Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = W-band (75–105 GHz) MMW

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8070 KiB  
Article
Millimeter-Wave Imaging with Range-Resolved 3D Depth Extraction Using Glow Discharge Detection and Frequency-Modulated Continuous Wave Radar
by Arun Ramachandra Kurup, Daniel Rozban, Amir Abramovich, Yitzhak Yitzhaky and Natan Kopeika
Appl. Sci. 2025, 15(4), 2248; https://doi.org/10.3390/app15042248 - 19 Feb 2025
Cited by 1 | Viewed by 776
Abstract
This paper presents a preliminary proof-of-concept study of a novel approach to 3D millimeter-wave (MMW) imaging, demonstrating the first implementation of Glow Discharge Detectors (GDDs) in this domain. GDDs offer significant advantages over conventional MMW detectors like Schottky diodes or bolometers due to [...] Read more.
This paper presents a preliminary proof-of-concept study of a novel approach to 3D millimeter-wave (MMW) imaging, demonstrating the first implementation of Glow Discharge Detectors (GDDs) in this domain. GDDs offer significant advantages over conventional MMW detectors like Schottky diodes or bolometers due to their cost-effectiveness, robustness to high-power MMW signals, and reliable operation under diverse environmental conditions. Based on weakly ionized plasma (WIP) technology, GDDs detect changes in discharge current upon MMW exposure, providing an affordable and durable alternative to traditional MMW imaging systems. The system operates within a subset of the W-band (101–109 GHz), utilizing a customized transmitter (Tx 272 from VDI Technologies), which operates at a frequency range proportional to the VCO supply voltage level. The Frequency-Modulated Continuous Wave (FMCW) signal source is split into target and reference paths via a compact waveguide splitter, improving stability and reducing the complexity of the optical setup. Reflected signals are processed by the GDD, which functions as a heterodyne receiver, and Fast Fourier Transform (FFT) is used to extract range data. A 2D grid scanning mechanism, controlled by step motors, maps the surface of the object, while depth information is derived from FMCW frequency differentials to construct a complete 3D profile. This work demonstrates the potential of GDD-based 3D MMW imaging as a low-cost, efficient solution for security screening and industrial inspection. By addressing challenges in cost, scalability, and performance under high-power MMW signals, this approach represents a significant step forward in making MMW imaging technology more accessible, while highlighting the need for further development to achieve practical implementation. Full article
Show Figures

Figure 1

13 pages, 2732 KiB  
Article
High-Resolution Millimeter-Wave Radar for Real-Time Detection and Characterization of High-Speed Objects with Rapid Acceleration Capabilities
by Yair Richter and Nezah Balal
Electronics 2024, 13(10), 1961; https://doi.org/10.3390/electronics13101961 - 16 May 2024
Cited by 1 | Viewed by 2682
Abstract
In this study, we present a novel approach for the real-time detection of high-speed moving objects with rapidly changing velocities using a high-resolution millimeter-wave (MMW) radar operating at 94 GHz in the W-band. Our detection methodology leverages continuous wave transmission and heterodyning of [...] Read more.
In this study, we present a novel approach for the real-time detection of high-speed moving objects with rapidly changing velocities using a high-resolution millimeter-wave (MMW) radar operating at 94 GHz in the W-band. Our detection methodology leverages continuous wave transmission and heterodyning of the reflected signal from the moving target, enabling the extraction of motion-related attributes such as velocity, position, and physical characteristics of the object. The use of a 94 GHz carrier frequency allows for high-resolution velocity detection with a velocity resolution of 6.38 m/s, achieved using a short integration time of 0.25 ms. This high-frequency operation also results in minimal atmospheric absorption, further enhancing the efficiency and effectiveness of the detection process. The proposed system utilizes cost-effective and less complex equipment, including compact antennas, made possible by the low sampling rate required for processing the intermediate frequency signal. The experimental results demonstrate the successful detection and characterization of high-speed moving objects with high acceleration rates, highlighting the potential of this approach for various scientific, industrial, and safety applications, particularly those involving targets with rapidly changing velocities. The detailed analysis of the micro-Doppler signatures associated with these objects provides valuable insights into their unique motion dynamics, paving the way for improved tracking and classification algorithms in fields such as aerospace research, meteorology, and collision avoidance systems. Full article
(This article belongs to the Special Issue Advances in Terahertz Radiation Sources and Their Applications)
Show Figures

Figure 1

38 pages, 33578 KiB  
Review
Advances in High–Speed, High–Power Photodiodes: From Fundamentals to Applications
by Qingtao Chen, Xiupu Zhang, Mohammad S. Sharawi and Raman Kashyap
Appl. Sci. 2024, 14(8), 3410; https://doi.org/10.3390/app14083410 - 17 Apr 2024
Cited by 17 | Viewed by 6158
Abstract
High–speed, high–power photodiodes play a key role in wireless communication systems for the generation of millimeter wave (MMW) and terahertz (THz) waves based on photonics–based techniques. Uni–traveling–photodiode (UTC–PD) is an excellent candidate, not only meeting the above–mentioned requirements of broadband (3 GHz~1 THz) [...] Read more.
High–speed, high–power photodiodes play a key role in wireless communication systems for the generation of millimeter wave (MMW) and terahertz (THz) waves based on photonics–based techniques. Uni–traveling–photodiode (UTC–PD) is an excellent candidate, not only meeting the above–mentioned requirements of broadband (3 GHz~1 THz) and high–frequency operation, but also exhibiting the high output power over mW–level at the 300 GHz band. This paper reviews the fundamentals of high–speed, high–power photodiodes, mirror–reflected photodiodes, microstructure photodiodes, photodiode–integrated devices, the related equivalent circuits, and design considerations. Those characteristics of photodiodes and the related photonic–based devices are analyzed and reviewed with comparisons in detail, which provides a new path for these devices with applications in short–range wireless communications in 6G and beyond. Full article
(This article belongs to the Special Issue Advanced Optical-Fiber-Related Technologies)
Show Figures

Figure 1

21 pages, 4260 KiB  
Article
3DRIED: A High-Resolution 3-D Millimeter-Wave Radar Dataset Dedicated to Imaging and Evaluation
by Shunjun Wei, Zichen Zhou, Mou Wang, Jinshan Wei, Shan Liu, Jun Shi, Xiaoling Zhang and Fan Fan
Remote Sens. 2021, 13(17), 3366; https://doi.org/10.3390/rs13173366 - 25 Aug 2021
Cited by 61 | Viewed by 9055
Abstract
Millimeter-wave (MMW) 3-D imaging technology is becoming a research hotspot in the field of safety inspection, intelligent driving, etc., due to its all-day, all-weather, high-resolution and non-destruction feature. Unfortunately, due to the lack of a complete 3-D MMW radar dataset, many urgent theories [...] Read more.
Millimeter-wave (MMW) 3-D imaging technology is becoming a research hotspot in the field of safety inspection, intelligent driving, etc., due to its all-day, all-weather, high-resolution and non-destruction feature. Unfortunately, due to the lack of a complete 3-D MMW radar dataset, many urgent theories and algorithms (e.g., imaging, detection, classification, clustering, filtering, and others) cannot be fully verified. To solve this problem, this paper develops an MMW 3-D imaging system and releases a high-resolution 3-D MMW radar dataset for imaging and evaluation, named as 3DRIED. The dataset contains two different types of data patterns, which are the raw echo data and the imaging results, respectively, wherein 81 high-quality raw echo data are presented mainly for near-field safety inspection. These targets cover dangerous metal objects such as knives and guns. Free environments and concealed environments are considered in experiments. Visualization results are presented with corresponding 2-D and 3-D images; the pixels of the 3-D images are 512×512×6. In particular, the presented 3DRIED is generated by the W-band MMW radar with a center frequency of 79GHz, and the theoretical 3-D resolution reaches 2.8 mm × 2.8 mm × 3.75 cm. Notably, 3DRIED has 5 advantages: (1) 3-D raw data and imaging results; (2) high-resolution; (3) different targets; (4) applicability for evaluation and analysis of different post processing. Moreover, the numerical evaluation of high-resolution images with different types of 3-D imaging algorithms, such as range migration algorithm (RMA), compressed sensing algorithm (CSA) and deep neural networks, can be used as baselines. Experimental results reveal that the dataset can be utilized to verify and evaluate the aforementioned algorithms, demonstrating the benefits of the proposed dataset. Full article
Show Figures

Graphical abstract

17 pages, 10257 KiB  
Article
Compact Design of Annular-Microstrip-Fed mmW Antenna Arrays
by Shu-Dong Lin, Shi Pu, Chen Wang and Hai-Yang Ren
Sensors 2021, 21(11), 3695; https://doi.org/10.3390/s21113695 - 26 May 2021
Cited by 5 | Viewed by 3217
Abstract
In this paper, a series of four novel microstrip antenna array designs based on different annular-microstrip feeding lines at 60-GHz millimeter wave (mmW) band are proposed, aiming at the potential usage of the mmW coverage antenna with multi-directional property. As the feeding network, [...] Read more.
In this paper, a series of four novel microstrip antenna array designs based on different annular-microstrip feeding lines at 60-GHz millimeter wave (mmW) band are proposed, aiming at the potential usage of the mmW coverage antenna with multi-directional property. As the feeding network, the annular contour microstrip lines are employed to connect the patch units so as to form a more compact array. Our first design is to use an outer contour annular microstrip line to connect four-direction linear arrays composed of 1 × 3 rectangular patches, thus the gain of 8.4 dBi and bandwidth of over 300 MHz are obtained. Our second design is to apply the two-direction pitchfork-shaped array each made up of two same linear arrays as the above, therefore the gain of 9.65 dBi and bandwidth of around 250 MHz are achieved. Our third design is to employ dual (inner and outer contour) annular-microstrip feeding lines to interconnect the above four-direction linear arrays, while our fourth design is to bring bridged annular-microstrip feeding lines, both of which can realize the goal of multi-directional radiation characteristic and higher gain of over 10 dBi. Full article
(This article belongs to the Special Issue RF Sensors: Design, Optimization and Applications)
Show Figures

Figure 1

14 pages, 2852 KiB  
Article
High-Gain Vivaldi Antenna with Wide Bandwidth Characteristics for 5G Mobile and Ku-Band Radar Applications
by Raza Ullah, Sadiq Ullah, Farooq Faisal, Rizwan Ullah, Dong-you Choi, Ashfaq Ahmad and Babar Kamal
Electronics 2021, 10(6), 667; https://doi.org/10.3390/electronics10060667 - 12 Mar 2021
Cited by 28 | Viewed by 4924
Abstract
In this paper, antipodal Vivaldi antenna is designed for 5th generation (5G) mobile communication and Ku-band applications. The proposed designed has three layers. The upper layer consists of eight-element array of split-shaped leaf structures, which is fed by a 1-to-8 power divider network. [...] Read more.
In this paper, antipodal Vivaldi antenna is designed for 5th generation (5G) mobile communication and Ku-band applications. The proposed designed has three layers. The upper layer consists of eight-element array of split-shaped leaf structures, which is fed by a 1-to-8 power divider network. Middle layer is a substrate made of Rogers 5880. The bottom layer consists of truncated ground and shorter mirror-image split leaf structures. The overall size of the designed antenna is confined significantly to 33.31 × 54.96 × 0.787 (volume in mm3), which is equivalent to 2λo× 3.3λo× 0.05λo (λo is free-space wavelength at 18 GHz). Proposed eight elements antenna is multi-band in nature covering Ku-bands (14.44–20.98 GHz), two millimeter wave (mmW) bands i.e., 24.34–29 GHz and 33–40 GHz, which are candidate frequency bands for 5G communications. The Ku-Band is suitable for radar applications. Proposed eight elements antenna is very efficient and has stable gain for 5G mobile communication and Ku-band applications. The simulation results are experimentally validated by testing the fabricated prototypes of the proposed design. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

16 pages, 18515 KiB  
Article
mmW Rotman Lens-Based Sensing: An Investigation Study
by Waleed T. Sethi, Ahmed B. Ibrahim, Khaled Issa and Saleh A. Alshebeili
Sensors 2021, 21(4), 1163; https://doi.org/10.3390/s21041163 - 7 Feb 2021
Cited by 1 | Viewed by 4117
Abstract
A Rotman lens is a wideband true-time delay device. Due to its simplistic structure with wave/signal routing capabilities, it has been widely utilized as a beamforming device in numerous communication systems. Since the basic Rotman lens design incorporates multiple input, output, and dummy [...] Read more.
A Rotman lens is a wideband true-time delay device. Due to its simplistic structure with wave/signal routing capabilities, it has been widely utilized as a beamforming device in numerous communication systems. Since the basic Rotman lens design incorporates multiple input, output, and dummy ports, in this study, and for the first time, we utilized a Rotman lens as a sensor. The main idea was to gather abundant information from available Rotman lens ports to obtain better sensing performance. The realized lens is optimized to work in the millimeter wave (mmW) band from 27 to 29 GHz with a focus on a central frequency of 28 GHz. The design has a footprint of 140 × 103 × 0.8 mm3. The polarity correlator was used to characterize the material under investigation. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

16 pages, 7425 KiB  
Article
A Dual-Band Modified Franklin mm-Wave Antenna for 5G Wireless Applications
by Arjun Surendran, Aravind B, Tanweer Ali, Om Prakash Kumar, Pradeep Kumar and Jaume Anguera
Appl. Sci. 2021, 11(2), 693; https://doi.org/10.3390/app11020693 - 12 Jan 2021
Cited by 8 | Viewed by 3352
Abstract
Franklin array antennas are considered as one of the most competitive candidates for millimeter-wave (mmW) 5G applications due to their compact size, simple geometry and high gain. This paper describes a microstrip Franklin antenna array for fifth generation (5G) wireless applications. The proposed [...] Read more.
Franklin array antennas are considered as one of the most competitive candidates for millimeter-wave (mmW) 5G applications due to their compact size, simple geometry and high gain. This paper describes a microstrip Franklin antenna array for fifth generation (5G) wireless applications. The proposed modified Franklin array is based on a collinear array structure with the objective of achieving broad bandwidth, high directivity, and dual-band operation at 22.7 and 34.9 GHz. The designed antenna consists of a 3 × 3 array patch element as the radiating part and a 3 × 3 slotted ground plane operating at a multiband resonance in the mmW range. The dimensions of the patch antennas are designed based on λ/2 of the second resonant frequency. The designed antenna shows dual band operation with a total impedance bandwidth ranging from 21.5 to 24.3 GHz (fractional bandwidth of 12.2%) at the first band and from 33.9 to 36 GHz (fractional bandwidth of 6%) at the second band in simulation. In measurement, the impedance bandwidth ranges from 21.5 to 24.5 GHz (fractional bandwidth of 13%) at the first band and from 34.3 to 36.2 GHz (fractional bandwidth of 5.3%) at the second band, respectively. The performance of the antenna is analyzed by parametric analysis by modifying various parameters of the antenna. All the necessary simulations are carried out using HFSS v.14.0. Full article
(This article belongs to the Special Issue New Trends in Telecommunications Engineering)
Show Figures

Figure 1

10 pages, 3193 KiB  
Article
QPSK MMW Wireless Communication System Based On p-i-n InGaAs Photomixer
by Asemahegn Wudu, Daniel Rozban and Amir Abramovich
Electronics 2020, 9(8), 1182; https://doi.org/10.3390/electronics9081182 - 22 Jul 2020
Cited by 3 | Viewed by 3787
Abstract
Millimeter-wave (MMW) frequencies (30–300 GHz), located between the microwave and infrared (IR), are promising solutions for the increasing demand of high data rate applications, UHD multimedia, HD gaming, security, surveillance, and the emergence of 5G Internet of Things (IoT). In this article, we [...] Read more.
Millimeter-wave (MMW) frequencies (30–300 GHz), located between the microwave and infrared (IR), are promising solutions for the increasing demand of high data rate applications, UHD multimedia, HD gaming, security, surveillance, and the emergence of 5G Internet of Things (IoT). In this article, we experimentally demonstrated MMW wireless communication link using InGaAs p-i-n photomixer and commercially available telecom components at W-band (75–110 GHz). The photomixer was excited by two 1.5 µm lasers via standard telecom fiber optics, to generate frequency difference at W-band. QPSK modulated signal transmitted by the photomixer and received horn antenna integrated MMW mixer and analyzed using a spectrum analyzer and Vector Signal Analyzer (VSA) software. Full article
(This article belongs to the Collection Millimeter and Terahertz Wireless Communications)
Show Figures

Figure 1

17 pages, 4026 KiB  
Article
W-Band Millimeter Waves Targeted Mortality of H1299 Human Lung Cancer Cells without Affecting Non-Tumorigenic MCF-10A Human Epithelial Cells In Vitro
by Konstantin Komoshvili, Katya Israel, Jacob Levitan, Asher Yahalom, Ayan Barbora and Stella Liberman-Aronov
Appl. Sci. 2020, 10(14), 4813; https://doi.org/10.3390/app10144813 - 13 Jul 2020
Cited by 6 | Viewed by 3284
Abstract
Therapeutically effective treatments of cancer are limited. To calibrate the efficiency of the novel technique we recently discovered to modulate cancer cell viability using tuned electromagnetic fields; H1299 human lung cancer cells were irradiated in a sweeping regime of W-band (75–105 GHz) millimeter [...] Read more.
Therapeutically effective treatments of cancer are limited. To calibrate the efficiency of the novel technique we recently discovered to modulate cancer cell viability using tuned electromagnetic fields; H1299 human lung cancer cells were irradiated in a sweeping regime of W-band (75–105 GHz) millimeter waves (MMW) at 0.2 mW/cm2 (2 W/m2). Effects on cell morphology, cell death and senescence were examined and compared to that of non-tumorigenic MCF-10A human epithelial cells. MMW irradiation led to alterations of cell and nucleus morphology of H1299 cells, significantly increasing mortality and senescence over 14 days of observation. Extended irradiation of 10 min duration resulted in complete death of exposed H1299 cell population within two days, while healthy MCF-10A cells remained unaffected even after 16 min of irradiation under the same conditions. Irradiation effects were observed to be specific to MMW treated H1299 cells and absent in the control group of non-irradiated cells. MMW irradiation affected nuclear morphology of H1299 cells only and not of the immortalized MCF-10A cells. Irradiation with low intensity MMW shows an antitumor effect on H1299 lung cancer cells. This method provides a novel treatment modality enabling targeted specificity for various types of cancers. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Graphical abstract

16 pages, 2178 KiB  
Article
Morphological Changes in H1299 Human Lung Cancer Cells Following W-Band Millimeter-Wave Irradiation
by Konstantin Komoshvili, Tzippi Becker, Jacob Levitan, Asher Yahalom, Ayan Barbora and Stella Liberman-Aronov
Appl. Sci. 2020, 10(9), 3187; https://doi.org/10.3390/app10093187 - 2 May 2020
Cited by 11 | Viewed by 6921
Abstract
Efficiently targeted cancer therapy without causing detrimental side effects is necessary for alleviating patient care and improving survival rates. This paper presents observations of morphological changes in H1299 human lung cancer cells following W-band millimeter wave (MMW) irradiation (75–105 GHz) at a non-thermal [...] Read more.
Efficiently targeted cancer therapy without causing detrimental side effects is necessary for alleviating patient care and improving survival rates. This paper presents observations of morphological changes in H1299 human lung cancer cells following W-band millimeter wave (MMW) irradiation (75–105 GHz) at a non-thermal power density of 0.2 mW/cm2, investigated over 14 days of subsequent physiological incubation following exposure. Microscopic analyses of the physical parameters measured indicate MMW irradiation induces significant morphological changes characteristic of apoptosis and senescence. The immediate short-term responses translate into long-term effects, retained over the duration of the experiment(s), reminiscent of the phenomenon of accelerated cellular senescence (ACS), and achieving terminal tumorigenic cell growth. Further, results were observed to be treatment specific in an energy (dose)-dependent manner and were achieved without the use of chemotherapeutic agents, ionizing radiation, or thermal ablation employed in conventional methods, thereby overcoming the associated side effects. Adaptation of the experimental parameters of this study for clinical oncology concomitant with current developmental trends of non-invasive medical endoscopy alleviates MMW therapy as an effective treatment procedure for human non-small cell lung cancer (NSCLC). Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Graphical abstract

19 pages, 5742 KiB  
Article
Indoor Millimeter-Wave Propagation Prediction by Measurement and Ray Tracing Simulation at 38 GHz
by Ferdous Hossain, Tan Kim Geok, Tharek Abd Rahman, Mhd Nour Hindia, Kaharudin Dimyati and Azlan Abdaziz
Symmetry 2018, 10(10), 464; https://doi.org/10.3390/sym10100464 - 6 Oct 2018
Cited by 26 | Viewed by 6339
Abstract
The Millimeter-Wave (mmW) technology is going to mitigate the global higher bandwidth carriers. It will dominate the future network system by the attractive advantages of the higher frequency band. Higher frequency offers a wider bandwidth spectrum. Therefore, its utilizations are rapidly increasing in [...] Read more.
The Millimeter-Wave (mmW) technology is going to mitigate the global higher bandwidth carriers. It will dominate the future network system by the attractive advantages of the higher frequency band. Higher frequency offers a wider bandwidth spectrum. Therefore, its utilizations are rapidly increasing in the wireless communication system. In this paper, an indoor mmW propagation prediction is presented at 38 GHz based on measurements and the proposed Three-Dimensional (3-D) Ray Tracing (RT) simulation. Moreover, an additional simulation performed using 3-D Shooting Bouncing Ray (SBR) method is presented. Simulation using existing SBR and the proposed RT methods have been performed separately on a specific layout where the measurement campaign is conducted. The RT methods simulations results have been verified by comparing with actual measurement data. There is a significant agreement between the simulation and measurement with respect to path loss and received signal strength indication. The analysis result shows that the proposed RT method output has better agreement with measurement output when compared to the SBR method. According to the result of the propagation prediction analysis, it can be stated that the proposed method’s ray tracing is capable of predicting the mmW propagation based on a raw sketch of the real environment. Full article
Show Figures

Figure 1

Back to TopTop