Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = WPA2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1422 KiB  
Article
Potable Water Recovery for Space Habitation Systems Using Hybrid Life Support Systems: Biological Pretreatment Coupled with Reverse Osmosis for Humidity Condensate Recovery
by Sunday Adu, William Shane Walker and William Andrew Jackson
Membranes 2025, 15(7), 212; https://doi.org/10.3390/membranes15070212 - 16 Jul 2025
Viewed by 584
Abstract
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station [...] Read more.
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station (ISS). The main contaminants in HC are primarily low-molecular-weight organics and ammonia. This has caused operational issues due to microbial growth in the Water Process Assembly (WPA) storage tank as well as failure of downstream systems. In addition, treatment of this wastewater primarily uses adsorptive and exchange media, which must be continually resupplied and represent a significant life-cycle cost. This study demonstrates the integration of a membrane-aerated biological reactor (MABR) for pretreatment and storage of HC, followed by brackish water reverse osmosis (BWRO). Two system configurations were tested: (1) periodic MABR fluid was sent to batch RO operating at 90% water recovery with the RO concentrate sent to a separate waste tank; and (2) periodic MABR fluid was sent to batch RO operating at 90% recovery with the RO concentrate returned to the MABR (accumulating salinity in the MABR). With an external recycle tank (configuration 2), the system produced 2160 L (i.e., 1080 crew-days) of near potable water (dissolved organic carbon (DOC) < 10 mg/L, total nitrogen (TN) < 12 mg/L, total dissolved solids (TDS) < 30 mg/L) with a single membrane (weight of 260 g). When the MABR was used as the RO recycle tank (configuration 1), 1100 L of permeate could be produced on a single membrane; RO permeate quality was slightly better but generally similar to the first configuration even though no brine was wasted during the run. The results suggest that this hybrid system has the potential to significantly enhance the self-sufficiency of space habitats, supporting sustainable extraterrestrial human habitation, as well as reducing current operational problems on the ISS. These systems may also apply to extreme locations such as remote/isolated terrestrial locations, especially in arid and semi-arid regions. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

29 pages, 5719 KiB  
Article
Cross-Floor Vibration Wave Propagation in High-Rise Industrial Buildings Under TMD Control
by Ruoyang Zhou and Xiaoxiong Zha
Infrastructures 2025, 10(7), 169; https://doi.org/10.3390/infrastructures10070169 - 3 Jul 2025
Viewed by 282
Abstract
High-rise industrial buildings are particularly susceptible to vibration-induced comfort issues, which can negatively impact both the health and productivity of workers and office staff. Unlike most existing studies that focus on local structural components, this study proposes and validates a wave propagation analysis [...] Read more.
High-rise industrial buildings are particularly susceptible to vibration-induced comfort issues, which can negatively impact both the health and productivity of workers and office staff. Unlike most existing studies that focus on local structural components, this study proposes and validates a wave propagation analysis (WPA) method to predict peak accelerations of the floor caused by excitations located on different floors. The method is validated through on-site vibration tests conducted on a high-rise industrial building with shared factory and office space. A simplified regression-based propagation equation is further developed to facilitate practical design applications. The regression parameters are fitted using theoretical calculation results, enabling rapid prediction of peak acceleration responses on the same or different floors. To enhance vibration control, tuned mass dampers (TMDs) are installed on selected floors, and additional tests are conducted with the TMDs activated. An insertion loss-based correction is introduced into the WPA framework to account for the TMD’s frequency-dependent attenuation effects. The extended method supports both accurate prediction of vibration reduction and optimisation of TMD placement across multiple floors in high-rise industrial buildings. Full article
Show Figures

Figure 1

16 pages, 3885 KiB  
Article
An Interdisciplinary Perspective of the Karst Springs’ Areas as Drinking Water: Perusal from Northeastern Slovenia
by Natalija Špeh and Anja Bubik
Pollutants 2025, 5(3), 19; https://doi.org/10.3390/pollutants5030019 - 1 Jul 2025
Viewed by 647
Abstract
Karst aquifer systems are highly vulnerable due to their unique underground water flow characteristics, making them prone to contamination and abandonment. This study compares an active karst water source (Ljubija) with a previously abandoned one (Rečica) to assess freshwater quality and water protection [...] Read more.
Karst aquifer systems are highly vulnerable due to their unique underground water flow characteristics, making them prone to contamination and abandonment. This study compares an active karst water source (Ljubija) with a previously abandoned one (Rečica) to assess freshwater quality and water protection risks, especially as water scarcity becomes a concern during dry summer periods. The Ljubija and Rečica catchments, designated as water protection areas (WPAs), were monitored over a year (January–December 2020). Groundwater (GW) and surface water (SW) were analyzed twice a month during both dry and wet periods, adhering to European and national guidelines. An interdisciplinary approach integrated natural and human impact indicators, linking water quality to precipitation, hydrogeography, and landscape characteristics. After Slovene regulation standards (50 mg/L), the Ljubija source demonstrated stable water quality, with low nitrate levels (average 2.6 mg/L) and minimal human impact. In contrast, the Rečica catchment was more vulnerable, with its GW excluded from drinking use since the 1990s due to organic contamination, worsened by the area’s karst hydrogeology. In 2020, its nitrate concentration averaged 6.0 mg/L. These findings highlight the need for improved monitoring regulations, particularly for vulnerable karst water sources, to safeguard water quality and ensure sustainable use. Full article
Show Figures

Figure 1

17 pages, 4425 KiB  
Article
Design and Implementation of a Secure Communication Architecture for IoT Devices
by Cezar-Gabriel Dumitrache and Petre Anghelescu
J. Sens. Actuator Netw. 2025, 14(4), 64; https://doi.org/10.3390/jsan14040064 - 23 Jun 2025
Viewed by 513
Abstract
This paper explores the integration of Internet of Things (IoT) devices into modern cybersecurity frameworks, and it is intended to be a binder for the incorporation of these devices into emerging cybersecurity paradigms. Most IoT devices rely on WPA2-personal protocol, a wireless protocol [...] Read more.
This paper explores the integration of Internet of Things (IoT) devices into modern cybersecurity frameworks, and it is intended to be a binder for the incorporation of these devices into emerging cybersecurity paradigms. Most IoT devices rely on WPA2-personal protocol, a wireless protocol with known security flaws, being effortless to penetrate by using various specific tools. Through this paper, we proposed the use of two Raspberry Pi platforms, with the help of which we created a secure wireless connection by implementing the 802.1X protocol and using digital certificates. Implementing this type of architecture and the devices used, we obtained huge benefits from the point of view of security and energy consumption. We tested multiple authentication methods, including EAP-TLS and EAP-MSCHAPv2, with the Raspberry Pi acting as an authentication server and certificate manager. Performance metrics such as power consumption, latency, and network throughput were analysed, confirming the architecture’s effectiveness and scalability for larger IoT deployments. Full article
Show Figures

Figure 1

22 pages, 3006 KiB  
Article
Evaluation of Thermal Aging Susceptibility of Recycled Waste Plastic Aggregates (Low-Density Polyethylene, High-Density Polyethylene, and Polypropylene) in Recycled Asphalt Pavement Mixtures
by Yeong-Min Kim and Kyungnam Kim
Polymers 2025, 17(6), 731; https://doi.org/10.3390/polym17060731 - 10 Mar 2025
Viewed by 1158
Abstract
The increasing demand for sustainable road construction materials necessitates innovative solutions to overcome the challenges of Recycled Asphalt Pavement (RAP), including aged binder brittleness, reduced flexibility, and durability concerns. Waste Plastic Aggregates (WPA) offer a promising alternative; however, their thermal aging behavior and [...] Read more.
The increasing demand for sustainable road construction materials necessitates innovative solutions to overcome the challenges of Recycled Asphalt Pavement (RAP), including aged binder brittleness, reduced flexibility, and durability concerns. Waste Plastic Aggregates (WPA) offer a promising alternative; however, their thermal aging behavior and interactions with RAP remain insufficiently understood. This study evaluates the performance of RAP-based asphalt mixtures, incorporating three types of WPA—Low-Density Polyethylene (LDPE), High-Density Polyethylene (HDPE), and Polypropylene (PP)—under three thermal aging conditions: mild (60 °C for 7 days), moderate (80 °C for 14 days), and severe (100 °C for 30 days). The mixtures were designed with 30% RAP content, 10% and 20% WPA by aggregate weight, and SBS-modified binder rejuvenated with 2% and 4% sewage sludge bio-oil by binder weight. It is considered that thermal aging may impact the performance of WPA in RAP mixtures; therefore, this study evaluates the durability and mechanical properties of RAP mixtures incorporating LDPE, HDPE, and PP under varying thermal aging conditions to address these challenges. The results showed that incorporating WPA and bio-oil significantly enhanced the mechanical performance, durability, and sustainability of asphalt mixtures. Marshall Stability increased by 12–23%, with values ranging from 12.6 to 13.2 kN for WPA-enhanced mixtures compared to 12.7 kN for the control. ITS improved by 15–20% in dry conditions (1.34–1.44 MPa) and 12–18% in wet conditions (1.15–1.19 MPa), with TSR values reaching up to 82.64%. Fatigue life was extended by 28–43%, with load cycles increasing from 295,600 for the control to 352,310 for PP mixtures. High-temperature performance showed a 12–18% improvement in softening point (57.3 °C to 61.2 °C) and a 23% increase in rutting resistance, with rut depths decreasing from 7.1 mm for the control to 5.45 mm for PP mixtures after 20,000 passes. These results demonstrate that combining RAP, WPA, and bio-oil produces sustainable asphalt mixtures with superior performance under aging and environmental stressors, offering robust solutions for high-demand applications in modern infrastructure. Full article
(This article belongs to the Special Issue Progress in Recycling of (Bio)Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

12 pages, 2416 KiB  
Article
Comparative Experimental Evaluation of Orthodontic Appliances for Maxillary Arch Expansion
by Ghazal Ebrahimy, Anna Konermann, Tarek El-Bialy, Ludger Keilig and Christoph Bourauel
J. Clin. Med. 2024, 13(21), 6473; https://doi.org/10.3390/jcm13216473 - 29 Oct 2024
Cited by 1 | Viewed by 1122
Abstract
Background/Objectives: The orthodontic treatment of posterior crossbite using appliances for gradual maxillary expansion is crucial to ensure proper transversal jaw relationships as much as occlusal functionality. The aim of this study was to analyze forces and torques generated by different appliances for maxillary [...] Read more.
Background/Objectives: The orthodontic treatment of posterior crossbite using appliances for gradual maxillary expansion is crucial to ensure proper transversal jaw relationships as much as occlusal functionality. The aim of this study was to analyze forces and torques generated by different appliances for maxillary expansion. Methods: Measurements were conducted for the Wilson® 3D® Quadhelix (WQH) and Wilson® 3D® Multi-Action Palatal Appliance (WPA) across various sizes and compared to the Remanium® Quadhelix (RQH). Activations were set to 8 mm for the WQH and RQH and 6 and 8 mm for the WPA. Rotations and root torque were simulated via an activation of 10° for arches. A total of eight test series were conducted. Results: The WPA displayed the highest force and torque values for all movements, far surpassing recommended guideline values (expansion 8.5–>15.0 N/46.3–86.5 Nmm, rotation 3.1–6.1 N/40.7–61.4 Nmm, torque 3.9–5.1 N/22.4–29.7 Nmm), and the WQH displayed the lowest values (expansion 2.7–12.6 N/11.1–39.6 Nmm, rotation 0.1–1.7 N/23.0–32.2 Nmm, torque 0.9–2.9 N/3.4–10.5 Nmm). Appliances with the smallest transverse dimensions exhibited the highest force and torque maxima. Conclusions: This study underscores the importance of understanding biomechanical principles in orthodontics for minimizing unintended tooth movements, providing detailed insights into the force systems of appliances acting in the transverse plane, and establishing a foundation for future clinical investigations to validate these in vitro findings. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

19 pages, 8517 KiB  
Article
Data Mining Approach for Evil Twin Attack Identification in Wi-Fi Networks
by Roman Banakh, Elena Nyemkova, Connie Justice, Andrian Piskozub and Yuriy Lakh
Data 2024, 9(10), 119; https://doi.org/10.3390/data9100119 - 14 Oct 2024
Viewed by 3384
Abstract
Recent cyber security solutions for wireless networks during internet open access have become critically important for personal data security. The newest WPA3 network security protocol has been used to maximize this protection; however, attackers can use an Evil Twin attack to replace a [...] Read more.
Recent cyber security solutions for wireless networks during internet open access have become critically important for personal data security. The newest WPA3 network security protocol has been used to maximize this protection; however, attackers can use an Evil Twin attack to replace a legitimate access point. The article is devoted to solving the problem of intrusion detection at the OSI model’s physical layers. To solve this, a hardware–software complex has been developed to collect information about the signal strength from Wi-Fi access points using wireless sensor networks. The collected data were supplemented with a generative algorithm considering all possible combinations of signal strength. The k-nearest neighbor model was trained on the obtained data to distinguish the signal strength of legitimate from illegitimate access points. To verify the authenticity of the data, an Evil Twin attack was physically simulated, and a machine learning model analyzed the data from the sensors. As a result, the Evil Twin attack was successfully identified based on the signal strength in the radio spectrum. The proposed model can be used in open access points as well as in large corporate and home Wi-Fi networks to detect intrusions aimed at substituting devices in the radio spectrum where IEEE 802.11 networking equipment operates. Full article
(This article belongs to the Section Information Systems and Data Management)
Show Figures

Figure 1

26 pages, 6605 KiB  
Article
Design and Evaluation of Wireless DYU Air Box for Environment-Monitoring IoT System on Da-Yeh University Campus
by Lun-Min Shih, Huan-Liang Tsai and Cheng-Yu Tsai
Appl. Sci. 2024, 14(5), 2201; https://doi.org/10.3390/app14052201 - 6 Mar 2024
Cited by 4 | Viewed by 1999
Abstract
This paper presents an original wireless DYU Air Box of an environment-monitoring IoT (EMIoT) system on a campus to offer information on environmental conditions through the public ThingSpeak IoT platform for stakeholders including all the students and employees on the Da-Yeh University (DYU) [...] Read more.
This paper presents an original wireless DYU Air Box of an environment-monitoring IoT (EMIoT) system on a campus to offer information on environmental conditions through the public ThingSpeak IoT platform for stakeholders including all the students and employees on the Da-Yeh University (DYU) campus in Taiwan. Firstly, the proposed wireless heterogeneous multi-sensor module aggregates BME680, SCD30, PMS7003, and BH1750 sensors with a TTGO ESP32 Wi-Fi device based on the I2C and UART interface standards of series communication. Through the DYU-802.1X Wi-Fi network with the WPA2 Enterprise security directly, the wireless multi-sensor monitoring module further forwards the observation data of environmental conditions on campus via the DYU-802.1X Wi-Fi network to the public ThingSpeak IoT platform, which is a cloud service platform to aggregate, visualize, and analyze live sensing data of air quality index (AQI), concentrations of PM1.0/2.5 and CO2, brightness, ambient temperature, and relative humidity (RH). The results illustrate the proposed DYU Air Box for monitoring the indoor environmental conditions on campus and validate them with sufficient accuracy and confidence with commercialized measurement instruments. In this work, the wireless smart environment-monitoring IoT system features monitoring and automatic alarm functions for monitoring AQI, CO2, and PM concentrations, as well as ambient illumination, temperature, and RH parameters and collaboration and interoperability through the Enterprise Intranet. All the organizational stakeholders interested in the environmental conditions of the DYU campus can openly access the information according to their interests. In the upcoming future, the information of the environmental conditions in the DYU campus will be developed to be simultaneously accessed by all the stakeholders through both the public ThingSpeak IoT platform and the private EMIoT system. Full article
Show Figures

Figure 1

16 pages, 6621 KiB  
Article
Synthesis and Properties of Cationic Core-Shell Fluorinated Polyurethane Acrylate
by Junhua Chen, Xiaoting Lu, Jinlian Chen, Shiting Li, He Zhang, Yinping Wu, Dongyu Zhu and Xiangying Hao
Polymers 2024, 16(1), 86; https://doi.org/10.3390/polym16010086 - 27 Dec 2023
Cited by 7 | Viewed by 2313
Abstract
Vinyl-capped cationic waterborne polyurethane (CWPU) was prepared using isophorone diisocyanate (IPDI), polycarbonate diol (PCDL), N-methyldiethanolamine (MDEA), and trimethylolpropane (TMP) as raw materials and hydroxyethyl methacrylate (HEMA) as a capping agent. Then, a crosslinked FPUA composite emulsion with polyurethane (PU) as the shell [...] Read more.
Vinyl-capped cationic waterborne polyurethane (CWPU) was prepared using isophorone diisocyanate (IPDI), polycarbonate diol (PCDL), N-methyldiethanolamine (MDEA), and trimethylolpropane (TMP) as raw materials and hydroxyethyl methacrylate (HEMA) as a capping agent. Then, a crosslinked FPUA composite emulsion with polyurethane (PU) as the shell and fluorinated acrylate (PA) as the core was prepared by core-shell emulsion polymerization with CWPU as the seed emulsion, together with dodecafluoroheptyl methacrylate (DFMA), diacetone acrylamide (DAAM), and methyl methacrylate (MMA). The effects of the core-shell ratio of PA/PU on the surface properties, mechanical properties, and heat resistance of FPUA emulsions and films were investigated. The results showed that when w(PA) = 30~50%, the stability of FPUA emulsion was the highest, and the particles showed a core-shell structure with bright and dark intersections under TEM. When w(PA) = 30%, the tensile strength reached 23.35 ± 0.08 MPa. When w(PA) = 50%, the fluorine content on the surface of the coating film was 14.75% and the contact angle was as high as 98.5°, which showed good hydrophobicity; the surface flatness of the film was observed under AFM. It is found that the tensile strength of the film increases and then decreases with the increase in the core-shell ratio and the heat resistance of the FPUA film is gradually increased. The FPUA film has excellent properties such as good impact resistance, high flexibility, high adhesion, and corrosion resistance. Full article
(This article belongs to the Special Issue Progress in Polyurethane and Composites)
Show Figures

Figure 1

19 pages, 4250 KiB  
Article
Assessing the Viability of Waste Plastic Aggregate in Stone-Modified Asphalt Concrete Mix for Bus Rapid Transit Pavement Maintenance
by Byung-Sik Ohm, Kyungnam Kim, Yeong-Min Kim and Tri Ho Minh Le
Buildings 2023, 13(12), 3069; https://doi.org/10.3390/buildings13123069 - 9 Dec 2023
Cited by 1 | Viewed by 1766
Abstract
This research takes on a scientific problem originating from the pervasive deterioration observed in the pavements of Bus Rapid Transit (BRT) systems, which presents formidable challenges to their durability and imposes significant financial burdens on BRT organizations. While wear and tear on BRT [...] Read more.
This research takes on a scientific problem originating from the pervasive deterioration observed in the pavements of Bus Rapid Transit (BRT) systems, which presents formidable challenges to their durability and imposes significant financial burdens on BRT organizations. While wear and tear on BRT pavements is a widely recognized concern, there exists a pronounced deficiency in sustainable solutions to address this issue comprehensively. This study endeavored to bridge this scientific gap by exploring the option of incorporating waste plastic aggregate (WPA) and recycled asphalt pavement (RAP) into the pavement material. The series of comprehensive investigations commenced with an assessment of modified binders. We identified a 25% extracted RAP binder as the most suitable candidate. Our research next determined that a 4% WPA content offers optimal results when used as an aggregate replacement in a stone-modified asphalt concrete mix, which is further refined with a 13 mm nominal maximum aggregate size (NMAS) gradation, resulting in superior performance. Under double-load conditions of the Hamburg Wheel Tracking test, rutting in the 10 mm NMAS mixture rapidly increased to 9 mm after 12,400 HWT cycles, while the 13 mm NMAS mixture showed a more gradual ascent to the same critical rutting level after 20,000 HWT cycles (a 61% increase). Real-world application at a designated BRT station area in Seoul reinforced the findings, revealing that the use of 13 mm NMAS with 4% WPA and RAP significantly improved performance, reducing rutting to 75 µm and enhancing pavement resilience. This configuration increased Road Bearing Capacity (RBC) to 5400 MPa at the center zone, showcasing superior load-bearing capability. Conversely, the 10 mm NMAS mixture without RAP and WPA experienced severe rutting (220 µm) and a 76% reduction in RBC to 1300 MPa, indicating diminished pavement durability. In general, this research highlights the need for innovative solutions to address BRT pavement maintenance challenges and offers a novel, environmentally friendly, and high-performance alternative to traditional methods. Full article
(This article belongs to the Special Issue Advances in Performance-Based Asphalt and Asphalt Mixtures)
Show Figures

Figure 1

20 pages, 5152 KiB  
Article
Removal of Organic Matter from Tunisian Industrial Phosphoric Acid by Adsorption onto Purified Natural Illite/Kaolinite Clay: Kinetics, Isothermal and Thermodynamic Studies
by Sina Oueriemi, Hedi Ben Amor, Walid Hassen, Bilel Hadrich, Chemseddine Maatki, Karim Kriaa and Lioua Kolsi
Materials 2023, 16(18), 6228; https://doi.org/10.3390/ma16186228 - 15 Sep 2023
Cited by 1 | Viewed by 1787
Abstract
This work aims to use a green, economical and efficient adsorbent to remove organic matter from Tunisian industrial wet phosphoric acid (WPA: 52% P2O5). For this purpose, a natural and abundant clay is extracted from the Douiret, Tataouine deposit [...] Read more.
This work aims to use a green, economical and efficient adsorbent to remove organic matter from Tunisian industrial wet phosphoric acid (WPA: 52% P2O5). For this purpose, a natural and abundant clay is extracted from the Douiret, Tataouine deposit in southern Tunisia. This clay is being tested for the first time as an adsorbent in WPA medium. The raw clay and purified clay are analysed using standard analytical techniques such as Fourier transform infrared spectroscopy, X-ray diffraction, and BET methods. The results show that the raw clay is a mixture of illite and kaolinite, with other mineral impurities, mainly quartz. Organic matter adsorption tests show that the purified clay exhibits greater effectiveness than raw clay. The parametric study with purified clay indicates that temperature, contact time, and clay dosage strongly influence organic matter adsorption. The highest adsorption occurs at 60 °C after 50 min, reaching 56% with 8 g of purified clay per kg of WPA. Among several recognised models, the pseudo-second-order kinetic model and the Sips isotherm model are the most suitable for modelling the experimental data. This study suggests that Douiret clay can be considered an effective, inexpensive and environmentally friendly adsorbent for eliminating organic matter in industrial phosphoric acid. Full article
(This article belongs to the Special Issue Environmentally Friendly Adsorption Materials)
Show Figures

Figure 1

19 pages, 3946 KiB  
Article
Feasibility of Sustainable Asphalt Concrete Materials Utilizing Waste Plastic Aggregate, Epoxy Resin, and Magnesium-Based Additive
by Sang-Yum Lee and Tri Ho Minh Le
Polymers 2023, 15(15), 3293; https://doi.org/10.3390/polym15153293 - 3 Aug 2023
Cited by 8 | Viewed by 2095
Abstract
This research addresses the urgent need for sustainable and durable asphalt mixtures by quantitatively investigating the effects of incorporating waste plastic aggregate (WPA) and magnesium-based additives. This study explores WPA content levels of 3%, 5%, and 7% wt of aggregate in combination with [...] Read more.
This research addresses the urgent need for sustainable and durable asphalt mixtures by quantitatively investigating the effects of incorporating waste plastic aggregate (WPA) and magnesium-based additives. This study explores WPA content levels of 3%, 5%, and 7% wt of aggregate in combination with a fixed 3% wt epoxy resin content to the asphalt binder, supplemented with the 1.5% wt magnesium-based additive. The novelty of this research lies in its comprehensive analysis of various performance parameters, including deformation strength, indirect tensile strength (ITS), rut depth, and dynamic stability, to assess the impact of WPA, epoxy resin, and the magnesium-based additive on asphalt mixture properties. The results demonstrate significant improvements in key performance aspects with increasing WPA content. The WPA mixtures exhibit enhanced deformation strength, with values of 4.01, 3.7, and 3.32 MPa for 3, 5, and 7% wt WPA content, respectively, compared to the control mixture. Furthermore, the inclusion of WPA and epoxy resin, along with the magnesium-based additive, contributes to improved adhesion, cohesion, and resistance to stripping damage. Notably, the 7% wt WPA mixture showcases exceptional performance, characterized by a final rut depth of 2.66 mm and a dynamic stability of 7519 passes per millimeter, highlighting its superior rutting resistance and load-bearing capacity. This study also reveals the influence of WPA content on ITS and stiffness properties, with the 5% wt WPA mixture achieving an optimal balance between strength and stiffness. Overall, this research highlights the potential of incorporating WPA, epoxy resin, and magnesium-based additives in asphalt mixtures to enhance their performance and durability. By utilizing plastic waste materials and optimizing their combination with epoxy reinforcement, along with the innovative use of magnesium-based additive, the findings contribute to the development of sustainable infrastructure materials and pave the way for further advancements in the field. Full article
Show Figures

Figure 1

22 pages, 5608 KiB  
Article
Omni-Directional Capture for Multi-Drone Based on 3D-Voronoi Tessellation
by Kai Cao, Yang-Quan Chen, Song Gao, Kun Yan, Jiahao Zhang and Di An
Drones 2023, 7(7), 458; https://doi.org/10.3390/drones7070458 - 10 Jul 2023
Cited by 3 | Viewed by 2645
Abstract
This paper addresses the multi-drone formation capture in three-dimensional (3D) environments. The omni-directional minimum volume (ODMV) 3D-Voronoi diagram algorithm is proposed for the first time to achieve the two goals of (1) forming and keeping a capture and (2) planning the control action [...] Read more.
This paper addresses the multi-drone formation capture in three-dimensional (3D) environments. The omni-directional minimum volume (ODMV) 3D-Voronoi diagram algorithm is proposed for the first time to achieve the two goals of (1) forming and keeping a capture and (2) planning the control action within its safe, collision region for each drone. First, we extend the traditional 2D Voronoi diagram to the 3D environment and use the non-overlapping spatial division property of 3D Voronoi diagram to inherently avoid the collision between drones. Second, we make improvements to the problem of capture angle in our minimum area strategy and propose an omni-directional minimum volume strategy to accomplish the effective capture of a target by constraining the capture angle. Finally, the wolf pack algorithm (WPA) with variable step size is introduced to provide a movement strategy for multi-drone formations. Thus, the proposed ODMV can also achieve dynamic target and multi target capture in environments with obstacles. The Optitrack motion capture system and Crazyflie drones are used to conduct the multi-drone capture experiment. Both simulation and experimental results are included to demonstrated the effectiveness of the proposed ODMV method. Full article
Show Figures

Figure 1

14 pages, 3450 KiB  
Article
Research on an Optimized Quarter-Wavelength Resonator-Based Triboelectric Nanogenerator for Efficient Low-Frequency Acoustic Energy Harvesting
by Xiu Xiao, Ling Liu, Ziyue Xi, Hongyong Yu, Wenxiang Li, Qunyi Wang, Cong Zhao, Yue Huang and Minyi Xu
Nanomaterials 2023, 13(10), 1676; https://doi.org/10.3390/nano13101676 - 19 May 2023
Cited by 15 | Viewed by 2881
Abstract
Sound wave is an extensively existing mechanical wave, especially in marine and industrial plants where low-frequency acoustic waves are ubiquitous. The effective collection and utilization of sound waves provide a fresh new approach to supply power for the distributed nodes of the rapidly [...] Read more.
Sound wave is an extensively existing mechanical wave, especially in marine and industrial plants where low-frequency acoustic waves are ubiquitous. The effective collection and utilization of sound waves provide a fresh new approach to supply power for the distributed nodes of the rapidly developing Internet of Things technology. In this paper, a novel acoustic triboelectric nanogenerator (QWR-TENG) was proposed for efficient low-frequency acoustic energy harvesting. QWR-TENG consisted of a quarter-wavelength resonant tube, a uniformly perforated aluminum film, an FEP membrane, and a conductive carbon nanotube coating. Simulation and experimental studies showed that QWR-TENG has two resonance peaks in the low-frequency range, which effectively extends the response bandwidth of acoustic–electrical conversion. The structural optimized QWR-TENG has excellent electrical output performance, and the maximum output voltage, short-circuit current and transferred charge are 255 V, 67 μA, and 153 nC, respectively, under the acoustic frequency of 90 Hz and sound pressure level of 100 dB. On this basis, a conical energy concentrator was introduced to the entrance of the acoustic tube, and a composite quarter-wavelength resonator-based triboelectric nanogenerator (CQWR-TENG) was designed to further enhance the electrical output. Results showed that the maximum output power and the power density per unit pressure of CQWR-TENG reached 13.47 mW and 2.27 WPa−1m−2, respectively. Application demonstrations indicated that QWR/CQWR-TENG has good capacitor charging performance and is expected to realize power supply for distributed sensor nodes and other small electrical devices. Full article
Show Figures

Figure 1

12 pages, 614 KiB  
Article
WPAxFuzz: Sniffing Out Vulnerabilities in Wi-Fi Implementations
by Vyron Kampourakis, Efstratios Chatzoglou, Georgios Kambourakis, Apostolos Dolmes and Christos Zaroliagis
Cryptography 2022, 6(4), 53; https://doi.org/10.3390/cryptography6040053 - 20 Oct 2022
Cited by 10 | Viewed by 6017
Abstract
This work attempts to provide a way of scrutinizing the security robustness of Wi-Fi implementations in an automated fashion. To this end, to our knowledge, we contribute the first full-featured and extensible Wi-Fi fuzzer. At the time of writing, the tool, made publicly [...] Read more.
This work attempts to provide a way of scrutinizing the security robustness of Wi-Fi implementations in an automated fashion. To this end, to our knowledge, we contribute the first full-featured and extensible Wi-Fi fuzzer. At the time of writing, the tool, made publicly available as open source, covers the IEEE 802.11 management and control frame types and provides a separate module for the pair of messages of the Simultaneous Authentication of Equals (SAE) authentication and key exchange method. It can be primarily used to detect vulnerabilities potentially existing in wireless Access Points (AP) under the newest Wi-Fi Protected Access 3 (WPA3) certification, but its functionalities can also be exploited against WPA2-compatible APs. Moreover, the fuzzer incorporates: (a) a dual-mode network monitoring module that monitors, in real time, the behavior of the connected AP stations and logs possible service or connection disruptions and (b) an attack tool used to verify any glitches found and automatically craft the corresponding exploit. We present results after testing the fuzzer against an assortment of off-the-shelf APs by different renowned vendors. Adhering to a coordinated disclosure process, we have reported the discovered issues to the affected vendors, already receiving positive feedback from some of them. Full article
Show Figures

Figure 1

Back to TopTop