Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Vigna radiate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4154 KiB  
Article
Comparative Proteomics Identified Proteins in Mung Bean Sprouts Under Different Concentrations of Urea
by Lifeng Wu, Chunquan Chen, Xiaoyu Zhou, Kailun Zheng, Xiaohan Liang and Jing Wei
Molecules 2025, 30(15), 3176; https://doi.org/10.3390/molecules30153176 - 29 Jul 2025
Viewed by 219
Abstract
Mung bean (Vigna radiate) sprouts are a popular choice among sprouted vegetables in Asia. Currently, the impact of nitrogen sources on the growth of mung bean sprouts remains poorly understood, and the underlying biological mechanisms responsible for the observed nonlinear growth [...] Read more.
Mung bean (Vigna radiate) sprouts are a popular choice among sprouted vegetables in Asia. Currently, the impact of nitrogen sources on the growth of mung bean sprouts remains poorly understood, and the underlying biological mechanisms responsible for the observed nonlinear growth patterns at different nitrogen levels have yet to be elucidated. In this research, in addition to conventional growth monitoring and quality evaluation, a comparative proteomics method was applied to investigate the molecular mechanisms of mung bean in response to 0, 0.025, 0.05, 0.075, and 0.1% urea concentrations. Our results indicated that mung bean sprout height and yield increased with rising urea concentrations but were suppressed beyond the L3 level (0.075% urea). Nitrate nitrogen and free amino acid content rose steadily with urea levels, whereas protein content, nitrate reductase activity, and nitrite levels followed a peak-then-decline trend, peaking at intermediate concentrations. Differential expression protein analysis was conducted on mung bean sprouts treated with different concentrations of urea, and more differentially expressed proteins participated in the L3 urea concentration. Analysis of common differential proteins among comparison groups showed that the mung bean sprouts enhanced their adaptability to urea stress environments by upregulating chlorophyll a-b binding protein and cationic amino acid transporter and downregulating the levels of glycosyltransferase, L-ascorbic acid, and cytochrome P450. The proteomic analysis uncovered the regulatory mechanisms governing these metabolic pathways, identifying 47 differentially expressed proteins (DEPs) involved in the biosynthesis of proteins, free amino acids, and nitrogen-related metabolites. Full article
Show Figures

Figure 1

16 pages, 1939 KiB  
Article
Variations of Major Flavonoids, Nutritional Components, and Antioxidant Activities in Mung Beans (Vigna radiate L.) of Different Seed Weights
by Kebede Taye Desta, Yu-Mi Choi, Jungyoon Yi, Myoung-Jae Shin, Young-ah Jeon and Hyemyeong Yoon
Foods 2024, 13(21), 3387; https://doi.org/10.3390/foods13213387 - 24 Oct 2024
Cited by 1 | Viewed by 1668
Abstract
This study examined the levels of major flavonoids, nutritional components, total secondary metabolite contents, and antioxidant activities in 136 mung bean accessions and statistically analyzed the effect of seed weight difference on each. Vitexin and isovitexin were detected in all the mung bean [...] Read more.
This study examined the levels of major flavonoids, nutritional components, total secondary metabolite contents, and antioxidant activities in 136 mung bean accessions and statistically analyzed the effect of seed weight difference on each. Vitexin and isovitexin were detected in all the mung bean accessions, with isovitexin being in a higher concentration regardless of seed weight difference. The contents of total protein and total starch were in the ranges of 22.01–28.96 and 32.62–49.03 g/100 g, respectively. Five fatty acids were detected by GC–FID analysis in all mung bean accessions, with linoleic acid being the most dominant (37.96–50.71 g/100 g). Total saponin content (TSC), total phenol content (TPC), DPPH scavenging activity, ABTS•+ scavenging activity, and ferric reducing antioxidant power (FRAP) showed more than five-fold differences. Analysis of variance supported by multivariate analysis demonstrated that seed weight difference had a significant effect on total starch, all individual fatty acids except for stearic acid and oleic acid, TSC, and all antioxidant activities except for ABTS•+ scavenging activity. On the other hand, vitexin, isovitexin, total protein, total phenol, and total fatty acid contents remained unaffected by seed weight difference. Overall, this study showed the diversity of key flavonoids, nutritional components, total secondary metabolite contents, and antioxidant activities in mung bean genetic materials. Moreover, the study unveiled how seed weight affects the analyzed parameters in mung beans for the first time. These findings could maximize the use of mung beans in food industries and breeding programs as well as lead to more studies in metabolomics and genomics. Full article
Show Figures

Figure 1

17 pages, 1584 KiB  
Article
Effect of Natural Phytohormones on Growth, Nutritional Status, and Yield of Mung Bean (Vigna radiata L.) and N Availability in Sandy-Loam Soil of Sub-Tropics
by Aasma Parveen, Muhammad Mahran Aslam, Rashid Iqbal, Muhammad Ali, Muhammad Kamran, Mona S. Alwahibi, Muhammad Akram and Mohamed S. Elshikh
Soil Syst. 2023, 7(2), 34; https://doi.org/10.3390/soilsystems7020034 - 10 Apr 2023
Cited by 10 | Viewed by 4970
Abstract
Climate changes and poor soil nutrient profiles in sub-tropics are determinant factors to estimate crop productivity. This study aims to evaluate the impact of phytohormones, e.g., indole acetic acid (IAA) and gibberellic acid (GA3), on mung bean yield, seed nutritional profile, [...] Read more.
Climate changes and poor soil nutrient profiles in sub-tropics are determinant factors to estimate crop productivity. This study aims to evaluate the impact of phytohormones, e.g., indole acetic acid (IAA) and gibberellic acid (GA3), on mung bean yield, seed nutritional profile, and soil N availability in the sub-tropical region of Pakistan. The mung bean plants were treated with three levels (0, 30, and 60 mg L−1) of IAA and GA3 individually and/or in combination using a hydraulic sprayer. The amendments were applied in the flowering stage (approximately 25 days after germination) in a randomized complete block design. The results revealed that the 60 mg L−1 concentration of IAA and GA3 led to significant changes in the growth and yield traits compared to non-treated plants. For example, GA3 positively influenced the biological yield (35.0%), total carbohydrate (7.0%), protein (16.0%), and nitrogen (14.0%) contents in mung bean seeds, compared to the control (CK). Additionally, the combined foliar treatment of IAA and GA3 (IAA2 + GA2) displayed a much stronger influence on yield attributes, such as the number of pods by 66.0%, pods’ weights by 142.0%, and seed yield by 106.5%, compared with the CK. Mung bean plants showed a significant improvement in leaf photosynthetic pigments under a higher level (60 mg L−1) of sole and combined treatments of IAA and GA3. Moreover, except abscisic acid, the endogenous concentration of IAA, GA3, and zeatin was enhanced by 193.0%, 67.0%, and 175.0% after the combined application of IAA and GA3 (IAA2 + GA2) compared to the CK treatment. In addition, soil N availability was increased by 72.8% under the IAA2 treatment and 61.5% under IAA2 + GA2, respectively, compared with the control plot. It was concluded that the combined treatment of IAA and GA3 (IAA2 + GA2) followed by the sole application of GA3 and IAA at a 60 mg L−1 concentration were most effective treatments to improve the morpho-physiology and nutrient profile of mung beans; however, the underlying molecular mechanisms need to be explored further. Full article
Show Figures

Figure 1

8 pages, 2235 KiB  
Article
Development of a Ladder-Shape Melting Temperature Isothermal Amplification (LMTIA) Assay for the Identification of Cassava Component in Sweet Potato Starch Noodles
by Yongqing Zhang, Yongzhen Wang, Xingmei Ouyang, Deguo Wang, Fugang Xiao and Juntao Sun
Molecules 2022, 27(11), 3414; https://doi.org/10.3390/molecules27113414 - 25 May 2022
Cited by 11 | Viewed by 2255
Abstract
Food authenticity has become increasingly important as a result of food adulteration. To identify the authenticity of sweet potato starch noodles, the ladder-shape melting temperature isothermal amplification (LMTIA) method of determining cassava (Manihot esculenta Crantz) DNA in sweet potato starch noodles was [...] Read more.
Food authenticity has become increasingly important as a result of food adulteration. To identify the authenticity of sweet potato starch noodles, the ladder-shape melting temperature isothermal amplification (LMTIA) method of determining cassava (Manihot esculenta Crantz) DNA in sweet potato starch noodles was used. A set of primers targeted at the internal transcription spacer (ITS) of cassava was designed, genomic DNA was extracted, the LMTIA reaction temperature was optimized, and the specificity of the primer was verified with the genomic DNAs of cassava, sweet potato (Ipomoea batatas L.), Solanum tuberosum L., Zea mays L., Vigna radiate L., Triticum aestivum L., and Glycine max (L.) Merr. The sensitivity with the serially diluted genomic DNA of cassava and the suitability for the DNA extracted from sweet potato starch adulterated with cassava starch were tested. The LMTIA assay for identifying the cassava component in sweet potato starch noodles was established. At the optimal temperature of 52 °C, the primers could specifically distinguish a 0.01% (w/w) cassava component added to sweet potato starch. Additionally, the LMTIA method was applied to the cassava DNA detection of 31 sweet potato starch noodle samples purchased from retail markets in China. Of these, 14 samples were positive. The LMTIA assay could be a reliable method for the rapid detection of cassava components in sweet potato starch noodles, to protect the rights of consumers and to regulate the sale market order of starch noodles. Full article
Show Figures

Figure 1

18 pages, 1793 KiB  
Case Report
How Does Maize-Cowpea Intercropping Maximize Land Use and Economic Return? A Field Trial in Bangladesh
by Ayesa Akter Suhi, Shamim Mia, Salma Khanam, Mehedi Hasan Mithu, Md. Kamal Uddin, Md. Abdul Muktadir, Sultan Ahmed and Keiji Jindo
Land 2022, 11(4), 581; https://doi.org/10.3390/land11040581 - 15 Apr 2022
Cited by 5 | Viewed by 4326
Abstract
Cultivating multiple crops together can provide numerous benefits, including improved soil health and crop yield. The objective of our study was to determine the optimum planting techniques in intercropping systems, and to maximize their benefits by mitigating competition for resources such as land, [...] Read more.
Cultivating multiple crops together can provide numerous benefits, including improved soil health and crop yield. The objective of our study was to determine the optimum planting techniques in intercropping systems, and to maximize their benefits by mitigating competition for resources such as land, space, light interception, and nutrition. The performance of successively planted maize (Zea mays L.) grown with cowpea (Vigna unguiculata L.) was evaluated with a field trial in Bangladesh. The treatments in our study were: (a) sole maize, (b) sole cowpea, (c) crops sown simultaneously, and (d) crops sown with different time lags (1, 2, and 3 weeks) between the maize-sowing and cowpea-sowing dates. Data on the crops’ physiological parameters were recorded. These included light interception, leaf area index (LAI), Soil Plant Analysis Development (SPAD), harvest index, and yield. Simultaneously, canopy coverage was measured using camera-based photo analysis. In addition, an economic analysis of intercropping maize with soybean or cowpea was conducted using gross margin analysis and benefit-cost ratio. In our results, the below-canopy photosynthetically active radiation (PAR) was significantly higher in intercropping treatments when maize was sown three weeks after cowpea. In contrast, the LAI value of the maize and cowpea was significantly greater when sown on the same day than in other intercropping treatments. As a result, the maize yield reduced when intercropped with cowpea. This reduction maximized when both species were sown simultaneously due to higher competition for resources, including nutrients and light. Intercropping was more beneficial in terms of land equivalent ratio than both sole cropping of maize and cowpea, especially when maize was planted three weeks later. However, this benefit was not retained when calculated as maize equivalent yield since the contribution of cowpea was small in the overall maize yield, suggesting the importance of the relative economic value of the component species. Among all treatments, the lowest maize equivalent yield (6.03 ± 0.14 t ha−1) was obtained from sole cowpea, and the largest land equivalent ratio (1.67 ± 0.05) was obtained from intercropping with maize sown three weeks after cowpea. This treatment provided a net income of USD 786.32 ± 25.08 ha−1. This study has shown that together, maize–cowpea intercropping with a temporal niche difference of three weeks may be a better option for sustainable crop production in Bangladesh, maximizing land use. However, it may not provide a significantly greater maize equivalent yield and economic return. Full article
Show Figures

Figure 1

12 pages, 1493 KiB  
Article
Onion Peel Waste Mediated-Green Synthesis of Zinc Oxide Nanoparticles and Their Phytotoxicity on Mung Bean and Wheat Plant Growth
by Shreya Modi, Virendra Kumar Yadav, Nisha Choudhary, Abdullah M. Alswieleh, Anish Kumar Sharma, Abhishek Kumar Bhardwaj, Samreen Heena Khan, Krishna Kumar Yadav, Ji-Kwang Cheon and Byong-Hun Jeon
Materials 2022, 15(7), 2393; https://doi.org/10.3390/ma15072393 - 24 Mar 2022
Cited by 47 | Viewed by 5980
Abstract
Nanoparticles and nanomaterials have gained a huge amount of attention in the last decade due to their unique and remarkable properties. Metallic nanoparticles like zinc oxide nanoparticles (ZnONPs) have been used very widely as plant nutrients and in wastewater treatment. Here, ZnONPs were [...] Read more.
Nanoparticles and nanomaterials have gained a huge amount of attention in the last decade due to their unique and remarkable properties. Metallic nanoparticles like zinc oxide nanoparticles (ZnONPs) have been used very widely as plant nutrients and in wastewater treatment. Here, ZnONPs were synthesized by using onion peel and characterized by various sophisticated instruments like Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and field emission scanning electron microscopes (FESEM). FTIR confirmed ZnONPs synthesis due to the formation of the band in the region of 400–800 cm−1, while FESEM confirmed the spherical shape of the particles whose size varies in the range of 20–80 nm. FTIR revealed several bands from 1000–1800 cm−1 which indicates the capping by the organic molecules on the ZnONPs, which came from onion peel. It also has carbonyl and hydroxyl groups, due to the organic molecules present in the Allium cepa peel waste. The average hydrodynamic size of ZnONPs was 500 nm as confirmed by DLS. The synthesized ZnONPs were then used as a plant nutrient where their effect was evaluated on the growth of Vigna radiate (mung bean) and Triticum aestivum (wheat seeds). The results revealed that the germination and seedling of mung and wheat seeds with ZnONPs were grown better than the control seed. However, seeds of mung and wheat with ZnONPs at median concentration exposure showed an enhancement in percent germination, root, and shoot length in comparison to control. Thus, the effect of ZnONPs has been proved as a nano-based nutrient source for agricultural purposes. Full article
(This article belongs to the Special Issue Synthesis and Applications of Nanoparticles)
Show Figures

Figure 1

10 pages, 877 KiB  
Article
Quantitative Estimation of Protein in Sprouts of Vigna radiate (Mung Beans), Lens culinaris (Lentils), and Cicer arietinum (Chickpeas) by Kjeldahl and Lowry Methods
by Nayab Batool Rizvi, Samina Aleem, Mohammad Rizwan Khan, Sadia Ashraf and Rosa Busquets
Molecules 2022, 27(3), 814; https://doi.org/10.3390/molecules27030814 - 26 Jan 2022
Cited by 58 | Viewed by 9789
Abstract
Protein scarcity is the most vital cause of long-lasting diseases and even untimely deaths in some developing nations. The application of protein in food is advantageous from the point of view of non-toxicity, biocompatibility, and dietary benefits. This study aimed to determine the [...] Read more.
Protein scarcity is the most vital cause of long-lasting diseases and even untimely deaths in some developing nations. The application of protein in food is advantageous from the point of view of non-toxicity, biocompatibility, and dietary benefits. This study aimed to determine the protein contents of the sprouts of Vigna radiates (mung beans), Lens culinaris (lentils), and Cicer arietinum (chickpeas) using the Kjeldahl and Lowry methods. The results obtained from the Kjeldahl method identified protein concentrations of 2.54, 2.63, and 2.19%, whereas the Lowry method results identified protein concentrations of 2.96%, 4.10%, and 1.6% in mung beans, lentils, and chickpeas, respectively. In both the methods, lentils were found to have the highest amount of protein followed by mung beans and chickpeas. Both the Kjeldahl and Lowry methods demonstrated good protein values and low variation in the protein amount in the analyzed samples. Furthermore, the methods had greater sensitivity and comparable experimental variability. The outcomes revealed that assays can be applied for protein analysis in legumes. In the context of a lack of suitable standard procedures for evaluating legumes’ compositions, the present study is suitable for food control laboratories. In addition, the studied samples represent a significant source of protein and can be used to fulfil the daily requirements for protein intake and other food applications. Full article
Show Figures

Graphical abstract

17 pages, 2165 KiB  
Article
Comparative Effect of Inoculation of Phosphorus-Solubilizing Bacteria and Phosphorus as Sustainable Fertilizer on Yield and Quality of Mung Bean (Vigna radiata L.)
by Shahid Bilal, Abu Hazafa, Imran Ashraf, Saud Alamri, Manzer H. Siddiqui, Amina Ramzan, Nimra Qamar, Farooq Sher and Muhammad Naeem
Plants 2021, 10(10), 2079; https://doi.org/10.3390/plants10102079 - 30 Sep 2021
Cited by 21 | Viewed by 4670
Abstract
Globally, the availability of phosphorus (P) to crops remains limited in two-thirds of the soils, which makes it less accessible to plants and ultimately associated with low crop yields. The present study investigated the effect of phosphorus-solubilizing bacteria (PSB; Pseudomonas spp.) for the [...] Read more.
Globally, the availability of phosphorus (P) to crops remains limited in two-thirds of the soils, which makes it less accessible to plants and ultimately associated with low crop yields. The present study investigated the effect of phosphorus-solubilizing bacteria (PSB; Pseudomonas spp.) for the improvement of phosphorus in mung bean (Vigna radiata) varieties and growth of net grain and biological yields. Results showed that inoculation of mung bean varieties with PSB at the rate of 100 g/kg seed significantly improved the root and shoot dry weight of about 1.13 and 12.66 g, root and shoot length of 14.49 and 50.63 cm, root and shoot phosphorus content of 2629.39 and 4138.91 mg/kg, a biological yield of 9844.41 kg/ha, number of pods of 17 per plant, number of grains of 9 per pod, grain yield of 882.23 kg/ha, and 1000-grain weight of 46.18 g after 60 days of observation. It was also observed that PSB-treated varieties of mung bean showed the maximum photosynthetic yield, photosynthetic active radiation, electron transport rate, and momentary fluorescent rate of 0.75, 364.32, 96.12, and 365.33 μmol/m2 s, respectively. The highest harvest index of 13.28% was recorded by P-treated mung beans. Results disclosed that inoculation of seeds of mung bean with PSB exhibited different effects in measured parameters. It is concluded that PSB possessed remarkable results in measured parameters compared to the control and highlighted that PSB could be an effective natural sustainable fertilizer for mung bean cultivation in sandy soil. Full article
(This article belongs to the Special Issue Mineral Nutrition and Plant Responses to Environmental Changes)
Show Figures

Figure 1

12 pages, 14420 KiB  
Article
An Efficient Structure of an Agrophotovoltaic System in a Temperate Climate Region
by Sojung Kim, Sumin Kim and Chang-Yong Yoon
Agronomy 2021, 11(8), 1584; https://doi.org/10.3390/agronomy11081584 - 9 Aug 2021
Cited by 45 | Viewed by 6150
Abstract
The aim of this study was to identify an efficient agrophotovoltaic (APV) system structure for generating electricity from solar radiation without causing an adverse impact on crop growth. In a temperate climate region, it is critical to design an APV system with appropriate [...] Read more.
The aim of this study was to identify an efficient agrophotovoltaic (APV) system structure for generating electricity from solar radiation without causing an adverse impact on crop growth. In a temperate climate region, it is critical to design an APV system with appropriate structure with the maximum amount of electricity generation because, unlike in desert areas, strong solar radiation is only available for a few hours a day. In this study, APV systems with three different shading ratios (i.e., 32%, 25.6%, and 21.3%) were considered, and the optimum structure in terms of electricity efficiency and profitability was investigated via nonlinear programming. Moreover, an estimation model of electricity generation was developed via a polynomial regression model based on remote sensing data given by the APV system located at Jeollanamdo Agricultural Research and Extension Services in South Korea. To evaluate the impact of the APV on crop production, five different grain crops—sesame (Sesamum indicum), mung bean (Vigna radiata), red bean (Vigna angularis), corn (Zea mays), and soybean (Glycine max)—were cultivated in the system. As a result, the proposed optimization model successfully identified the best APV system structure without reducing existing crop production. Full article
Show Figures

Figure 1

Back to TopTop