# Indoor Millimeter-Wave Propagation Prediction by Measurement and Ray Tracing Simulation at 38 GHz

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Measurement Details

## 3. Radio Wave Propagation Modeling by Ray-Tracing Simulation

#### 3.1. SBR Ray Tracing Method

#### 3.2. Conventional RT Method Limitations

#### 3.3. Proposed RT Model

- In phase I, scenario wise 3-D layout design considering the major object with respect to a mobile station and base stations.
- In phase II, RL from the base station and incorporate as reflection, refraction, and diffraction as per RT characteristics. Based on layout, used θ = π/60 for the RL angular regulation. This angle is variable. Therefore, a higher angle difference means fewer rays are needed to launch.
- In phase III, only some mathematical pre calculations have been performed to sort out the successive angle those rays successfully reached in the destinations.
- In phase IV, at least two onward additional directions are added to deliver more rays on the probable zone. The additional angle regulation depends on the scenario such as 0.25, 0.50, 0.75, or 1.0 from the determine angle.
List<double> Probable_VerticalAngles = new List<double> (); if (Determine_VerticalAngles != NULL) { Probable_VerticalAngles.Add(Determine_VerticalAngles + π/240); Probable_VerticalAngles.Add(Determine_VerticalAngles + π/120); }

- In phase V, again determine the angle wise at least two backward additional directions and add more rays to deliver on the probable zone. The additional angle regulation depends on the scenario such as −0.25, −0.50, −0.75, or −1.0 forward from the determine angle.
if (Determine_VerticalAngles ! = NULL) { Probable_VerticalAngles.Add(Determine_VerticalAngles − π/120); Probable_VerticalAngles.Add(Determine_VerticalAngles − π/240); }

- In phase VI, in this phase, distinctly combine all the probable angles from phase IV and V.
List<double>FinalProbable_VerticalAngles = Probable_VerticalAngles.Distinct(). ToList (); Lastly, every FinalProbable_VerticalAngles wise shoot rays in the Rx predefine zone.

- In phase VII, Trace the launched rays and draw a blue line if the LoS else red line as NLoS. Ray wise calculations are used in the analysis.

#### 3.4. Reflection

#### 3.5. Diffraction

#### 3.6. Ray Tracing Final Mathematical Equations

_{n}. Multichannel modeling mobile stations received several rays. The scenario wise total electric field intensity E

_{total}is the subtotal of each ray, which is driven using Equation (14).

#### 3.7. Simulation Parameter Configuration by Compilations of Electrical Properties of Materials

## 4. Validation of Proposed RT Results

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Nomenclature:

mmW | Millimeter-Wave |

RT | Ray Tracing |

SBR | Shooting Bouncing Ray |

WCS | Wireless Communication System |

TX | Transmitter/Base Station |

Rx | Receiver/Mobile station |

RL | Ray Launching |

LoS | Line of Sight |

NLoS | Non Line of Sight |

SD | Standard Deviation |

## References

- Smulders, P. Exploiting the 60 GHz band for local wireless multimedia access: Prospects and future directions. IEEE Commun. Mag.
**2002**, 40, 140–147. [Google Scholar] [CrossRef] - Forecast, C.V. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021 White Paper; Cisco Public Inf.: San Jose, CA, USA, 2017; Volume 1, pp. 1–35. [Google Scholar]
- Li, X.; Li, Y.; Li, B. The Diffraction Research of Cylindrical Block Effect Based on Indoor 45 GHz Millimeter Wave Measurements. Information
**2017**, 8, 50. [Google Scholar] [Green Version] - Tsiropoulou, E.E.; Kapoukakis, A.; Papavassiliou, S. Energy-efficient subcarrier allocation in SC-FDMA wireless networks based on multilateral model of bargaining. In Proceedings of the 2013 IFIP Networking Conference, Brooklyn, NY, USA, 22–24 May 2013; pp. 1–9. [Google Scholar]
- Tsiropoulou, E.E.; Kapoukakis, A.; Papavassiliou, S. Uplink resource allocation in sc-fdma wireless networks: A survey and taxonomy. Comput. Netw.
**2016**, 96, 1–28. [Google Scholar] [CrossRef] - Tsiropoulou, E.E.; Mitsis, G.; Papavassiliou, S. Interest-aware energy collection & resource management in machine to machine communications. Ad Hoc Netw.
**2018**, 68, 48–57. [Google Scholar] [CrossRef] - Freeman, R.L. Radio System Design for Telecommunications (1–100 GHz); Wiley: New York, NY, USA, 1987. [Google Scholar]
- Crane, R.K. Electromagnetic Wave Propagation through Rain; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Chou, S.-F.; Chao, H.-L.; Liu, C.-L. An efficient measurement report mechanism for Long Term Evolution networks. In Proceedings of the 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications, Toronto, Canada, 11–14 September 2011. [Google Scholar] [CrossRef]
- Sulyman, A.I.; Nassar, A.T.; Samimi, M.K.; MacCartney, G.R.; Rappaport, T.S.; Alsanie, A. Radio propagation path loss models for 5g cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Commun. Mag.
**2014**, 52, 78–86. [Google Scholar] [CrossRef] - Akdeniz, M.R.; Liu, Y.; Rangan, S.; Erkip, E. Millimeter wave picocellular system evaluation for urban deployments. In Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 9–13 December 2013. [Google Scholar] [CrossRef]
- Rangan, S.; Rappaport, T.S.; Erkip, E. Millimeter-wave cellular wireless networks: Potentials and challenges. Proc. IEEE
**2014**, 102, 366–385. [Google Scholar] [CrossRef] - Geok, T.K.; Hossain, F.; Kamaruddin, M.N.; Rahman, N.Z.A.; Thiagarajah, S.; Chiat, A.T.W.; Liew, C.P. A Comprehensive Review of Efficient Ray-Tracing Techniques for Wireless Communication. Int. J. Commun. Antenna Propag.
**2018**, 8, 123–136. [Google Scholar] [CrossRef] - Jung, J.-H.; Lee, J.; Lee, J.-H.; Kim, Y.-H.; Kim, S.-C. Ray-tracing aided modeling of user-shadowing effects in indoor wireless channels. IEEE Trans. Antennas Propag.
**2014**, 62, 3412–3416. [Google Scholar] [CrossRef] - McKown, J.W.; Hamilton, R.L., Jr. Ray tracing as a design tool for radio networks. IEEE Netw.
**1991**, 5, 27–30. [Google Scholar] [CrossRef] - Rizk, K.; Wagen, J.-F.; Gardiol, F. Two-dimensional ray-tracing modeling for propagation prediction in microcellular environments. IEEE Trans. Veh. Technol.
**1997**, 46, 508–518. [Google Scholar] [CrossRef] - Sato, H.S.; Otoi, K. Electromagnetic Wave Propagation Estimation by 3-D. In SBR Method. In Proceedings of the International Conference on Electromagnetics in Advanced Applications, Torino, Italy, 17–21 September 2007; pp. 129–132. [Google Scholar] [CrossRef]
- Shi, D.; Tang, X.; Wang, C. The acceleration of the shooting and bouncing ray tracing method on GPUs. In Proceedings of the 2017 General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, QC, Canada, 19–26 August 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Zhang, Z.; Ryu, J.; Subramanian, S.; Sampath, A. Coverage and channel characteristics of millimeter wave band using ray tracing. In Proceedings of the IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 1380–1385. [Google Scholar]
- Chang, Y.; Baek, S.; Hur, S.; Mok, Y.; Lee, Y. A novel dual-slope mm-Wave channel model based on 3D ray-tracing in urban environments. In Proceedings of the 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, DC, USA, 2–5 September 2014; pp. 222–226. [Google Scholar]
- Hur, S.; Baek, S.; Kim, B.C.; Park, J.H.; Molisch, A.F.; Haneda, K.; Peter, M. 28 GHz channel modeling using 3D ray-tracing in urban environments. In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015; pp. 1–5. [Google Scholar]
- Samimi, M.K.; Rappaport, T.S. Statistical Channel Model with Multi-Frequency and Arbitrary Antenna Beamwidth for Millimeter-Wave Outdoor Communications. In Proceedings of the 2015 IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA, 6–10 December 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Cassioli, D.; Win, M.Z.; Molisch, A.F. The ultra-wide bandwidth indoor channel: From statistical model to simulations. IEEE J. Sel. Areas Commun.
**2002**, 20, 1247–1257. [Google Scholar] [CrossRef] - Rappaport, T.S.; MacCartney, G.R.; Samimi, M.K.; Sun, S. Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design. IEEE Trans. Commun.
**2015**, 63, 3029–3056. [Google Scholar] [CrossRef] - Maccartney, G.R.; Rappaport, T.S.; Sun, S.; Deng, S. Indoor Office Wideband Millimeter-Wave Propagation Measurements and Channel Models at 28 and 73 GHz for Ultra-Dense 5G Wireless Networks. IEEE Access.
**2015**, 3, 2388–2424. [Google Scholar] [CrossRef] - Al-Samman, A.M.; Rahman, T.A.; Azmi, M.H.; Hindia, M.N.; Khan, I.; Hanafi, E. Statistical Modelling and Characterization of Experimental mm-Wave Indoor Channels for Future 5G Wireless Communication Networks. PLoS ONE
**2016**, 11, E0163034. [Google Scholar] [CrossRef] [PubMed] - Ling, H.; Chou, R.C.; Lee, S.W. Shooting and Bouncing Rays: Calculating the RCS of an arbitrarily shaped cavity. IEEE Trans. Antennas Propag.
**1989**, 37, 194–205. [Google Scholar] [CrossRef] - Baldauf, J.; Lee, S.W.; Lin, L.; Jeng, S.K.; Scarborough, S.M.; Yu, C.L. High frequency scattering from trihedral comer reflectors and other benchmark targets: SBR VS experiments. IEEE Trans. Antennas Propag.
**1991**, 39, 1345–1351. [Google Scholar] [CrossRef] - Rappaport, T.S. Wireless Communications: Principles and Practice; Prentice-Hall: Englewood Cliffs, NJ, USA, 1996; Volume 2. [Google Scholar]
- Luebbers, R.J. Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss. IEEE Trans. Antennas Propag.
**1984**, AP-32, 70–76. [Google Scholar] [CrossRef] - Kouyoumjian, R.G.; Pathak, P.H. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proc. IEEE
**1974**, 62, 1448–1461. [Google Scholar] [CrossRef] - Keller, J.B. Geometrical theory of diffraction. J. Opt. Soc. Am.
**1962**, 52, 116–130. [Google Scholar] [CrossRef] [PubMed] - Seidel, S.Y.; Rappaport, T.S. Site-specific propagation prediction for wireless in-building personal communication system design. IEEE Trans. Veh. Technol.
**1994**, 43, 879–891. [Google Scholar] [CrossRef] [Green Version] - Mohtashami, V.; Shishegar, A.A. Effects of geometrical uncertainties on ray tracing results for site-specific indoor propagation modeling. In Proceedings of the 2013 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Torino, Italy, 9–13 September 2013. [Google Scholar]
- Li, W.; Qian, Z.; Li, H. Interpretation and classification of P-series recommendation in ITU-R. Int. J. Commun. Netw. Syst. Sci.
**2016**, 9, 117–125. [Google Scholar] [CrossRef] - AlAbdullah, A.A.; Ali, N.; Obeidat, H.; Abd-Alhmeed, R.A.; Jones, S. Indoor millimetre-wave propagation channel simulations at 28, 39, 60 and 73 GHz for 5G wireless networks. In Proceedings of the Internet Technologies and Applications (ITA), Wrexham, UK, 12–15 September 2017; pp. 235–239. [Google Scholar] [CrossRef]
- Mubarakah, N.; Sagala, R.S.; Prayitno, H. Wifi-friendly building, enabling wifi signal indoor: An initial study. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 126. [Google Scholar]
- Remcom. Wireless InSite Reference Manual, ver. 2.7.1; Commercial SW User-Manual; Remcom Inc.: State College, PA, USA, 2014. [Google Scholar]
- ITU-R. Effects of Building Materials and Structures on Radio Wave Propagation above about 100 MHz; Technical report; Electronic Publication: Geneva, Switzerland, 2015. [Google Scholar]
- ITU-R. Effects of Building Materials and Structures on Radio Wave Propagation above about 100 MHz; International Telecommunication Union Radio Communication Sector: Geneva, Switzerland, 2013. [Google Scholar]
- Correia, L.M.; Frances, P.O. Estimation of materials characteristics from power measurements at 60 GHz. In Proceedings of the 5th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Wireless Networks—Catching the Mobile Future., The Hague, The Netherlands, 18–23 September 1994; pp. 510–513. [Google Scholar]
- Lott, M.; Forkel, I. A multi-wall-and-floor model for indoor radio propagation. In Proceedings of the IEEE VTS 53rd Vehicular Technology Conference (Cat. No.01CH37202), Rhodes, Greece, 6–9 May 2001; pp. 464–468. [Google Scholar]
- Hong, Q.; Zhang, J.; Zheng, H.; Li, H.; Hu, H.; Zhang, B.; Lai, Z.; Zhang, J. The Impact of Antenna Height on 3D Channel: A Ray Launching Based Analysis. Electronics
**2018**, 7, 2. [Google Scholar] [CrossRef] - Geok, T.K.; Hossain, F.; Chiat, A.T.W. A novel 3D ray launching technique for radio propagation prediction in indoor environments. PLoS ONE
**2018**. [Google Scholar] [CrossRef] [PubMed]

**Figure 4.**Zoomed representation of the Rx3 mobile station of Figure 3.

**Figure 11.**The comparison of the number of rays received in the graph between the SBR and proposed methods.

SL. | Item | Properties |
---|---|---|

I | Gain (dB) | 20 |

II | Frequency range (GHz) | 26.5–40.0 |

III | Beamwidth (deg.) | 18 |

IV | Waveguide | WR28 |

V | Material | Cu |

VI | Output | A Type: FBP 320, C Type: 2.9 or 2.4 mm-F |

VII | Size (mm) W × H × L | A Type: 40.5 × 32 × 70, C Type: 40.5 × 32 × 95 |

VIII | Net Weight (Kg) | A Type: 0.05 Around, C type 10 Around |

SL. | Item | Values/Properties |
---|---|---|

I | Carrier frequency (GHz) | 38 |

II | Transmit power (dBm) | 25 |

III | TX horn antenna gain (dBi) | 21.1 |

IV | Rx Omni antenna gain (dBi) | 3 |

V | TX horn antenna height (meter) | 2 |

Material Class | $\mathbf{Permittivity}\left({\mathit{\u03f5}}_{\mathit{r}}\right)$ | Conductivity (σ) |
---|---|---|

Concrete | 5.31 | 0.0326 |

Brick | 3.75 | 0.38 |

Plasterboard | 2.94 | 0.0116 |

Wood | 1.99 | 0.0047 |

Glass | 6.27 | 0.0043 |

Ceiling board | 1.50 | 0.0005 |

Chipboard | 2.58 | 0.0217 |

Floorboard | 3.66 | 0.0044 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hossain, F.; Geok, T.K.; Rahman, T.A.; Hindia, M.N.; Dimyati, K.; Abdaziz, A.
Indoor Millimeter-Wave Propagation Prediction by Measurement and Ray Tracing Simulation at 38 GHz. *Symmetry* **2018**, *10*, 464.
https://doi.org/10.3390/sym10100464

**AMA Style**

Hossain F, Geok TK, Rahman TA, Hindia MN, Dimyati K, Abdaziz A.
Indoor Millimeter-Wave Propagation Prediction by Measurement and Ray Tracing Simulation at 38 GHz. *Symmetry*. 2018; 10(10):464.
https://doi.org/10.3390/sym10100464

**Chicago/Turabian Style**

Hossain, Ferdous, Tan Kim Geok, Tharek Abd Rahman, Mhd Nour Hindia, Kaharudin Dimyati, and Azlan Abdaziz.
2018. "Indoor Millimeter-Wave Propagation Prediction by Measurement and Ray Tracing Simulation at 38 GHz" *Symmetry* 10, no. 10: 464.
https://doi.org/10.3390/sym10100464