Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = Wee1 kinase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 231 KiB  
Article
Tempol Induces Oxidative Stress, ER Stress and Apoptosis via MAPK/Akt/mTOR Pathway Suppression in HT29 (Colon) and CRL-1739 (Gastric) Cancer Cell Lines
by Gorkem Ozdemir and Halil Mahir Kaplan
Curr. Issues Mol. Biol. 2025, 47(7), 574; https://doi.org/10.3390/cimb47070574 - 21 Jul 2025
Viewed by 263
Abstract
Tempol is a synthetic antioxidant that shows promise in preclinical cancer studies by inhibiting growth and inducing apoptosis. Given that the Mitogen-Activated Protein Kinase (MAPK) and Protein Kinase B/Mammalian Target of Rapamycin (Akt/mTOR) signaling pathways are frequently dysregulated in gastric and colon cancers [...] Read more.
Tempol is a synthetic antioxidant that shows promise in preclinical cancer studies by inhibiting growth and inducing apoptosis. Given that the Mitogen-Activated Protein Kinase (MAPK) and Protein Kinase B/Mammalian Target of Rapamycin (Akt/mTOR) signaling pathways are frequently dysregulated in gastric and colon cancers and contribute to their progression, we investigated Tempol’s anti-cancer potential in HT29 (colon) and CRL-1739 (gastric) cancer cells. Cells were treated with 2 mM Tempol for 48 h, with untreated cells as controls. We evaluated apoptosis (Bax, cleaved caspase-3, and Bcl-2), key signaling pathway activity (p-ERK, p-JNK, p-AKT, and p-mTOR), and levels of stress- and apoptosis-related proteins (WEE1, GADD153, GRP78, and AIF). Tempol significantly increased pro-apoptotic Bax and cleaved caspase-3 (p < 0.0001) and decreased anti-apoptotic Bcl-2 (p < 0.0001) in both cell lines. Furthermore, Tempol markedly reduced the activity of p-ERK, p-JNK, p-AKT, and p-mTOR (p < 0.0001) and significantly increased the protein levels of WEE1, GADD153, GRP78, and AIF (p < 0.0001). Tempol treatment also led to a significant increase in total oxidant status and a decrease in total antioxidant status. In conclusion, our findings suggest that Tempol exhibits its anti-cancer activity through multiple interconnected mechanisms, primarily inducing apoptosis and oxidative stress, while concurrently suppressing pro-survival signaling pathways. These results highlight Tempol’s potential as a therapeutic agent for gastric and colon cancers. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
24 pages, 2487 KiB  
Review
Targeting WEE1 Kinase for Breast Cancer Therapeutics: An Update
by Zhao Zhang, Ritika Harish, Naveed Elahi, Sawanjit Saini, Aamir Telia, Manjit Kundlas, Allexes Koroleva, Israel N. Umoh, Manpreet Lota, Meha Bilkhu, Aladdin Kawaiah, Manogna R. Allala, Armelle Leukeu, Emmanuel Nebuwa, Nadiya Sharifi, Anthony W. Ashton, Xuanmao Jiao and Richard G. Pestell
Int. J. Mol. Sci. 2025, 26(12), 5701; https://doi.org/10.3390/ijms26125701 - 13 Jun 2025
Viewed by 1677
Abstract
WEE1 kinase is a crucial cell cycle regulatory protein that controls the timing of mitotic entry. WEE1, via inhibition of Cyclin-dependent Kinase 1 (CDK1) and Cyclin-dependent Kinase 2 (CDK2), governs the G2-M checkpoint by inhibiting entry into mitosis. The state of balance between [...] Read more.
WEE1 kinase is a crucial cell cycle regulatory protein that controls the timing of mitotic entry. WEE1, via inhibition of Cyclin-dependent Kinase 1 (CDK1) and Cyclin-dependent Kinase 2 (CDK2), governs the G2-M checkpoint by inhibiting entry into mitosis. The state of balance between WEE family kinases and CDC25C phosphatases restricts CDK1/CycB activity. The WEE kinase family consists of WEE1, PKMYT1, and WEE2 (WEE1B). WEE1 and PKMYT1 regulate entry into mitosis during cell cycle progression, whereas WEE2 governs cell cycle progression during meiosis. Recent studies have identified WEE1 as a potential therapeutic target in several cancers, including therapy-resistant triple-negative breast cancer. Adavosertib’s clinical promise was challenged by inter-individual variations in response and side effects. Because of these promising preclinical outcomes, other WEE1 kinase inhibitors (Azenosertib, SC0191, IMP7068, PD0407824, PD0166285, WEE1-IN-5, Zedoresertib, WEE1-IN-8, and ATRN-1051) are being developed, with several currently being evaluated in clinical trials or as an adjuvant to chemotherapies. Preclinical studies show WEE1 inhibitors induce MHC class 1 antigens and STING when given as combination therapies, suggesting potential additional therapeutic opportunities. Reliable predictors of clinical responses based on mechanistic insights remain an important unmet need. Herein, we review the role of WEE1 inhibition therapy in breast cancer. Full article
(This article belongs to the Special Issue Molecular Research and Treatment of Breast Cancer: 3rd Edition)
Show Figures

Figure 1

37 pages, 2353 KiB  
Review
Precision Medicine in High-Grade Serous Ovarian Cancer: Targeted Therapies and the Challenge of Chemoresistance
by Sara Polajžer and Katarina Černe
Int. J. Mol. Sci. 2025, 26(6), 2545; https://doi.org/10.3390/ijms26062545 - 12 Mar 2025
Cited by 3 | Viewed by 2014
Abstract
The poor prognosis for high-grade serous ovarian cancer (HGSOC), the dominant subtype of ovarian cancer, reflects its aggressive nature, late diagnosis, and the highest mortality rate among all gynaecologic cancers. Apart from late diagnosis, the main reason for the poor prognosis and its [...] Read more.
The poor prognosis for high-grade serous ovarian cancer (HGSOC), the dominant subtype of ovarian cancer, reflects its aggressive nature, late diagnosis, and the highest mortality rate among all gynaecologic cancers. Apart from late diagnosis, the main reason for the poor prognosis and its unsuccessful treatment is primarily the emergence of chemoresistance to carboplatin. Although there is a good response to primary treatment, the disease recurs in 80% of cases, at which point it is largely resistant to carboplatin. The introduction of novel targeted therapies in the second decade of the 21st century has begun to transform the treatment of HGSOC, although their impact on overall survival remains unsatisfactory. Targeting the specific pathways known to be abnormally activated in HGSOC is especially difficult due to the molecular diversity of its subtypes. Moreover, a range of molecular changes are associated with acquired chemoresistance, e.g., reversion of BRCA1 and BRCA2 germline alleles. In this review, we examine the advantages and disadvantages of approved targeted therapies, including bevacizumab, PARP inhibitors (PARPis), and treatments targeting cells with neurotrophic tyrosine receptor kinase (NTRK), B-rapidly accelerated fibrosarcoma (BRAF), and rearranged during transfection (RET) gene alterations, as well as antibody–drug conjugates. Additionally, we explore promising new targets under investigation in ongoing clinical trials, such as immune checkpoint inhibitors, anti-angiogenic agents, phosphatidylinositol-3-kinase (PI3K) inhibitors, Wee1 kinase inhibitors, and ataxia telangiectasia and Rad3-related protein (ATR) inhibitors for platinum-resistant disease. Despite the development of new targeted therapies, carboplatin remains the fundamental medicine in HGSOC therapy. The correct choice of treatment strategy for better survival of patients with advanced HGSOC should therefore include a prediction of patients’ risks of developing chemoresistance to platinum-based chemotherapy. Moreover, effective targeted therapy requires the selection of patients who are likely to derive clinical benefit while minimizing potential adverse effects, underscoring the essence of precision medicine. Full article
(This article belongs to the Special Issue Molecular Pathology and Treatment of Ovarian Cancer)
Show Figures

Figure 1

23 pages, 2529 KiB  
Article
LB-100 Enhances Drugs Efficacy Through Inhibition of P-Glycoprotein Expression in Multidrug-Resistant Glioblastoma and Non-Small Cell Lung Carcinoma Cellular Models
by Ana Podolski-Renić, Margarita Chigriai, Sofija Jovanović Stojanov, Marija Grozdanić, Ema Lupšić, Igor Nikolić, Miodrag Dragoj, Jelena Dinić and Milica Pešić
Pharmaceutics 2025, 17(2), 189; https://doi.org/10.3390/pharmaceutics17020189 - 4 Feb 2025
Viewed by 1249
Abstract
Background/Objectives: This study explores the potential of LB-100 (a protein phosphatase 2A—PP2A inhibitor) combined with adavosertib (a WEE1 kinase inhibitor) and doxorubicin (DOX), to overcome multidrug resistance (MDR) in cancer cells and enhance treatment efficacy. Methods: We evaluated LB-100 combinations with [...] Read more.
Background/Objectives: This study explores the potential of LB-100 (a protein phosphatase 2A—PP2A inhibitor) combined with adavosertib (a WEE1 kinase inhibitor) and doxorubicin (DOX), to overcome multidrug resistance (MDR) in cancer cells and enhance treatment efficacy. Methods: We evaluated LB-100 combinations with adavosertib and DOX in patient-derived glioblastoma and non-small cell lung carcinoma cells (NSCLCs) using a real-time cell analyzer. Effectiveness was also assessed through immunofluorescence assay, and interactions were analyzed via SynergyFinder+. We also examined P-glycoprotein (P-gp) expression and drug resistance genes’ expression in MDR glioblastoma and NSCLCs after LB-100 treatment, as well as LB-100 sensitizing effect on DOX and DOX accumulation. Results: LB-100 significantly boosts the effectiveness of adavosertib and DOX after multiple applications. It also enhances these drugs’ cytotoxicity in a single application without acting synergistically. Additionally, LB-100 reduces P-gp expression in MDR glioblastoma and NSCLCs, sensitizing them to DOX and increasing its accumulation. Conclusions: LB-100 enhances the effectiveness of drugs against MDR cancer cells, presenting a promising strategy to overcome drug resistance in glioblastoma and NSCLCs through P-gp modulation. Full article
(This article belongs to the Special Issue Novel Therapeutic Strategies for Glioblastoma)
Show Figures

Graphical abstract

23 pages, 1736 KiB  
Review
The Potential for Targeting G2/M Cell Cycle Checkpoint Kinases in Enhancing the Efficacy of Radiotherapy
by Emma Melia and Jason L. Parsons
Cancers 2024, 16(17), 3016; https://doi.org/10.3390/cancers16173016 - 29 Aug 2024
Cited by 3 | Viewed by 1978
Abstract
Radiotherapy is one of the main cancer treatments being used for ~50% of all cancer patients. Conventional radiotherapy typically utilises X-rays (photons); however, there is increasing use of particle beam therapy (PBT), such as protons and carbon ions. This is because PBT elicits [...] Read more.
Radiotherapy is one of the main cancer treatments being used for ~50% of all cancer patients. Conventional radiotherapy typically utilises X-rays (photons); however, there is increasing use of particle beam therapy (PBT), such as protons and carbon ions. This is because PBT elicits significant benefits through more precise dose delivery to the cancer than X-rays, but also due to the increases in linear energy transfer (LET) that lead to more enhanced biological effectiveness. Despite the radiotherapy type, the introduction of DNA damage ultimately drives the therapeutic response through stimulating cancer cell death. To combat this, cells harbour cell cycle checkpoints that enables time for efficient DNA damage repair. Interestingly, cancer cells frequently have mutations in key genes such as TP53 and ATM that drive the G1/S checkpoint, whereas the G2/M checkpoint driven through ATR, Chk1 and Wee1 remains intact. Therefore, targeting the G2/M checkpoint through specific inhibitors is considered an important strategy for enhancing the efficacy of radiotherapy. In this review, we focus on inhibitors of Chk1 and Wee1 kinases and present the current biological evidence supporting their utility as radiosensitisers with different radiotherapy modalities, as well as clinical trials that have and are investigating their potential for cancer patient benefit. Full article
(This article belongs to the Special Issue Personalized Radiotherapy in Cancer Care)
Show Figures

Figure 1

16 pages, 2861 KiB  
Article
Crosstalk among WEE1 Kinase, AKT, and GSK3 in Nav1.2 Channelosome Regulation
by Aditya K. Singh, Jully Singh, Nana A. Goode and Fernanda Laezza
Int. J. Mol. Sci. 2024, 25(15), 8069; https://doi.org/10.3390/ijms25158069 - 24 Jul 2024
Viewed by 1467
Abstract
The signaling complex around voltage-gated sodium (Nav) channels includes accessory proteins and kinases crucial for regulating neuronal firing. Previous studies showed that one such kinase, WEE1—critical to the cell cycle—selectively modulates Nav1.2 channel activity through the accessory protein fibroblast growth factor 14 (FGF14). [...] Read more.
The signaling complex around voltage-gated sodium (Nav) channels includes accessory proteins and kinases crucial for regulating neuronal firing. Previous studies showed that one such kinase, WEE1—critical to the cell cycle—selectively modulates Nav1.2 channel activity through the accessory protein fibroblast growth factor 14 (FGF14). Here, we tested whether WEE1 exhibits crosstalk with the AKT/GSK3 kinase pathway for coordinated regulation of FGF14/Nav1.2 channel complex assembly and function. Using the in-cell split luciferase complementation assay (LCA), we found that the WEE1 inhibitor II and GSK3 inhibitor XIII reduce the FGF14/Nav1.2 complex formation, while the AKT inhibitor triciribine increases it. However, combining WEE1 inhibitor II with either one of the other two inhibitors abolished its effect on the FGF14/Nav1.2 complex formation. Whole-cell voltage-clamp recordings of sodium currents (INa) in HEK293 cells co-expressing Nav1.2 channels and FGF14-GFP showed that WEE1 inhibitor II significantly suppresses peak INa density, both alone and in the presence of triciribine or GSK3 inhibitor XIII, despite the latter inhibitor’s opposite effects on INa. Additionally, WEE1 inhibitor II slowed the tau of fast inactivation and caused depolarizing shifts in the voltage dependence of activation and inactivation. These phenotypes either prevailed or were additive when combined with triciribine but were outcompeted when both WEE1 inhibitor II and GSK3 inhibitor XIII were present. Concerted regulation by WEE1 inhibitor II, triciribine, and GSK3 inhibitor XIII was also observed in long-term inactivation and use dependency of Nav1.2 currents. Overall, these findings suggest a complex role for WEE1 kinase—in concert with the AKT/GSK3 pathway—in regulating the Nav1.2 channelosome. Full article
(This article belongs to the Special Issue Protein Kinases in Neurological Disorders)
Show Figures

Figure 1

16 pages, 7106 KiB  
Article
DNA-PKcs Inhibition Sensitizes Human Chondrosarcoma Cells to Carbon Ion Irradiation via Cell Cycle Arrest and Telomere Capping Disruption
by Birgit Lohberger, Sandra Barna, Dietmar Glänzer, Nicole Eck, Andreas Leithner and Dietmar Georg
Int. J. Mol. Sci. 2024, 25(11), 6179; https://doi.org/10.3390/ijms25116179 - 4 Jun 2024
Cited by 1 | Viewed by 1379
Abstract
In order to overcome the resistance to radiotherapy in human chondrosarcoma cells, the prevention from efficient DNA repair with a combined treatment with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) inhibitor AZD7648 was explored for carbon ion (C-ion) as well as reference photon [...] Read more.
In order to overcome the resistance to radiotherapy in human chondrosarcoma cells, the prevention from efficient DNA repair with a combined treatment with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) inhibitor AZD7648 was explored for carbon ion (C-ion) as well as reference photon (X-ray) irradiation (IR) using gene expression analysis, flow cytometry, protein phosphorylation, and telomere length shortening. Proliferation markers and cell cycle distribution changed significantly after combined treatment, revealing a prominent G2/M arrest. The expression of the G2/M checkpoint genes cyclin B, CDK1, and WEE1 was significantly reduced by IR alone and the combined treatment. While IR alone showed no effects, additional AZD7648 treatment resulted in a dose-dependent reduction in AKT phosphorylation and an increase in Chk2 phosphorylation. Twenty-four hours after IR, the key genes of DNA repair mechanisms were reduced by the combined treatment, which led to impaired DNA repair and increased radiosensitivity. A time-dependent shortening of telomere length was observed in both cell lines after combined treatment with AZD7648 and 8 Gy X-ray/C-ion IR. Our data suggest that the inhibition of DNA-PKcs may increase sensitivity to X-rays and C-ion IR by impairing its functional role in DNA repair mechanisms and telomere end protection. Full article
(This article belongs to the Special Issue New Insights into Radiation Oncology)
Show Figures

Figure 1

32 pages, 3104 KiB  
Review
Key Proteins of Replication Stress Response and Cell Cycle Control as Cancer Therapy Targets
by Alvina I. Khamidullina, Yaroslav E. Abramenko, Alexandra V. Bruter and Victor V. Tatarskiy
Int. J. Mol. Sci. 2024, 25(2), 1263; https://doi.org/10.3390/ijms25021263 - 19 Jan 2024
Cited by 27 | Viewed by 7898
Abstract
Replication stress (RS) is a characteristic state of cancer cells as they tend to exchange precision of replication for fast proliferation and increased genomic instability. To overcome the consequences of improper replication control, malignant cells frequently inactivate parts of their DNA damage response [...] Read more.
Replication stress (RS) is a characteristic state of cancer cells as they tend to exchange precision of replication for fast proliferation and increased genomic instability. To overcome the consequences of improper replication control, malignant cells frequently inactivate parts of their DNA damage response (DDR) pathways (the ATM-CHK2-p53 pathway), while relying on other pathways which help to maintain replication fork stability (ATR-CHK1). This creates a dependency on the remaining DDR pathways, vulnerability to further destabilization of replication and synthetic lethality of DDR inhibitors with common oncogenic alterations such as mutations of TP53, RB1, ATM, amplifications of MYC, CCNE1 and others. The response to RS is normally limited by coordination of cell cycle, transcription and replication. Inhibition of WEE1 and PKMYT1 kinases, which prevent unscheduled mitosis entry, leads to fragility of under-replicated sites. Recent evidence also shows that inhibition of Cyclin-dependent kinases (CDKs), such as CDK4/6, CDK2, CDK8/19 and CDK12/13 can contribute to RS through disruption of DNA repair and replication control. Here, we review the main causes of RS in cancers as well as main therapeutic targets—ATR, CHK1, PARP and their inhibitors. Full article
(This article belongs to the Special Issue DNA Replication and DNA Damage Response in Aging and Disease)
Show Figures

Figure 1

19 pages, 2681 KiB  
Review
Unleashing the Power of Synthetic Lethality: Augmenting Treatment Efficacy through Synergistic Integration with Chemotherapy Drugs
by Yajing Du, Lulu Luo, Xinru Xu, Xinbing Yang, Xueni Yang, Shizheng Xiong, Jiafeng Yu, Tingming Liang and Li Guo
Pharmaceutics 2023, 15(10), 2433; https://doi.org/10.3390/pharmaceutics15102433 - 8 Oct 2023
Cited by 10 | Viewed by 3932
Abstract
Cancer is the second leading cause of death in the world, and chemotherapy is one of the main methods of cancer treatment. However, the resistance of cancer cells to chemotherapeutic drugs has always been the main reason affecting the therapeutic effect. Synthetic lethality [...] Read more.
Cancer is the second leading cause of death in the world, and chemotherapy is one of the main methods of cancer treatment. However, the resistance of cancer cells to chemotherapeutic drugs has always been the main reason affecting the therapeutic effect. Synthetic lethality has emerged as a promising approach to augment the sensitivity of cancer cells to chemotherapy agents. Synthetic lethality (SL) refers to the specific cell death resulting from the simultaneous mutation of two non-lethal genes, which individually allow cell survival. This comprehensive review explores the classification of SL, screening methods, and research advancements in SL inhibitors, including Poly (ADP-ribose) polymerase (PARP) inhibitors, Ataxia telangiectasia and Rad3-related (ATR) inhibitors, WEE1 G2 checkpoint kinase (WEE1) inhibitors, and protein arginine methyltransferase 5 (PRMT5) inhibitors. Emphasizing their combined use with chemotherapy drugs, we aim to unveil more effective treatment strategies for cancer patients. Full article
(This article belongs to the Special Issue Novel Anticancer Strategies, 3rd Edition)
Show Figures

Figure 1

21 pages, 7560 KiB  
Article
Bortezomib Is Effective in the Treatment of T Lymphoblastic Leukaemia by Inducing DNA Damage, WEE1 Downregulation, and Mitotic Catastrophe
by Rahman Ud Din, Anan Jiao, Yinxia Qiu, Aarmann Anil Mohinani Mohan, Kei-Ching Yuen, Hoi-Tung Wong, Timothy Ming-Hun Wan, Phoebe On-Yi Wong and Chun-Fung Sin
Int. J. Mol. Sci. 2023, 24(19), 14646; https://doi.org/10.3390/ijms241914646 - 27 Sep 2023
Cited by 3 | Viewed by 2731
Abstract
T lymphoblastic leukemia (T-ALL) is an aggressive haematolymphoid malignancy comprising 15% of acute lymphoblastic leukemia (ALL). Although its prognosis has improved with intensive chemotherapy, the relapse/refractory disease still carries a dismal prognosis. Thus, there is an urgent need to develop novel therapy for [...] Read more.
T lymphoblastic leukemia (T-ALL) is an aggressive haematolymphoid malignancy comprising 15% of acute lymphoblastic leukemia (ALL). Although its prognosis has improved with intensive chemotherapy, the relapse/refractory disease still carries a dismal prognosis. Thus, there is an urgent need to develop novel therapy for T-ALL. Bortezomib, a 26S proteasome inhibitor, is licensed to treat plasma cell myeloma and mantle cell lymphoma. Due to its favorable side effect profile, it is a novel agent of research interest in the treatment of ALL. Despite an increasing number of clinical trials of bortezomib in T-ALL, its detailed mechanistic study in terms of DNA damage, cell cycle, and mitotic catastrophe remains elusive. Moreover, WEE1, a protein kinase overexpressed in ALL and involved in cell-cycle regulation, has been known to be a novel therapeutic target in many cancers. But the role of bortezomib in modulating WEE1 expression in ALL still remains elusive. In this study, we demonstrate the therapeutic efficacy of bortezomib on T-ALL primary samples and cell lines. Our findings reveal that bortezomib treatment induces DNA damage and downregulates WEE1, leading to G2-M cell-cycle progression with damaged DNA. This abnormal mitotic entry induced by bortezomib leads to mitotic catastrophe in T-ALL. In conclusion, our findings dissect the mechanism of action of bortezomib and provide further insights into the use of bortezomib to treat T-ALL. Our findings suggest the possibility of novel combination therapy using proteasome inhibitors together with DNA-damaging agents in the future, which may fill the research gaps and unmet clinical needs in treating ALL. Full article
(This article belongs to the Special Issue Advances in Molecular Activity of Potential Drugs 3.0)
Show Figures

Figure 1

15 pages, 834 KiB  
Review
CDC6 as a Key Inhibitory Regulator of CDK1 Activation Dynamics and the Timing of Mitotic Entry and Progression
by Mohammed El Dika, Damian Dudka, Malgorzata Kloc and Jacek Z. Kubiak
Biology 2023, 12(6), 855; https://doi.org/10.3390/biology12060855 - 14 Jun 2023
Cited by 4 | Viewed by 4038
Abstract
Timely mitosis is critically important for early embryo development. It is regulated by the activity of the conserved protein kinase CDK1. The dynamics of CDK1 activation must be precisely controlled to assure physiologic and timely entry into mitosis. Recently, a known S-phase regulator [...] Read more.
Timely mitosis is critically important for early embryo development. It is regulated by the activity of the conserved protein kinase CDK1. The dynamics of CDK1 activation must be precisely controlled to assure physiologic and timely entry into mitosis. Recently, a known S-phase regulator CDC6 emerged as a key player in mitotic CDK1 activation cascade in early embryonic divisions, operating together with Xic1 as a CDK1 inhibitor upstream of the Aurora A and PLK1, both CDK1 activators. Herein, we review the molecular mechanisms that underlie the control of mitotic timing, with special emphasis on how CDC6/Xic1 function impacts CDK1 regulatory network in the Xenopus system. We focus on the presence of two independent mechanisms inhibiting the dynamics of CDK1 activation, namely Wee1/Myt1- and CDC6/Xic1-dependent, and how they cooperate with CDK1-activating mechanisms. As a result, we propose a comprehensive model integrating CDC6/Xic1-dependent inhibition into the CDK1-activation cascade. The physiological dynamics of CDK1 activation appear to be controlled by the system of multiple inhibitors and activators, and their integrated modulation ensures concomitantly both the robustness and certain flexibility of the control of this process. Identification of multiple activators and inhibitors of CDK1 upon M-phase entry allows for a better understanding of why cells divide at a specific time and how the pathways involved in the timely regulation of cell division are all integrated to precisely tune the control of mitotic events. Full article
Show Figures

Graphical abstract

15 pages, 2250 KiB  
Review
How ITD Insertion Sites Orchestrate the Biology and Disease of FLT3-ITD-Mutated Acute Myeloid Leukemia
by Tobias R. Haage, Burkhart Schraven, Dimitrios Mougiakakos and Thomas Fischer
Cancers 2023, 15(11), 2991; https://doi.org/10.3390/cancers15112991 - 30 May 2023
Cited by 6 | Viewed by 4082
Abstract
Mutations of the FLT3 gene are among the most common genetic aberrations detected in AML and occur mainly as internal tandem duplications (FLT3-ITD). However, the specific sites of FLT3-ITD insertion within FLT3 show marked heterogeneity regarding both biological and clinical features. In contrast [...] Read more.
Mutations of the FLT3 gene are among the most common genetic aberrations detected in AML and occur mainly as internal tandem duplications (FLT3-ITD). However, the specific sites of FLT3-ITD insertion within FLT3 show marked heterogeneity regarding both biological and clinical features. In contrast to the common assumption that ITD insertion sites (IS) are restricted to the juxtamembrane domain (JMD) of FLT3, 30% of FLT3-ITD mutations insert at the non-JMD level, thereby integrating into various segments of the tyrosine kinase subdomain 1 (TKD1). ITDs inserted within TKD1 have been shown to be associated with inferior complete remission rates as well as shorter relapse-free and overall survival. Furthermore, resistance to chemotherapy and tyrosine kinase inhibition (TKI) is linked to non-JMD IS. Although FLT3-ITD mutations in general are already recognized as a negative prognostic marker in currently used risk stratification guidelines, the even worse prognostic impact of non-JMD-inserting FLT3-ITD has not yet been particularly considered. Recently, the molecular and biological assessment of TKI resistance highlighted the pivotal role of activated WEE1 kinase in non-JMD-inserting ITDs. Overcoming therapy resistance in non-JMD FLT3-ITD-mutated AML may lead to more effective genotype- and patient-specific treatment approaches. Full article
Show Figures

Figure 1

13 pages, 1578 KiB  
Article
Development of Cell Permeable NanoBRET Probes for the Measurement of PLK1 Target Engagement in Live Cells
by Xuan Yang, Jeffery L. Smith, Michael T. Beck, Jennifer M. Wilkinson, Ani Michaud, James D. Vasta, Matthew B. Robers and Timothy M. Willson
Molecules 2023, 28(7), 2950; https://doi.org/10.3390/molecules28072950 - 25 Mar 2023
Cited by 7 | Viewed by 3234
Abstract
PLK1 is a protein kinase that regulates mitosis and is both an important oncology drug target and a potential antitarget of drugs for the DNA damage response pathway or anti-infective host kinases. To expand the range of live cell NanoBRET target engagement assays [...] Read more.
PLK1 is a protein kinase that regulates mitosis and is both an important oncology drug target and a potential antitarget of drugs for the DNA damage response pathway or anti-infective host kinases. To expand the range of live cell NanoBRET target engagement assays to include PLK1, we developed an energy transfer probe based on the anilino-tetrahydropteridine chemotype found in several selective PLK inhibitors. Probe 11 was used to configure NanoBRET target engagement assays for PLK1, PLK2, and PLK3 and measure the potency of several known PLK inhibitors. In-cell target engagement for PLK1 was in good agreement with the reported cellular potency for the inhibition of cell proliferation. Probe 11 enabled the investigation of the promiscuity of adavosertib, which had been described as a dual PLK1/WEE1 inhibitor in biochemical assays. Live cell target engagement analysis of adavosertib via NanoBRET demonstrated PLK activity at micromolar concentrations but only selective engagement of WEE1 at clinically relevant doses. Full article
(This article belongs to the Special Issue Targeting Protein Kinases for Human Diseases)
Show Figures

Graphical abstract

13 pages, 3074 KiB  
Article
Combination of EphA2- and Wee1-Targeted Therapies in Endometrial Cancer
by Santosh K. Dasari, Robiya Joseph, Sujanitha Umamaheswaran, Lingegowda S. Mangala, Emine Bayraktar, Cristian Rodriguez-Aguayo, Yutuan Wu, Nghi Nguyen, Reid T. Powell, Mary Sobieski, Yuan Liu, Mamur A. Chowdhury, Paola Amero, Clifford Stephan, Gabriel Lopez-Berestein, Shannon N. Westin and Anil K. Sood
Int. J. Mol. Sci. 2023, 24(4), 3915; https://doi.org/10.3390/ijms24043915 - 15 Feb 2023
Cited by 7 | Viewed by 3497
Abstract
EphA2 tyrosine kinase is upregulated in many cancers and correlated with poor survival of patients, including those with endometrial cancer. EphA2-targeted drugs have shown modest clinical benefit. To improve the therapeutic response to such drugs, we performed a high-throughput chemical screen to discover [...] Read more.
EphA2 tyrosine kinase is upregulated in many cancers and correlated with poor survival of patients, including those with endometrial cancer. EphA2-targeted drugs have shown modest clinical benefit. To improve the therapeutic response to such drugs, we performed a high-throughput chemical screen to discover novel synergistic partners for EphA2-targeted therapeutics. Our screen identified the Wee1 kinase inhibitor, MK1775, as a synergistic partner to EphA2, and this finding was confirmed using both in vitro and in vivo experiments. We hypothesized that Wee1 inhibition would sensitize cells to EphA2-targeted therapy. Combination treatment decreased cell viability, induced apoptosis, and reduced clonogenic potential in endometrial cancer cell lines. In vivo Hec1A and Ishikawa-Luc orthotopic mouse models of endometrial cancer showed greater anti-tumor responses to combination treatment than to either monotherapy. RNASeq analysis highlighted reduced cell proliferation and defective DNA damage response pathways as potential mediators of the combination’s effects. In conclusion, our preclinical findings indicate that Wee1 inhibition can enhance the response to EphA2-targeted therapeutics in endometrial cancer; this strategy thus warrants further development. Full article
(This article belongs to the Special Issue New Insights into Endometrial Cancer 2022)
Show Figures

Figure 1

21 pages, 3264 KiB  
Article
Combined Inhibition of IAPs and WEE1 Enhances TNFα- and Radiation-Induced Cell Death in Head and Neck Squamous Carcinoma
by Tiffany Toni, Ramya Viswanathan, Yvette Robbins, Sreenivasulu Gunti, Xinping Yang, Angel Huynh, Hui Cheng, Anastasia L. Sowers, James B. Mitchell, Clint T. Allen, Ethan L. Morgan and Carter Van Waes
Cancers 2023, 15(4), 1029; https://doi.org/10.3390/cancers15041029 - 6 Feb 2023
Cited by 8 | Viewed by 2866
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a prevalent diagnosis with current treatment options that include radiotherapy and immune-mediated therapies, in which tumor necrosis factor-α (TNFα) is a key mediator of cytotoxicity. However, HNSCC and other cancers often display TNFα resistance due [...] Read more.
Head and neck squamous cell carcinoma (HNSCC) remains a prevalent diagnosis with current treatment options that include radiotherapy and immune-mediated therapies, in which tumor necrosis factor-α (TNFα) is a key mediator of cytotoxicity. However, HNSCC and other cancers often display TNFα resistance due to activation of the canonical IKK–NFκB/RELA pathway, which is activated by, and induces expression of, cellular inhibitors of apoptosis proteins (cIAPs). Our previous studies have demonstrated that the IAP inhibitor birinapant sensitized HNSCC to TNFα-dependent cell death in vitro and radiotherapy in vivo. Furthermore, we recently demonstrated that the inhibition of the G2/M checkpoint kinase WEE1 also sensitized HNSCC cells to TNFα-dependent cell death, due to the inhibition of the pro-survival IKK-NFκB/RELA complex. Given these observations, we hypothesized that dual-antagonist therapy targeting both IAP and WEE1 proteins may have the potential to synergistically sensitize HNSCC to TNFα-dependent cell death. Using the IAP inhibitor birinapant and the WEE1 inhibitor AZD1775, we show that combination treatment reduced cell viability, proliferation and survival when compared with individual treatment. Furthermore, combination treatment enhanced the sensitivity of HNSCC cells to TNFα-induced cytotoxicity via the induction of apoptosis and DNA damage. Additionally, birinapant and AZD1775 combination treatment decreased cell proliferation and survival in combination with radiotherapy, a critical source of TNFα. These results support further investigation of IAP and WEE1 inhibitor combinations in preclinical and clinical studies in HNSCC. Full article
(This article belongs to the Special Issue Precision Medicine for Head and Neck Cancer)
Show Figures

Figure 1

Back to TopTop