient health data in real time, are essential for improving healthcare administration. Patient outcomes can be improved by sending these data to medical professionals for prompt review and treatment. For the effective deployment of WBANs, communication solutions are necessary to maximize critical performance parameters, such as low power consumption, minimal delay, and acceptable data rates, while guaranteeing dependable transmission. Two prominent technologies in this field are LoRaWAN, which is renowned for its long-range capabilities and energy efficiency, and IEEE 802.15.6, which was created especially for short-range medical applications with high data throughput. This study provides a comparative evaluation of these two technologies to determine their suitability for diverse WBAN healthcare scenarios. By using the NS3, a simulation was performed to calculate six key performance metrics: throughput, arrival rate, delay, energy consumption, packet delivery ratio (PDR), and network lifetime. The study analyzed each technology’s performance under varying node counts. At a density of 50 nodes, IEEE 802.15.6 demonstrated superior throughput, with 45 kbps, compared to LoRaWAN, and a higher PDR of 30%. Additionally, IEEE 802.15.6 showed a higher arrival rate, of 0.33%, than LoRaWAN. On the other hand, LoRaWAN showed notable strengths in energy consumption, with only 42 J, compared to IEEE 802.15.6, and significantly lower delay, with a delay of 7 s. Additionally, LoRaWAN offered an extended network lifetime, of 18 h, compared to IEEE 802.15.6. Full article
Show Figures

Figure 1

19 pages, 5214 KiB  
Article
Autoencoder-Based Neural Network Model for Anomaly Detection in Wireless Body Area Networks
by Murad A. Rassam
IoT 2024, 5(4), 852-870; https://doi.org/10.3390/iot5040039 - 25 Nov 2024
Cited by 3 | Viewed by 3230
Abstract
In medical healthcare services, Wireless Body Area Networks (WBANs) are enabler tools for tracking healthcare conditions by monitoring some critical vital signs of the human body. Healthcare providers and consultants use such collected data to assess the status of patients in intensive care [...] Read more.
In medical healthcare services, Wireless Body Area Networks (WBANs) are enabler tools for tracking healthcare conditions by monitoring some critical vital signs of the human body. Healthcare providers and consultants use such collected data to assess the status of patients in intensive care units (ICU) at hospitals or elderly care facilities. However, the collected data are subject to anomalies caused by faulty sensor readings, malicious attacks, or severe health degradation situations that healthcare professionals should investigate further. As a result, anomaly detection plays a crucial role in maintaining data quality across various real-world applications, including healthcare, where it is vital for the early detection of abnormal health conditions. Numerous techniques for anomaly detection have been proposed in the literature, employing methods like statistical analysis and machine learning to identify anomalies in WBANs. However, the lack of normal datasets makes training supervised machine learning models difficult, highlighting the need for unsupervised approaches. In this paper, a novel, efficient, and effective unsupervised anomaly detection model for WBANs is developed using the autoencoder convolutional neural network (CNN) technique. Due to their ability to reconstruct data in a completely unsupervised manner using reconstruction error, autoencoders hold great potential. Real-world physiological data from the PhysioNet dataset evaluated the suggested model’s performance. The experimental findings demonstrate the model’s efficacy, which provides high detection accuracy, as reported F1-Score is 0.96 with a batch size of 256 along with a mean squared logarithmic error (MSLE) below 0.002. Compared to existing unsupervised models, the proposed model outperforms them in effectiveness and efficiency. Full article
Show Figures

Figure 1

19 pages, 4342 KiB  
Review
A Survey on Data-Driven Approaches for Reliability, Robustness, and Energy Efficiency in Wireless Body Area Networks
by Pulak Majumdar, Satyaki Roy, Sudipta Sikdar, Preetam Ghosh and Nirnay Ghosh
Sensors 2024, 24(20), 6531; https://doi.org/10.3390/s24206531 - 10 Oct 2024
Cited by 5 | Viewed by 1928
Abstract
Wireless Body Area Networks (WBANs) are pivotal in health care and wearable technologies, enabling seamless communication between miniature sensors and devices on or within the human body. These biosensors capture critical physiological parameters, ranging from body temperature and blood oxygen levels to real-time [...] Read more.
Wireless Body Area Networks (WBANs) are pivotal in health care and wearable technologies, enabling seamless communication between miniature sensors and devices on or within the human body. These biosensors capture critical physiological parameters, ranging from body temperature and blood oxygen levels to real-time electrocardiogram readings. However, WBANs face significant challenges during and after deployment, including energy conservation, security, reliability, and failure vulnerability. Sensor nodes, which are often battery-operated, expend considerable energy during sensing and transmission due to inherent spatiotemporal patterns in biomedical data streams. This paper provides a comprehensive survey of data-driven approaches that address these challenges, focusing on device placement and routing, sampling rate calibration, and the application of machine learning (ML) and statistical learning techniques to enhance network performance. Additionally, we validate three existing models (statistical, ML, and coding-based models) using two real datasets, namely the MIMIC clinical database and biomarkers collected from six subjects with a prototype biosensing device developed by our team. Our findings offer insights into strategies for optimizing energy efficiency while ensuring security and reliability in WBANs. We conclude by outlining future directions to leverage approaches to meet the evolving demands of healthcare applications. Full article
(This article belongs to the Special Issue Wearable Sensors for Physical Activity Monitoring and Motion Control)
Show Figures

Figure 1

24 pages, 7635 KiB  
Article
Improved Adaptive Backoff Algorithm for Optimal Channel Utilization in Large-Scale IEEE 802.15.4-Based Wireless Body Area Networks
by Mounib Khanafer, Mouhcine Guennoun, Mohammed El-Abd and Hussein T. Mouftah
Future Internet 2024, 16(9), 313; https://doi.org/10.3390/fi16090313 - 29 Aug 2024
Cited by 1 | Viewed by 3813
Abstract
The backoff algorithm employed by the medium access control (MAC) protocol of the IEEE 802.15.4 standard has a significant impact on the overall performance of the wireless sensor network (WSN). This algorithm helps the MAC protocol resolve the contention among multiple nodes in [...] Read more.
The backoff algorithm employed by the medium access control (MAC) protocol of the IEEE 802.15.4 standard has a significant impact on the overall performance of the wireless sensor network (WSN). This algorithm helps the MAC protocol resolve the contention among multiple nodes in accessing the wireless medium. The standard binary exponent backoff (BEB) used by the IEEE 802.15.4 MAC protocol relies on an incremental method that doubles the size of the contention window after the occurrence of a collision. In a previous work, we proposed the adaptive backoff algorithm (ABA), which adapts the contention window’s size to the value of the probability of collision, thus relating the contention resolution to the size of the WSN in an indirect manner. ABA was studied and tested using contention window sizes of up to 256. However, the latter limit on the contention window size led to degradation in the network performance as the size of the network exceeded 50 nodes. This paper introduces the Improved ABA (I-ABA), an improved version of ABA. In the design of I-ABA we observe the optimal values of the contention window that maximize performance under varying probabilities of collision. Based on that, we use curve fitting techniques to derive a mathematical expression that better describes the adaptive change in the contention window. This forms the basis of I-ABA, which demonstrates scalability and the ability to enhance performance. As a potential area of application for I-ABA, we target wireless body area networks (WBANs) that are large-scale, that is, composed of hundreds of sensor nodes. WBAN is a major application area for the emerging Internet of Things (IoT) paradigm. We evaluate the performance of I-ABA based on simulations. Our results show that, in a large-scale WBAN, I-ABA can achieve superior performance to both ABA and the standard BEB in terms of various performance metrics. Full article
(This article belongs to the Special Issue IoT, Edge, and Cloud Computing in Smart Cities)
Show Figures

Figure 1

29 pages, 1362 KiB  
Article
An Efficient Certificateless Anonymous Signcryption Scheme for WBAN
by Weifeng Long, Lunzhi Deng, Jiwen Zeng, Yan Gao and Tianxiu Lu
Sensors 2024, 24(15), 4899; https://doi.org/10.3390/s24154899 - 28 Jul 2024
Cited by 1 | Viewed by 983
Abstract
A Wireless Body Area Network (WBAN), introduced into the healthcare sector to improve patient care and enhance the efficiency of medical services, also brings the risk of the leakage of patients’ privacy. Therefore, maintaining the communication security of patients’ data has never been [...] Read more.
A Wireless Body Area Network (WBAN), introduced into the healthcare sector to improve patient care and enhance the efficiency of medical services, also brings the risk of the leakage of patients’ privacy. Therefore, maintaining the communication security of patients’ data has never been more important. However, WBAN faces issues such as open medium channels, resource constraints, and lack of infrastructure, which makes the task of designing a secure and economical communication scheme suitable for WBAN particularly challenging. Signcryption has garnered attention as a solution suitable for resource-constrained devices, offering a combination of authentication and confidentiality with low computational demands. Although the advantages offered by existing certificateless signcryption schemes are notable, most of them only have proven security within the random oracle model (ROM), lack public ciphertext authenticity, and have high computational overheads. To overcome these issues, we propose a certificateless anonymous signcryption (CL-ASC) scheme suitable for WBAN, featuring anonymity of the signcrypter, public verifiability, and public ciphertext authenticity. We prove its security in the standard model, including indistinguishability, unforgeability, anonymity of the signcrypter, and identity identifiability, and demonstrate its superiority over relevant schemes in terms of security, computational overheads, and storage costs. Full article
(This article belongs to the Special Issue Wireless Body Area Networks and IoT for Medical Applications)
Show Figures

Figure 1

15 pages, 3606 KiB  
Article
Characteristic Mode-Based Dual-Mode Dual-Band of Single-Feed Antenna for On-/Off-Body Communication
by Tong Li, Jinwei Gao, Nouman Rasool, Muhammad Abdul Basit and Chen Chen
Electronics 2024, 13(14), 2733; https://doi.org/10.3390/electronics13142733 - 11 Jul 2024
Cited by 2 | Viewed by 1495
Abstract
A dual-band, dual-mode button antenna is proposed for emerging fifth-generation (5G) networks and Industrial, Scientific, and Medical (ISM) communication systems, as it operates at 3.5 GHz and 5.8 GHz, respectively. At the lower band, a monopole-like omnidirectional radiation pattern is achieved by loading [...] Read more.
A dual-band, dual-mode button antenna is proposed for emerging fifth-generation (5G) networks and Industrial, Scientific, and Medical (ISM) communication systems, as it operates at 3.5 GHz and 5.8 GHz, respectively. At the lower band, a monopole-like omnidirectional radiation pattern is achieved by loading shorting pins on curved strips for on-body communication. At the higher band, broadside circularly polarized radiation is achieved by loading an asymmetric U-shaped slot in the central chamferd patch for off-body communication. By using Characteristic Modal Analysis (CMA), a clear physical insight into the formation of dual polarization is provided. The −10 dB impedance bandwidth ranges from 3.48 to 3.60 GHz and 5.65 to 6.03 GHz, respectively. The 3 dB axial ratio (AR) bandwidth ranges from 5.71 to 5.85 GHz in the high band. Additionally, the antenna achieves a peak gain of 1.2 dBi in on-body mode and 6.9 dBi in off-body mode. The maximum specific absorption rate (SAR) calculated on the body tissues is below the US/EU standard thresholds of 1.6 W/kg and 2 W/kg. The measured results indicate that the antenna experiences only slight impact from human body loading and structural deformations. Given its notable features, the proposed design is well suited for Wireless Body Area Network (WBAN) applications. Full article
(This article belongs to the Special Issue Antennas for Digital Healthcare Detection and Monitoring Applications)
Show Figures

Figure 1

Back to TopTop