Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (209)

Search Parameters:
Keywords = VLFS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 810 KB  
Article
Association Between Depressive Symptoms and Altered Heart Rate Variability in Obstructive Sleep Apnea
by Ji Hye Shin, Min Ji Song and Ji Hyun Kim
J. Clin. Med. 2025, 14(19), 6978; https://doi.org/10.3390/jcm14196978 - 2 Oct 2025
Abstract
Background/Objectives: Obstructive sleep apnea (OSA) is strongly associated with cardiovascular morbidity, and depressive symptoms are common in affected individuals. Both OSA and depression have been linked to autonomic dysfunction, but the independent contribution of depressive symptoms to autonomic dysfunction in OSA remains unclear. [...] Read more.
Background/Objectives: Obstructive sleep apnea (OSA) is strongly associated with cardiovascular morbidity, and depressive symptoms are common in affected individuals. Both OSA and depression have been linked to autonomic dysfunction, but the independent contribution of depressive symptoms to autonomic dysfunction in OSA remains unclear. We investigated whether depressive symptom severity is associated with autonomic function, indexed by heart-rate variability (HRV), in patients with OSA. Methods: We retrospectively analyzed 1713 adults with OSA at a university-affiliated sleep center from 2011 to 2024. HRV was derived from electrocardiography during polysomnography, and frequency-domain indices (natural log-transformed LF, HF, VLF, TP, and LF/HF) were computed. Depressive symptoms were assessed using the Beck Depression Inventory-II (BDI-II). Associations between BDI-II and HRV indices were evaluated using univariable and multivariable linear regressions. Results: In univariable regression analyses, higher BDI-II scores were significantly associated with lower HRV indices (ln LF, ln HF, ln VLF, ln TP; all p < 0.01). In multivariable analyses, higher BDI-II scores were independently associated with lower ln LF, ln HF, and ln TP (all p < 0.05), adjusting for age, sex, body mass index, hypertension, diabetes, apnea–hypopnea index, arousal index, and sleep quality. Conclusions: Greater depressive symptom burden is independently associated with reductions in multiple HRV indices, suggesting attenuated parasympathetic activity and autonomic dysregulation in patients with OSA. These findings support integrated management strategies that address both physiological and psychological domains in OSA and motivate longitudinal studies to test whether effective depression treatment improves HRV and mitigates long-term cardiovascular risk. Full article
(This article belongs to the Special Issue Obstructive Sleep Apnea: Latest Advances and Prospects)
Show Figures

Figure 1

10 pages, 2446 KB  
Data Descriptor
A Multi-Class Labeled Ionospheric Dataset for Machine Learning Anomaly Detection
by Aleksandra Kolarski, Filip Arnaut, Sreten Jevremović, Zoran R. Mijić and Vladimir A. Srećković
Data 2025, 10(10), 157; https://doi.org/10.3390/data10100157 - 30 Sep 2025
Abstract
The binary anomaly detection (classification) of ionospheric data related to Very Low Frequency (VLF) signal amplitude in prior research demonstrated the potential for development and further advancement. Further data quality improvement is integral for advancing the development of machine learning (ML)-based ionospheric data [...] Read more.
The binary anomaly detection (classification) of ionospheric data related to Very Low Frequency (VLF) signal amplitude in prior research demonstrated the potential for development and further advancement. Further data quality improvement is integral for advancing the development of machine learning (ML)-based ionospheric data (VLF signal amplitude) anomaly detection. This paper presents the transition from binary to multi-class classification of ionospheric signal amplitude datasets. The dataset comprises 19 transmitter–receiver pairs and 383,041 manually labeled amplitude instances. The target variable was reclassified from a binary classification (normal and anomalous data points) to a six-class classification that distinguishes between daytime undisturbed signals, nighttime signals, solar flare effects, instrument errors, instrumental noise, and outlier data points. Furthermore, in addition to the dataset, we developed a freely accessible web-based tool designed to facilitate the conversion of MATLAB data files to TRAINSET-compatible formats, thereby establishing a completely free and open data pipeline from the WALDO world data repository to data labeling software. This novel dataset facilitates further research in ionospheric signal amplitude anomaly detection, concentrating on effective and efficient anomaly detection in ionospheric signal amplitude data. The potential outcomes of employing anomaly detection techniques on ionospheric signal amplitude data may be extended to other space weather parameters in the future, such as ELF/LF datasets and other relevant datasets. Full article
(This article belongs to the Section Spatial Data Science and Digital Earth)
Show Figures

Figure 1

14 pages, 549 KB  
Article
Sleep Posture and Autonomic Nervous System Activity Across Age and Sex in a Clinical Cohort: Analysis of a Nationwide Ambulatory ECG Database
by Emi Yuda and Junichiro Hayano
Sensors 2025, 25(19), 5982; https://doi.org/10.3390/s25195982 - 26 Sep 2025
Abstract
Sleep posture has received limited attention in studies of autonomic nervous system (ANS) activity during sleep, particularly in clinical populations. We analyzed data from 130,885 individuals (56.1% female) in the Allostatic State Mapping by Ambulatory ECG Repository (ALLSTAR), a nationwide Japanese database of [...] Read more.
Sleep posture has received limited attention in studies of autonomic nervous system (ANS) activity during sleep, particularly in clinical populations. We analyzed data from 130,885 individuals (56.1% female) in the Allostatic State Mapping by Ambulatory ECG Repository (ALLSTAR), a nationwide Japanese database of 24 h Holter ECG recordings obtained for clinical purposes. Sleep posture was classified as supine, right lateral, left lateral, or prone using triaxial accelerometer data. Heart rate variability (HRV) indices—including heart rate (HR), standard deviation of RR intervals (SDRR), high-frequency (HF), low-frequency (LF), very low-frequency (VLF) components, cyclic variation in heart rate (CVHR), and HF spectral power concentration index (Hsi)—were calculated for each posture and stratified by age and sex. HR was consistently lowest in the left lateral posture and highest in the right lateral posture across most age groups. Other HRV indices also showed consistent laterality, although the effect sizes were generally small. Posture distribution differed slightly by estimated sleep apnea severity, but the effect size was negligible (η2 = 0.0013). These findings highlight sleep posture as a statistically significant and independent factor influencing ANS activity during sleep, though the magnitude of differences should be interpreted in the context of their clinical relevance. Full article
Show Figures

Figure 1

16 pages, 9648 KB  
Article
A Novel Classification Framework for VLF/LF Lightning-Radiation Electric-Field Waveforms
by Wenxing Sun, Tingxiu Jiang, Duanjiao Li, Yun Zhang, Xinru Li, Yunlong Wang and Jiachen Gao
Atmosphere 2025, 16(10), 1130; https://doi.org/10.3390/atmos16101130 - 26 Sep 2025
Abstract
The classification of very-low-frequency and low-frequency (VLF/LF) lightning-radiation electric-field waveforms is of paramount importance for lightning-disaster prevention and mitigation. However, traditional waveform classification methods suffer from the complex characteristics of lightning waveforms, such as non-stationarity, strong noise interference, and feature coupling, limiting classification [...] Read more.
The classification of very-low-frequency and low-frequency (VLF/LF) lightning-radiation electric-field waveforms is of paramount importance for lightning-disaster prevention and mitigation. However, traditional waveform classification methods suffer from the complex characteristics of lightning waveforms, such as non-stationarity, strong noise interference, and feature coupling, limiting classification accuracy and generalization. To address this problem, a novel framework is proposed for VLF/LF lightning-radiated electric-field waveform classification. Firstly, an improved Kalman filter (IKF) is meticulously designed to eliminate possible high-frequency interferences (such as atmospheric noise, electromagnetic radiation from power systems, and electronic noise from measurement equipment) embedded within the waveforms based on the maximum entropy criterion. Subsequently, an attention-based multi-fusion convolutional neural network (AMCNN) is developed for waveform classification. In the AMCNN architecture, waveform information is comprehensively extracted and enhanced through an optimized feature fusion structure, which allows for a more thorough consideration of feature diversity, thereby significantly improving the classification accuracy. An actual dataset from Anhui province in China is used to validate the proposed classification framework. Experimental results demonstrate that our framework achieves a classification accuracy of 98.9% within a processing time of no more than 5.3 ms, proving its superior classification performance for lightning-radiation electric-field waveforms. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

16 pages, 1191 KB  
Article
Association of Heart Rate Variability and Acceleration Plethysmography with Systemic Comorbidity Burden in Patients with Glaucoma
by Yuto Yoshida, Hinako Takei, Misaki Ukisu, Keigo Takagi and Masaki Tanito
Biomedicines 2025, 13(9), 2155; https://doi.org/10.3390/biomedicines13092155 - 4 Sep 2025
Viewed by 488
Abstract
Background: Autonomic nervous system (ANS) and vascular factors are associated with glaucoma. However, the association between systemic comorbidity burden and ANS and hemodynamic function in patients with glaucoma remains unclear. This study aimed to examine the association between heart rate variability (HRV) [...] Read more.
Background: Autonomic nervous system (ANS) and vascular factors are associated with glaucoma. However, the association between systemic comorbidity burden and ANS and hemodynamic function in patients with glaucoma remains unclear. This study aimed to examine the association between heart rate variability (HRV) and acceleration plethysmography (APG) parameters and the age-adjusted Charlson Comorbidity Index (ACCI) in patients with glaucoma. Methods: A total of 260 subjects (260 eyes), including 186 with primary open-angle glaucoma (PG) and 74 with exfoliation glaucoma (EG), were enrolled at Shimane University Hospital from June 2023 to July 2024. HRV and APG were assessed using a sphygmograph (TAS9 Pulse Analyzer Plus View). HRV parameters included time-domain measures (SDNN, RMSSD, CVRR) and frequency-domain measures (TP, VLF, LF, HF, LF/HF). APG parameters included the a, b, c, d, and e components of the accelerated pulse wave, and the following vascular types: Type A, Type B, and Type C. The association between ACCI and HRV and APG parameters was evaluated using Spearman’s rank correlation and multivariate regression adjusted for sex, body mass index, pulse rate, systolic and diastolic blood pressure, intraocular pressure, medication score, mean deviation, and glaucoma type. Results: By univariate analysis, against ACCI, significant inverse correlations were observed for several parameters: LnLF (R = −0.17, p = 0.0062); LnLF/LnHF (R = −0.24, p = 0.00012); b peak (R = −0.14, p = 0.031); d peak (R = −0.17, p = 0.0072); and e peak (R = −0.15, p = 0.015). Regarding HRV parameters, multivariate linear regression models showed that ACCI was significantly positively associated with RMSSD (coefficient: 2.861; 95% CI: 0.447 to 5.274) and significantly negatively associated with the frequency-domain parameters LnLF (coefficient: −0.127; 95% CI: −0.245 to −0.009) and LnLF/LnHF (coefficient: −0.038; 95% CI: −0.062 to −0.014). In APG parameters, the c peak was significant associated with ACCI (coefficient: −12.6; 95% CI: −22.5 to −2.69). ACCI was significantly associated with Type B (coefficient: 0.305; 95% CI: 0.057 to 0.552). Conclusions: Greater systemic comorbidity burden may be related to impaired ANS regulation and increased vascular stiffness in glaucoma patients. Full article
(This article belongs to the Special Issue Glaucoma: New Diagnostic and Therapeutic Approaches, 3rd Edition)
Show Figures

Figure 1

18 pages, 4523 KB  
Article
The Influence of a Multi-Layer Porous Plate Structure on a Horizontally Moored Very Large Floating Structure: An Experimental Study
by Mingwei Feng, Minghao Guo, Zhipeng Leng, Xin Li and Haisheng Zhao
J. Mar. Sci. Eng. 2025, 13(9), 1702; https://doi.org/10.3390/jmse13091702 - 3 Sep 2025
Viewed by 450
Abstract
Due to their unique structural configuration, Very Large Floating Structures (VLFS) exhibit significant hydroelastic responses during their motion in the water. These responses, which are a result of the interaction between the structure and the waves, can lead to undesirable vibrations and deformations, [...] Read more.
Due to their unique structural configuration, Very Large Floating Structures (VLFS) exhibit significant hydroelastic responses during their motion in the water. These responses, which are a result of the interaction between the structure and the waves, can lead to undesirable vibrations and deformations, potentially compromising the stability and performance of the VLFS. Reducing the hydroelastic response in VLFS has become a critical research focus for scholars worldwide. In the field of marine engineering, various methods are employed to address this issue, with the use of porous structures being one of the most effective solutions. These porous structures help to dissipate the energy of propagating waves, thereby reducing the magnitude of hydroelastic responses. This paper introduces a multi-layer porous plate structure designed to mitigate the hydroelastic response of horizontally moored VLFS. The proposed structure consists of multiple layers of porous plates strategically arranged to optimize the dissipation of wave energy. To evaluate the performance of this structure, a series of physical model tests were conducted, focusing on the hydrodynamic behavior of the VLFS with the multi-layer porous plate structure. The experimental results indicate that within a specific wavelength range, the properly configured multi-layer porous plate structure can significantly reduce the hydroelastic response of the VLFS. This reduction is especially noticeable in the attenuation of wave-induced forces, leading to a decrease in the structural vibrations and enhancing the stability of the floating system. The findings demonstrate that this innovative design can provide a reliable method for improving the performance of VLFS in challenging marine environments. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

21 pages, 35452 KB  
Article
Integrated Geophysical Techniques to Investigate Water Resources in Self-Sustained Carbon-Farming Agroforestry
by John D. Alexopoulos, Vasileios Gkosios, Ioannis-Konstantinos Giannopoulos, Spyridon Dilalos, Antonios Eleftheriou and Simos Malamis
Geosciences 2025, 15(8), 317; https://doi.org/10.3390/geosciences15080317 - 13 Aug 2025
Viewed by 643
Abstract
The present paper deals with the combined application of near-surface geophysical techniques in a sustainable agriculture project. Their application is focused on the identification of any subsurface water in the context of sustainable water management for the selected living hub, located in the [...] Read more.
The present paper deals with the combined application of near-surface geophysical techniques in a sustainable agriculture project. Their application is focused on the identification of any subsurface water in the context of sustainable water management for the selected living hub, located in the semi-arid area of Agios Georgios-Mandra Attiki. The objective of the multidisciplinary geophysical study was to determine the depth of the bedrock and the thickness of the post-Alpine deposits. In addition, the subsurface karstification and the possible aquifer presence were examined. For that reason, the following techniques were implemented: Electrical Resistivity Tomography, Seismic Refraction Tomography, Ground-Penetrating Radar, and Very-Low Frequency electromagnetic technique. The study was also supported by drone LiDAR usage. The investigation revealed several hydrogeological characteristics of the area. The thickness of the post-Alpine sediments is almost 3 m. However, no shallow aquiferous systems have been developed in this formation, as indicated by their relatively high resistivity values (100–1000 Ohm.m). Furthermore, the alpine bedrock exhibits extensive karstification, facilitated by the development of fracture zones. The absence of an underlying impermeable layer prevented the development of aquiferous zones, at least up to a depth of 100 m. Full article
Show Figures

Figure 1

20 pages, 6555 KB  
Article
Statistical Study of Whistler-Mode Waves in the Magnetospheric Magnetic Ducts
by Salman A. Nejad and Anatoly V. Streltsov
Universe 2025, 11(8), 260; https://doi.org/10.3390/universe11080260 - 6 Aug 2025
Viewed by 368
Abstract
This paper presents a comprehensive statistical analysis of extremely/very low-frequency (ELF/VLF) whistler-mode waves observed within magnetic ducts (B-ducts) using data from NASA’s Magnetospheric Multiscale (MMS) mission. A total of 687 events were analyzed, comprising 504 occurrences on the dawn-side flank of [...] Read more.
This paper presents a comprehensive statistical analysis of extremely/very low-frequency (ELF/VLF) whistler-mode waves observed within magnetic ducts (B-ducts) using data from NASA’s Magnetospheric Multiscale (MMS) mission. A total of 687 events were analyzed, comprising 504 occurrences on the dawn-side flank of the magnetosphere and 183 in the nightside magnetotail, to investigate the spatial distribution and underlying mechanisms of wave–particle interactions. We identify distinct differences between these regions by examining key parameters such as event width, frequency, plasma density, and magnetic field extrema within B-ducts. Using an independent two-sample t-test, we assess the statistical significance of variations in these parameters between different observation periods. This study provides valuable insights into the magnetospheric conditions influencing B-duct formation and wave propagation, offering a framework for understanding ELF/VLF wave dynamics in Earth’s space environment. Full article
(This article belongs to the Section Space Science)
Show Figures

Figure 1

9 pages, 2733 KB  
Data Descriptor
Investigating Mid-Latitude Lower Ionospheric Responses to Energetic Electron Precipitation: A Case Study
by Aleksandra Kolarski, Vladimir A. Srećković, Zoran R. Mijić and Filip Arnaut
Data 2025, 10(8), 121; https://doi.org/10.3390/data10080121 - 26 Jul 2025
Viewed by 459
Abstract
Localized ionization enhancements (LIEs) in altitude range corresponding to the D-region ionosphere, disrupting Very-Low-Frequency (VLF) signal propagation. This case study focuses on Lightning-induced Electron Precipitation (LEP), analyzing amplitude and phase variations in VLF signals recorded in Belgrade, Serbia, from worldwide transmitters. Due to [...] Read more.
Localized ionization enhancements (LIEs) in altitude range corresponding to the D-region ionosphere, disrupting Very-Low-Frequency (VLF) signal propagation. This case study focuses on Lightning-induced Electron Precipitation (LEP), analyzing amplitude and phase variations in VLF signals recorded in Belgrade, Serbia, from worldwide transmitters. Due to the localized, transient nature of Energetic Electron Precipitation (EEP) events and the path-dependence of VLF responses, research relies on event-specific case studies to model reflection height and sharpness via numerical simulations. Findings show LIEs are typically under 1000 × 500 km, with varying internal structure. Accumulated case studies and corresponding data across diverse conditions contribute to a broader understanding of ionospheric dynamics and space weather effects. These findings enhance regional modeling, support aerosol–electricity climate research, and underscore the value of VLF-based ionospheric monitoring and collaboration in Europe. Full article
(This article belongs to the Section Spatial Data Science and Digital Earth)
Show Figures

Figure 1

19 pages, 2784 KB  
Article
Principal Connection Between Typical Heart Rate Variability Parameters as Revealed by a Comparative Analysis of Their Heart Rate and Age Dependence
by András Búzás, Balázs Sonkodi and András Dér
Entropy 2025, 27(8), 792; https://doi.org/10.3390/e27080792 - 25 Jul 2025
Cited by 1 | Viewed by 1458
Abstract
Heart rate (HR) is strongly affected by the autonomic nervous system (ANS), while its spontaneous fluctuations, called heart rate variability (HRV), report about the dynamics of the complex, vegetative regulation of the heart rhythm. Hence, HRV is widely considered an important marker of [...] Read more.
Heart rate (HR) is strongly affected by the autonomic nervous system (ANS), while its spontaneous fluctuations, called heart rate variability (HRV), report about the dynamics of the complex, vegetative regulation of the heart rhythm. Hence, HRV is widely considered an important marker of the ANS effects on the cardiac system, and as such, a crucial diagnostic tool in cardiology. In order to obtain nontrivial results from HRV analysis, it would be desirable to establish exact, universal interrelations between the typical HRV parameters and HR itself. That, however, has not yet been fully accomplished. Hence, our aim was to perform a comparative statistical analysis of ECG recordings from a public database, with a focus on the HR dependence of typical HRV parameters. We revealed their fundamental connections, which were substantiated by basic mathematical considerations, and were experimentally demonstrated via the analysis of 24 h of ECG recordings of more than 200 healthy individuals. The large database allowed us to perform unique age-cohort analyses. We confirmed the HR dependence of typical time-domain parameters, such as RMSSD and SDNN, frequency-domain parameters such as the VLF, LF, and HF components, and nonlinear indices such as sample entropy and DFA exponents. In addition to shedding light on their relationship, we are the first, to our knowledge, to identify a new, diffuse structure in the VHF regime as an important indicator of SNS activity. In addition, the demonstrated age dependence of the HRV parameters gives important new insight into the long-term changes in the ANS regulation of the cardiac system. As a possible molecular physiological mechanism underlying our new findings, we suggest that they are associated with Piezo2 channel function and its age-related degradation. We expect our results to be utilized in HRV analysis related to both medical research and practice. Full article
Show Figures

Figure 1

10 pages, 212 KB  
Article
Heart Rate Variability Frequency-Domain Analysis Across Glaucoma Subtypes
by Misaki Ukisu, Yuto Yoshida, Hinako Takei, Keigo Takagi and Masaki Tanito
Biomedicines 2025, 13(8), 1805; https://doi.org/10.3390/biomedicines13081805 - 23 Jul 2025
Cited by 1 | Viewed by 532
Abstract
Background/Objectives: Heart rate variability (HRV) is a marker of autonomic nervous system function, based on fluctuations in heartbeat intervals. Although several studies have investigated the association between frequency-domain HRV parameters and glaucoma, evidence based on large sample sizes remains limited. Therefore, the [...] Read more.
Background/Objectives: Heart rate variability (HRV) is a marker of autonomic nervous system function, based on fluctuations in heartbeat intervals. Although several studies have investigated the association between frequency-domain HRV parameters and glaucoma, evidence based on large sample sizes remains limited. Therefore, the present study aimed to examine the relationship between frequency-domain HRV parameters and glaucoma subtypes, including primary open-angle glaucoma (PG) and exfoliation glaucoma (EG), using a larger sample size. Methods: Participants with primary open-angle glaucoma (PG), exfoliation glaucoma (EG), or no ocular disease other than cataract (controls) were recruited at Shimane University between June 2023 and July 2024. Frequency-domain HRV parameters (total power [TP], very-low-frequency [VLF], low-frequency [LF], high-frequency [HF], and LF/HF) were measured using a sphygmograph (TAS9 Pulse Analyzer Plus View). Group comparisons were conducted using unpaired t-tests, Fisher’s exact tests, and Tukey’s HSD test. Multivariate analyses were performed to identify factors associated with each HRV parameter. Results: A total of 809 participants were analyzed, including 522 with PG, 191 with EG, and 96 controls. The EG group showed significantly lower values across all frequency-domain HRV parameters compared to the PG group, and significantly lower LnLF values than the control group (p = 0.012). Multivariate analyses revealed that no significant associations were found between HRV measures and the presence of glaucoma or pseudoexfoliation material (PEM) deposition. Older age was significantly associated with lower values across all HRV parameters. Conclusions: In elderly glaucoma patients, age-related alterations in frequency-domain HRV parameters have been observed. Full article
(This article belongs to the Special Issue Glaucoma: New Diagnostic and Therapeutic Approaches, 2nd Edition)
18 pages, 2109 KB  
Article
Phase Variation Model of VLF Timing Signal Based on Waveguide Mode Theory
by Xinze Ma, Wenhe Yan, Zhaopeng Hu, Jiangbin Yuan, Chaozhong Yang, Xiao Zhou, Yu Hua and Shifeng Li
Electronics 2025, 14(14), 2885; https://doi.org/10.3390/electronics14142885 - 18 Jul 2025
Viewed by 405
Abstract
In integrated PNT systems, due to defects in satellite signals and long-wave signals, VLF signals can be an essential supplement. However, there is currently a lack of VLF timing systems in the world, and it is impossible to evaluate the impact of the [...] Read more.
In integrated PNT systems, due to defects in satellite signals and long-wave signals, VLF signals can be an essential supplement. However, there is currently a lack of VLF timing systems in the world, and it is impossible to evaluate the impact of the propagation delay of these signals. Based on the theory of very-low-frequency propagation, this paper determines the waveguide mode propagation at ultra-long distances as the main research direction, establishes a signal phase change model, gives a theoretical formula for the phase velocity of VLF signals, and analyzes the main factors affecting the phase velocity of VLF signal propagation. Finally, combined with historical observation data, the phase change is predicted, compared, and analyzed. The results show that the theoretical calculation is consistent with the measured data. The average error of the delay prediction is 0.015 microseconds per 100 km, and the maximum error of the delay prediction is 0.152 microseconds per 100 km. Full article
Show Figures

Figure 1

16 pages, 1538 KB  
Article
Lower Ionospheric Perturbations Associated with Lightning Activity over Low and Equatorial Regions
by Dayanand Bhaskar, Rajat Tripathi, Mahesh N. Shrivastava, Rajesh Singh, Sudipta Sasmal, Abhirup Datta and Ajeet Kumar Maurya
Atmosphere 2025, 16(7), 832; https://doi.org/10.3390/atmos16070832 - 9 Jul 2025
Viewed by 515
Abstract
We present lightning-induced ionospheric perturbations in narrowband very-low-frequency (VLF) signals from the transmitters NWC (21.82° S, 114.17° E, 19.8 kHz) and VTX (8.4° N, 77.8° E, 18.6 kHz) recorded at the low-latitude station Dehradun (DDN; 30.3° N, 78.0° E) over a 12-month period [...] Read more.
We present lightning-induced ionospheric perturbations in narrowband very-low-frequency (VLF) signals from the transmitters NWC (21.82° S, 114.17° E, 19.8 kHz) and VTX (8.4° N, 77.8° E, 18.6 kHz) recorded at the low-latitude station Dehradun (DDN; 30.3° N, 78.0° E) over a 12-month period from September 2020 to October 2021. Early/slow VLF events, VLF LOREs, and step-like VLF LOREs associated with lightning were analyzed for their onset and recovery times. This study utilized data from the World Wide Lightning Location Network (WWLLN), which provides lightning locations and energy estimates. The results show that early/slow VLF events occur most frequently, accounting for approximately 68% of cases, followed by VLF LOREs at 12%, and step-like VLF LOREs at 10%. Furthermore, we observed that 100% of the VLF perturbing events occurred during the nighttime, which is not entirely consistent with previous studies. Moreover, more than 60% of VLF LOREs were associated with lightning energies of approximately 1 kJ, and about 40% were associated with lightning energies of ~10 kJ. Step-like VLF LOREs were linked to WWLLN energies between 1 and 5 kJ. The observed WWLLN energy range is somewhat lower than the energies reported in previous studies. Scattering characteristics revealed that 87.3% of events were associated with wide-angle scattering, while approximately 12.6% were linked to narrow-angle scattering. LWPC version 2.1 was used to simulate these perturbing events and to estimate the reflection height (H′, in km) and the exponential sharpness factor (β, in km−1) corresponding to changes in D-region electron density. The reflection height (H′, in km) and the exponential sharpness factor (β, in km−1) of the D-region varied from 83 to 87 km and from 0.42 to 0.79 km−1 for early/slow VLF events, from 83 to 85 km and from 0.5 to 0.75 km−1 for step-like VLF LOREs, and from 81 to 83 km and from 0.75 to 0.81 km−1 for VLF LOREs, respectively. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

15 pages, 3025 KB  
Article
High-Power-Density Miniaturized VLF Antenna with Nanocrystalline Core for Enhanced Field Strength
by Wencheng Ai, Huaning Wu, Lin Zhao and Hui Xie
Nanomaterials 2025, 15(14), 1062; https://doi.org/10.3390/nano15141062 - 9 Jul 2025
Viewed by 507
Abstract
In order to break through the difficulties with a very-low-frequency (VLF) miniaturized antenna with small power capacity and low radiation efficiency, this paper proposes a high-radiation-field-strength magnetic loop antenna based on a nanocrystalline alloy magnetic core. A high-permeability nanocrystalline toroidal core (μ [...] Read more.
In order to break through the difficulties with a very-low-frequency (VLF) miniaturized antenna with small power capacity and low radiation efficiency, this paper proposes a high-radiation-field-strength magnetic loop antenna based on a nanocrystalline alloy magnetic core. A high-permeability nanocrystalline toroidal core (μr = 50,000, Bs = 1.2 T) is used to optimize the thickness-to-diameter ratio (t = 0.08) and increase the effective permeability to 11,000. The Leeds wires, characterized by their substantial carrying capacity, are manufactured through a toroidal winding process. This method results in a 68% reduction in leakage compared to traditional radial winding techniques and enhances magnetic induction strength by a factor of 1.5. Additionally, this approach effectively minimizes losses, thereby facilitating support for kilowatt-level power inputs. A cascaded LC resonant network (resonant capacitance 2.3 μF) and ferrite balun transformer (power capacity 3.37 kW) realize a 20-times amplification of the input current. A series connection of a high-voltage isolation capacitor blocks DC bias noise, guaranteeing the stable transmission of 1200 W power, which is 6 times higher than the power capacity of traditional ring antenna. At 7.8 kHz frequency, the magnetic field strength at 120 m reaches 47.32 dBμA/m, and, if 0.16 pT is used as the threshold, the communication distance can reach 1446 m, which is significantly better than the traditional solution. This design marks the first instance of achieving kilowatt-class VLF effective radiation in a compact 51 cm-diameter magnetic loop antenna, offering a highly efficient solution for applications such as mine communication and geological exploration. Full article
Show Figures

Figure 1

27 pages, 2129 KB  
Article
Efficiency of Multi-Terminators Method to Reveal Seismic Precursors in Sub-Ionospheric VLF Transmitter Signals: Case Study of Turkey–Syria Earthquakes Mw7.8 of 6 February 2023
by Mohammed Y. Boudjada, Patrick H. M. Galopeau, Sami Sawas, Giovanni Nico, Hans U. Eichelberger, Pier F. Biagi, Michael Contadakis, Werner Magnes, Helmut Lammer and Wolfgang Voller
Geosciences 2025, 15(7), 245; https://doi.org/10.3390/geosciences15070245 - 1 Jul 2025
Cited by 1 | Viewed by 532
Abstract
This work presents an analysis of the sub-ionospheric VLF transmitter signal disturbances which were detected more than one week before the Turkey–Syria EQ occurrence. We have applied the multi-terminator method when considering amplitude and phase variations of the TBB transmitter signal (Turkey), selected [...] Read more.
This work presents an analysis of the sub-ionospheric VLF transmitter signal disturbances which were detected more than one week before the Turkey–Syria EQ occurrence. We have applied the multi-terminator method when considering amplitude and phase variations of the TBB transmitter signal (Turkey), selected because of a good signal to noise ratio for the amplitude, a stable phase variation, and a ray-path propagation crossing the pre-seismic sensitive region, estimated from the combination of the Dobrovolsky area and the Fresnel zone. New spectral features, i.e., inflexions and jumps, are considered in this study, besides the minima and maxima investigated in. The spectral occurrence probabilities are derived at three specific locations: Graz facility, TBB station and EQ epicenter. We show that two main precursors occurred from 27 to 30 January, and from 31 January to 3 February. More important are the prior precursors detected from 23 January to 25/26 January, where anomaly fluctuations were found to be similar to those at the EQ epicenter area, approximately. A forecasting model is proposed, in which the main steps can provide, in the presence of spectral anomalies, first hints regarding the longitudinal locations of the seismic preparation zone. Full article
(This article belongs to the Special Issue Precursory Phenomena Prior to Earthquakes (2nd Edition))
Show Figures

Figure 1

Back to TopTop