Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = VHL tumor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7143 KB  
Article
Curcumol Targets the VHL/HIF-1α Axis to Suppress Glycolysis-Driven Progression in Colorectal Cancer
by Gang Wang, Zengyaran Yue, Gang Yin, Lifeng Zhu, Wen Zhou, Ruiqian Sun, Tingting Bi, Lin Zhao, Yong Bian and Decai Tang
Cancers 2025, 17(18), 3000; https://doi.org/10.3390/cancers17183000 - 14 Sep 2025
Viewed by 724
Abstract
Background: Hypoxia-induced glycolysis represents a hallmark of colorectal cancer (CRC) progression and contributes significantly to therapeutic resistance. Curcumol, a natural sesquiterpenoid derived from Curcumae Rhizoma, has demonstrated promising anti-tumor properties. However, its impact on metabolic reprogramming under hypoxic conditions remains largely undefined. [...] Read more.
Background: Hypoxia-induced glycolysis represents a hallmark of colorectal cancer (CRC) progression and contributes significantly to therapeutic resistance. Curcumol, a natural sesquiterpenoid derived from Curcumae Rhizoma, has demonstrated promising anti-tumor properties. However, its impact on metabolic reprogramming under hypoxic conditions remains largely undefined. Objective: The objective of this study was to elucidate the potential of Curcumol in inhibiting glycolytic reprogramming and impede CRC progression via regulation of the VHL/HIF-1α signaling pathway. Methods: CRC cells and orthotopic mouse models were treated with Curcumol under chemically induced hypoxic conditions. Metabolic alterations were evaluated using Seahorse extracellular flux analysis, Western blot analysis, quantitative real-time PCR (qRT-PCR), immunohistochemistry (IHC) and co-immunoprecipitation (Co-IP). Functional validation of glycolysis and epithelial–mesenchymal transition (EMT) phenotypes was conducted through in vitro and in vivo assays. Results: Curcumol inhibited HIF-1α-mediated metabolic reprogramming by upregulating VHL expression, thereby promoting HIF-1α degradation. This effect led to the downregulation of key glycolytic genes (HK2, LDHA, and GLUT1), decreased glycolytic flux, and lactate production, ultimately suppressing CRC cell proliferation and invasion. The anti-tumor efficacy of Curcumol was validated in both in vitro and in vivo models. Moreover, Curcumol effectively reversed the hypoxia-induced epithelial–mesenchymal transition (EMT) phenotype, suggesting that its metabolic regulatory effects may contribute to reduced metastatic potential. Conclusions: Curcumol suppresses glycolysis and CRC progression by activating the VHL/HIF-1α signaling axis. These findings underscore the potential of Curcumol as a natural metabolic regulator capable of reversing tumor metabolic reprogramming, offering a promising therapeutic strategy for CRC treatment. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

19 pages, 2536 KB  
Systematic Review
From Subtle Signs to Severe Sequelae—A Century of Symptomatology and Comorbidities in the Diagnosis of GH-Secreting Pituitary Neuroendocrine Tumors: A Systematic Review
by María José Ayora, Lizeth Vinueza-Mera, Santiago Aynaguano, David Poma Jimenez, Felipe Loza Hernandez, Sebastian Jara Jimenez, Jose A. Rodas and Jose E. Leon-Rojas
Diagnostics 2025, 15(17), 2137; https://doi.org/10.3390/diagnostics15172137 - 24 Aug 2025
Viewed by 882
Abstract
Background/Objectives: Somatotropinomas rank as the second most prevalent functional pituitary neuroendocrine tumors (PitNETs), responsible for acromegaly in adults and gigantism in children. Early diagnosis and treatment would help prevent irreversible physical changes and other associated comorbidities. The aim of this review is [...] Read more.
Background/Objectives: Somatotropinomas rank as the second most prevalent functional pituitary neuroendocrine tumors (PitNETs), responsible for acromegaly in adults and gigantism in children. Early diagnosis and treatment would help prevent irreversible physical changes and other associated comorbidities. The aim of this review is to characterize the symptomatic presentation of growth hormone (GH)-secreting PitNET at the time of diagnosis. Methods: A search was conducted in PubMed, Scopus, Cochrane, and the Virtual Health Library (VHL). Primary descriptive and analytical studies were selected if they were written in Spanish or English and addressed the symptoms of acromegaly and/or gigantism due to somatotropinomas. Results: Out of 8470 articles, 93 fulfilled the inclusion criteria, covering 1745 patients (55.4% women). The most frequent diagnostic signs/symptoms were enlarged extremities (12.4%) and facial changes (13.1%). Endocrine–metabolic (42.82%) and cardiovascular (31.45%) were the most prevalent comorbidities. The average diagnostic delay was 6.7 years, with the number of reports of the disease significantly increasing in recent decades, most likely due to ongoing advances in imaging and standardized hormonal tests. Conclusions: Timely recognition of a somatotropinoma’s symptoms and comorbidities is crucial for early diagnosis and referral to specialized care and the prevention of permanent physical and/or physiological changes. Full article
(This article belongs to the Special Issue Diagnosis and Management of Neuroendocrine Tumors)
Show Figures

Figure 1

19 pages, 3181 KB  
Article
Overexpression of BDNF and uPA Combined with the Suppression of Von Hippel–Lindau Tumor Suppressor Enhances the Neuroprotective Activity of the Secretome of Human Mesenchymal Stromal Cells in the Model of Intracerebral Hemorrhage
by Stalik S. Dzhauari, Alexandra L. Primak, Nataliya A. Basalova, Natalia I. Kalinina, Anna O. Monakova, Kirill D. Bozov, Arkadiy Ya. Velichko, Maria E. Illarionova, Olga A. Grigorieva, Zhanna A. Akopyan, Vladimir S. Popov, Pavel G. Malkov, Anastasia Yu. Efimenko, Vsevolod A. Tkachuk and Maxim N. Karagyaur
Int. J. Mol. Sci. 2025, 26(14), 6697; https://doi.org/10.3390/ijms26146697 - 12 Jul 2025
Cited by 1 | Viewed by 698
Abstract
Nerve tissue damage is an unsolved problem in modern neurology and neurosurgery, which prompts the need to search for approaches to stimulate neuroprotection and regeneration of neural tissue. Earlier we have shown that the secretome of human mesenchymal stromal cells (MSCs) stimulates rat [...] Read more.
Nerve tissue damage is an unsolved problem in modern neurology and neurosurgery, which prompts the need to search for approaches to stimulate neuroprotection and regeneration of neural tissue. Earlier we have shown that the secretome of human mesenchymal stromal cells (MSCs) stimulates rat survival, reduces the severity of neurological deficits, and decreases the volume of brain damage in a hemorrhagic stroke model. A significant disadvantage of using the MSC secretome is the need to concentrate it (at least 5–10 fold) to achieve appreciable pharmacological activity. This increases the cost of obtaining clinically applicable amounts of secretome and slows down the clinical translation of this technology. Here, we created a number of genetically modified human MSC cultures, including immortalized MSCs and those with hyperexpression of brain-derived neurotrophic factor (BDNF) and urokinase-type plasminogen activator (uPA) and with suppressed expression of Von Hippel–Lindau tumor suppressor (VHL), and we evaluated the pharmacological activity of their secretomes in a model of intracerebral hemorrhage (ICH) in rats. The secretome of MSCs immortalized by hyperexpression of the catalytic subunit of human telomerase (hTERT) revealed neuroprotective activity indistinguishable from that of primary MSC cultures, yet it still required 10-fold concentration to achieve neuroprotective efficacy. The secretome of MSC culture with combined hyperexpression of BDNF and uPA and suppressed expression of Von Hippel–Lindau tumor suppressor even without additional concentration reduced the severity of neurological disorders and decreased brain lesion volume in the ICH model. The secretomes of MSCs with separate overexpression of BDNF and uPA or suppression of VHL had no such effect or, on the contrary, revealed a toxic effect in the ICH model. Presumably, this may be due to an imbalance in the representation of individual growth factors in the secretome of genetically modified MSCs, which individually may lead to undesirable effects in damaged nervous tissue, such as increased permeability of the blood–brain barrier (under the influence of pro-angiogenic factors) or neural cell apoptosis (due to an excess of neurotrophic factors). The obtained data show that genetic modification of MSC cultures can enhance or alter the therapeutic activity of their secretomes, which can be used in the creation of promising sources of biopharmaceutical substances. Full article
Show Figures

Figure 1

23 pages, 2905 KB  
Article
Advancing the Landscape of Clinical Actionability in Von Hippel–Lindau Syndrome: An Evidence-Based Framework from the INT2GRATE Oncology Consortium
by Diane R. Koeller, McKenzie Walker, Busra Unal, Anu Chittenden, Alison Schwartz Levine, Connor P. Hayes, Paul C. Oramasionwu, Monica D. Manam, Ryan M. Buehler, Israel Gomy, Wilson Araujo Silva, Jordan Lerner-Ellis, Selina Casalino, Radhika Mahajan, Nicholas Watkins, Nihat Bugra Agaoglu, Danielle K. Manning, Justine A. Barletta, Jason L. Hornick, Neal I. Lindeman, Lynette M. Sholl, Huma Q. Rana, Judy E. Garber and Arezou A. Ghazaniadd Show full author list remove Hide full author list
Cancers 2025, 17(13), 2173; https://doi.org/10.3390/cancers17132173 - 27 Jun 2025
Viewed by 631
Abstract
Background/Objectives: An accurate evaluation of variant actionability is essential in cancer management. In Von Hippel–Lindau Syndrome (VHL), the interpretation of the germline variants is confounded by the presence of non-syndromic component tumors, such as clear cell renal cell carcinoma (ccRCC), hemangioblastoma, pheochromocytoma, and [...] Read more.
Background/Objectives: An accurate evaluation of variant actionability is essential in cancer management. In Von Hippel–Lindau Syndrome (VHL), the interpretation of the germline variants is confounded by the presence of non-syndromic component tumors, such as clear cell renal cell carcinoma (ccRCC), hemangioblastoma, pheochromocytoma, and neuroendocrine tumors. These tumors frequently occur sporadically, without any association with VHL syndrome. The presence of these tumors in a patient with a germline VHL variant could lead to inaccurate attribution of these tumors to the germline variant and VHL syndrome. In our previous INT2GRATE (INTegrated INTerpretation of GeRmline And Tumor gEnomes) programs, we demonstrated that integrating tumor-derived and germline evidence offers a comprehensive approach for the accurate assessment of the germline variants in cancer syndromes. Methods/Results: Here, we present a novel INT2GRATE variant evidence framework (VEF) for evaluating the clinical actionability of the germline variants in VHL syndrome, offering an integrated approach that incorporates both constitutional and tumor data. We analyzed 2672 variants in the VHL gene and their associated tumors and clinical evidence to effectively distinguish between constitutional, sporadic, VHL differentials, and VHL allelic genetic conditions. The germline INT2GRATE variants, along with their comprehensive associated evidence, were made accessible in the first open-access INT2GRATE Variant data Portal. Conclusions: This novel and integrated approach to variant assessment and data sharing in hereditary cancer syndromes is essential in the clinical evaluation of genomic variants, advancing precision oncology, and improving patient care. Full article
Show Figures

Figure 1

26 pages, 440 KB  
Review
Immune Checkpoint Inhibitors in Clear Cell Renal Cell Carcinoma (ccRCC)
by Jacek Rysz, Janusz Ławiński, Beata Franczyk and Anna Gluba-Sagr
Int. J. Mol. Sci. 2025, 26(12), 5577; https://doi.org/10.3390/ijms26125577 - 11 Jun 2025
Cited by 2 | Viewed by 2513
Abstract
Renal cell carcinoma (RCC) accounts for about 403,000 new cases and 175,000 deaths worldwide each year. Clear cell RCC (ccRCC), the most prevalent subtype, is often driven by genetic mutations, such as VHL inactivation, leading to angiogenesis and immune escape. Immune checkpoint inhibitors [...] Read more.
Renal cell carcinoma (RCC) accounts for about 403,000 new cases and 175,000 deaths worldwide each year. Clear cell RCC (ccRCC), the most prevalent subtype, is often driven by genetic mutations, such as VHL inactivation, leading to angiogenesis and immune escape. Immune checkpoint inhibitors (ICIs) targeting PD-1, PD-L1, and CTLA-4 have transformed treatment paradigms, yet therapeutic resistance remains a critical challenge. The immunosuppressive nature of the tumor microenvironment (TME) in ccRCC plays a central role in limiting ICI efficacy. Emerging strategies aim to overcome resistance by targeting key components of the TME, including tumor-associated macrophages, regulatory T cells (Tregs), and cytokine signaling. Agents such as nivolumab, pembrolizumab, and ipilimumab have demonstrated the ability to restore T-cell activity and mitigate immune suppression, offering clinical benefit in metastatic ccRCC. However, response rates vary, highlighting the need for rational combination therapies. ICIs combined with VEGF inhibitors have shown promising outcomes in clinical trials, and novel regimens continue to be explored. Risk stratification and personalized treatment selection are increasingly important as the therapeutic landscape evolves. This review synthesizes current advances in immunotherapy for ccRCC, with a focus on mechanisms of resistance and innovative strategies to enhance immune responsiveness. A deeper understanding of TME modulation and strategic combination approaches is essential to improve survival and quality of life for patients with advanced ccRCC. Full article
Show Figures

Figure 1

23 pages, 744 KB  
Review
Epigenetic Insights into Tuberous Sclerosis Complex, Von Hippel–Lindau Syndrome, and Ataxia–Telangiectasia
by Gavriel Hadjigavriel, Christina Stylianides, Evangelos Axarloglou, Maria Eleni Manthou, Efstratios Vakirlis, Paschalis Theotokis, Soultana Meditskou and Iasonas Dermitzakis
Epigenomes 2025, 9(2), 20; https://doi.org/10.3390/epigenomes9020020 - 9 Jun 2025
Cited by 1 | Viewed by 1327
Abstract
Neurocutaneous syndromes represent a clinically and genetically heterogeneous group of disorders, with tuberous sclerosis complex (TSC), von Hippel–Lindau syndrome (VHL), and ataxia–telangiectasia (A-T) exemplifying some of the most complex entities within this category. These syndromes have traditionally been considered monogenic disorders, caused by [...] Read more.
Neurocutaneous syndromes represent a clinically and genetically heterogeneous group of disorders, with tuberous sclerosis complex (TSC), von Hippel–Lindau syndrome (VHL), and ataxia–telangiectasia (A-T) exemplifying some of the most complex entities within this category. These syndromes have traditionally been considered monogenic disorders, caused by germline mutations in tumor suppressor or regulatory genes. However, they exhibit a striking degree of phenotypic variability and divergent clinical trajectories that cannot be fully explained by their underlying genetic alterations alone. Increasingly, epigenetic regulatory mechanisms, such as DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA (ncRNA) activity, are recognized as key modulators of gene expression, cellular differentiation, and tissue-specific function. Disruption of these mechanisms has been implicated in disease pathogenesis, tumorigenesis, and neurodegeneration associated with TSC, VHL, and A-T. Aberrant epigenetic profiles may underlie the observed variability in clinical outcomes, even among individuals with identical mutations. This review consolidates current evidence on the epigenetic landscape of these syndromes, elucidating how these modifications may influence disease behavior and contribute to incomplete genotype–phenotype correlations. By integrating epigenetic insights with known molecular pathways, a more nuanced understanding of disease biology emerges, with potential implications for diagnostic stratification, prognostic assessment, and therapeutic innovation. Full article
(This article belongs to the Collection Feature Papers in Epigenomes)
Show Figures

Figure 1

11 pages, 7056 KB  
Article
Sodium–Glucose Cotransporter 2 and Glucose Levels Affect Clear Cell Renal Cell Carcinoma Progression
by Yujiro Nagata, Ikko Tomisaki, Hisami Aono, Nguyen Thu Quynh, Eiji Kashiwagi and Naohiro Fujimoto
Int. J. Mol. Sci. 2025, 26(12), 5501; https://doi.org/10.3390/ijms26125501 - 8 Jun 2025
Cited by 1 | Viewed by 1033
Abstract
The biological significance of sodium–glucose cotransporter 2 (SGLT2) in clear cell renal cell carcinoma (ccRCC) has yet to be elucidated. In this study, we aimed to determine the role of SGLT2 in ccRCC tumor progression. The human ccRCC line KMRC-1, which contains a [...] Read more.
The biological significance of sodium–glucose cotransporter 2 (SGLT2) in clear cell renal cell carcinoma (ccRCC) has yet to be elucidated. In this study, we aimed to determine the role of SGLT2 in ccRCC tumor progression. The human ccRCC line KMRC-1, which contains a von Hippel–Lindau (VHL) gene mutation, was used to assess the effects of the SGLT2 inhibitor (SGLT2i) dapagliflozin on proliferation and migration in media containing different glucose concentrations (25, 12.5, or 5 mM). Dapagliflozin significantly reduced cell proliferation and migration in 25 mM glucose medium. Similarly, SGLT2 knockdown involving short hairpin RNA lentiviral transfection significantly decreased cell viability, migration, and colony formation compared with the control subline in 25 mM glucose medium. Moreover, tumor progression was inhibited in the media with low glucose concentrations. Remarkably, 2 µM dapagliflozin inhibited the progression of ccRCC at concentrations as low as 5 mM (normoglycemic model) glucose medium as well as 25 mM (severe glycemia model) glucose medium. In addition, dapagliflozin treatment significantly enhanced the apoptosis of ccRCC cells. Our findings demonstrate that SGLT2 impacts the progression of ccRCC with the VHL mutation. In light of the above findings, SGLT2is, which exert the dual effects of SGLT2 blockade and glycemic control, may represent a novel therapeutic agent, particularly in patients with ccRCC who suffer from concurrent diabetes mellitus. To the best of our knowledge, this is the first preclinical study demonstrating the impact of SGLT2 inhibition on the progression of ccRCC with the VHL mutation. Full article
Show Figures

Figure 1

25 pages, 4627 KB  
Article
Dual Inhibition of HIF-1α and HIF-2α as a Promising Treatment for VHL-Associated Hemangioblastomas: A Pilot Study Using Patient-Derived Primary Cell Cultures
by Ana B. Perona-Moratalla, Blanca Carrión, Karina Villar Gómez de las Heras, Lourdes Arias-Salazar, Blanca Yélamos-Sanz, Tomás Segura and Gemma Serrano-Heras
Biomedicines 2025, 13(5), 1234; https://doi.org/10.3390/biomedicines13051234 - 19 May 2025
Viewed by 1715
Abstract
Background: Von Hippel-Lindau (VHL) disease, a hereditary cancer syndrome, is characterized by mutations in the VHL gene, which result in the stabilization of hypoxia-inducible factors (HIF)-1α and -2α, ultimately leading to the development of highly vascularized tumors, such as hemangioblastomas of the central [...] Read more.
Background: Von Hippel-Lindau (VHL) disease, a hereditary cancer syndrome, is characterized by mutations in the VHL gene, which result in the stabilization of hypoxia-inducible factors (HIF)-1α and -2α, ultimately leading to the development of highly vascularized tumors, such as hemangioblastomas of the central nervous system (CNS-HBs). The standard treatment for these brain tumors is neurosurgical resection. However, multiple surgeries are often necessary due to tumor recurrence, which increases the risk of neurological sequelae. Thus, elucidation of the proliferative behavior of hemangioblastomas (with the aim of identifying biomarkers associated with tumor progression) and the development of pharmacological therapies could reduce the need for repeated surgical interventions and provide alternative treatment options for unresectable CNS-HBs. Belzutifan (Welireg™), a selective HIF-2α inhibitor and the only FDA-approved non-surgical option, has shown limited efficacy in CNS-HBs, highlighting the need for alternative therapeutic strategies. Results: In this study, primary cell cultures were successfully established from CNS-HB tissue samples of VHL patients, achieving a 75% success rate. These cultures were predominantly composed of stromal cells and pericytes. The proliferative patterns of patient-derived HB cell cultures significantly correlated with tumor burden and recurrence in VHL patients. Furthermore, flow cytometry, reverse transcription-PCR, and Western blot analyses revealed marked overexpression of both HIF-1α and HIF-2α isoforms in primary HB cells. In addition, evaluation of the therapeutic potential of acriflavine, a dual HIF-1α/HIF-2α inhibitor, demonstrated reduced HB cells viability, induced G2/M cell cycle arrest, and predominantly triggered necrotic cell death in patient-derived HB cultures. Conclusions: These results suggest that the in vitro proliferative dynamics of HB cell cultures may reflect clinical characteristics associated with CNS-HB progression, potentially serving as indicators to predict tumor development in patients with VHL. Furthermore, our findings support the simultaneous targeting of both HIF-1α and HIF-2α isoforms as a promising non-invasive therapeutic strategy. Full article
(This article belongs to the Special Issue New Insights in Hypoxic Response Modulation)
Show Figures

Figure 1

22 pages, 1191 KB  
Article
Neurological Outcome of Spinal Hemangioblastomas: An International Observational Multicenter Study About 35 Surgical Cases
by Motaz Alsereihi, Donato Creatura, Ginevra F. D’Onofrio, Alberto Vandenbulcke, Mahmoud Messerer, Nicolas Penet, Raul Lozano-Madrigal, Alberto Delaidelli, Federico Pessina, Gabriele Capo and Cédric Y. Barrey
Cancers 2025, 17(9), 1428; https://doi.org/10.3390/cancers17091428 - 24 Apr 2025
Viewed by 849
Abstract
Introduction: Hemangioblastomas (HBs) are benign, highly vascular tumors that can be found intracranially or in the spinal region, representing around 2–15% of primary intramedullary tumors. They can occur sporadically or in association with Von Hipple–Lindau (VHL) disease. Despite recent of advancement of nonsurgical [...] Read more.
Introduction: Hemangioblastomas (HBs) are benign, highly vascular tumors that can be found intracranially or in the spinal region, representing around 2–15% of primary intramedullary tumors. They can occur sporadically or in association with Von Hipple–Lindau (VHL) disease. Despite recent of advancement of nonsurgical treatments, complete surgical resection remains the gold standard of care for the spinal HBs. Materials and Methods: We conducted an international multicenter retrospective analysis of adult patients surgically treated for spinal HBs in four European referral centers between January 2000 and September 2024, with a minimum post-operative follow-up duration of 6 months. Patients’ sex and age at surgical intervention, clinical presentation, and duration symptoms prior to clinical diagnosis were identified. The pre- and post-operative neurological status at 1 and 6 months and at the last visit was assessed using the modified McCormick score (MCS). The extent of surgical resection was divided into gross total resection (GTR) and subtotal resection (STR). Finally, post-operative complications were inspected as well, namely cerebrospinal fluid leaks, infections, hemorrhages and post-operative spinal stability. Results: A total of 35 patients were included in the cohort, with an age median of 52 years (34.5–60) and a slight male predominance (21/35, i.e., 60%). The median follow-up period was 37.5 months (12–75). More than half were located in the cervical region, making it the most common (54.3%). Syrinxes were observed in 23 cases (72%), and HBs were more commonly intramedullary (80%). GTR was achievable in around 88% of cases. Post-operative complications were observed in nine patients (25.7%). Nearly half of patients were discharged into rehabilitations centers (48.5%). Tumor recurrence was seen in 10.3% only. At the last follow-up, an excellent overall post-operative neurological status (positive ∆ McCormick) was observed in most of patients (88%) and was found to be associated with a relatively younger age group. Tumor location and presence of syrinxes did not show any statistical significance regarding clinical outcome. In patients having benefited from intra-operative monitoring, only D-wave changes showed statistical significance regarding post-operative outcome (p < 0.05). Conclusions: A large majority of patients operated for a spinal HB demonstrated favorable outcome after surgery, with unchanged or improved neurological status. Advanced age could have an impact on the post-operative neurological outcome. Other factors such as tumor size, location, and the presence of syrinx did not seem to significantly impact the neurological outcome. Finally, the surgery of these vascular lesions with no possibility of debulking or piece-meal removal and requiring “en bloc” resection is technically demanding and should be performed by experienced teams in spine and spinal cord surgery only. Full article
(This article belongs to the Special Issue State of the Art and New Approaches to Spinal Cord Tumors)
Show Figures

Figure 1

14 pages, 2849 KB  
Article
Regulation of Erythropoietin Activity in Clear Renal Cell Carcinoma
by Bojana B. Beleslin Čokić, Sandra Bižić Radulović, Tijana Subotički, Vladan P. Čokić, Constance T. Noguchi, Nebojša Bojanić and Svetozar Damjanović
Int. J. Mol. Sci. 2025, 26(8), 3777; https://doi.org/10.3390/ijms26083777 - 17 Apr 2025
Viewed by 826
Abstract
Clear-cell renal cell carcinoma (ccRCC) is associated with the mutated von Hippel–Lindau (VHL) gene leading to the activation of hypoxia-inducible factor 1A (HIF1A) and subsequent overexpression of erythropoietin (EPO). We analyzed tumor and healthy tissues from 43 ccRCC patients after radical nephrectomy and [...] Read more.
Clear-cell renal cell carcinoma (ccRCC) is associated with the mutated von Hippel–Lindau (VHL) gene leading to the activation of hypoxia-inducible factor 1A (HIF1A) and subsequent overexpression of erythropoietin (EPO). We analyzed tumor and healthy tissues from 43 ccRCC patients after radical nephrectomy and cultured 786-O (biallelic VHL inactivation) and Caki-1 (wild-type VHL) cells in normal (21% O2) and low oxygen (3% O2) with 10% and 2% fetal bovine serum (FBS). DNA sequencing, including Sanger sequencing, MLPA and LOH, revealed 27 somatic mutations of VHL in ccRCC. HIF1A protein showed decreased or no expression in tumors compared to healthy tissue, independent of VHL alteration. The 786-O cells showed increased HIF1A protein expression after 48 h under low oxygen and 10% FBS. EPO and erythropoietin receptor (EPOR) were significantly decreased in ccRCC without HIF1A expression. EPO mRNA increased in the 786-O cells at 3% O2 after 48 h, while the Caki-1 cells had low or no EPO expression. Hypoxia increased EPOR mRNA in the Caki-1 cells at 10% FBS, but decreased in the 786-O cells at 2% FBS after 48 h. JAK2/STAT5A activity was increased only in HIF1A-positive tumors. These results suggest that EPO/EPOR activation in ccRCC is mainly driven by low oxygen, not VHL regulation of hypoxia-related responses. Full article
(This article belongs to the Special Issue Molecular Research on Cancer and Molecular Imaging)
Show Figures

Figure 1

13 pages, 1839 KB  
Case Report
Mosaic Form of von Hippel–Lindau Syndrome: Case Report and Literature Review
by Dmitry S. Mikhaylenko, Natalya B. Kuryakova, Anna V. Efremova, Ilya V. Volodin, Sergey I. Kutsev, Dmitry V. Zaletaev and Vladimir V. Strelnikov
Int. J. Mol. Sci. 2025, 26(6), 2751; https://doi.org/10.3390/ijms26062751 - 19 Mar 2025
Viewed by 1277
Abstract
von Hippel–Lindau syndrome (VHLS) is a hereditary cancer syndrome with CNS hemangioblastomas, clear cell renal carcinoma, pheochromocytoma, retinal angiomas, and a number of other manifestations. VHLS is caused by a mutation in the VHL gene and is inherited in an autosomal dominant manner. [...] Read more.
von Hippel–Lindau syndrome (VHLS) is a hereditary cancer syndrome with CNS hemangioblastomas, clear cell renal carcinoma, pheochromocytoma, retinal angiomas, and a number of other manifestations. VHLS is caused by a mutation in the VHL gene and is inherited in an autosomal dominant manner. However, some cases of VHLS develop de novo, and among them, there are rare patients with a mosaic form of the disease. Genetic testing in mosaic patients is prone to false-negative results due to the low copy number of a mutant allele in DNA isolated from the blood. We describe a case of molecular genetic diagnostics of VHLS in a 39-year-old patient using various methods, including mutation analysis in asynchronous primary tumors and repeated DNA analysis from blood using NGS with high coverage for the mutant position. As a result, the patient was diagnosed with a mosaic form of VHLS caused by the variant c.481C>T (p.Arg161Ter), the proportion of which in the blood DNA was 2%. We also summarized the literature data on the mosaic form of VHLS: the severity of clinical manifestations, the features of differential diagnostics of VHLS with a negative result of routine molecular genetic VHL testing, and specific options of active surveillance and treatment for mutation carriers. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

19 pages, 11436 KB  
Article
Molecular Signatures of Cancer Stemness Characterize the Correlations with Prognosis and Immune Landscape and Predict Risk Stratification in Pheochromocytomas and Paragangliomas
by Lei Li, Shuangyu Liu, Zeqi Guo, Yueming Tang, Yue Zhang, Ling Qiu and Yue Li
Bioengineering 2025, 12(3), 219; https://doi.org/10.3390/bioengineering12030219 - 21 Feb 2025
Viewed by 1216
Abstract
Background: Pheochromocytoma and paragangliomas (PPGLs) caused refractory hypertension in clinics. The sustained risk of local or metastatic recurrences or new tumor development prompted more research on diagnosis, prognosis prediction, and immunotherapy. Method: The tumor stemness is closely related to the heterogeneous growth of [...] Read more.
Background: Pheochromocytoma and paragangliomas (PPGLs) caused refractory hypertension in clinics. The sustained risk of local or metastatic recurrences or new tumor development prompted more research on diagnosis, prognosis prediction, and immunotherapy. Method: The tumor stemness is closely related to the heterogeneous growth of tumor, metastasis, and drug-resistance, and mRNA expression-based stemness indices (mRNAsi) could reflect tumor stemness. This was calculated based on OCLR machine learning algorithm and PPGLs patients’ TCGA RNAseq data. The relationship between clinical, molecular, and tumor microenvironment (TME) features and tumor stemness was analyzed through the hub genes that best captured the stem cell characteristics of PPGLs using weighted gene co-expression network analysis (WGCNA), Cox, and LASSO regression analysis. Results: Our study found that metastatic PPGLs had higher mRNAsi scores, suggesting the degree of tumor stemness could affect metastasis and progression. HRAS, CSDE1, NF1, RET, and VHL-mutant subtypes displayed significant difference in stemness expression. Patients were divided into stemness high-score and low-score subtypes. High-score PPGLs displayed the more unfavorable prognosis compared with low-score, associated with their immune-suppressive features, manifested as low macrophages M1 infiltration and downregulated expression of immune checkpoints. Furthermore, from the viewpoint of stemness features, we established a reliable prognostic for PPGLs, which has the highest AUC value (0.908) in the field so far. And this could stratify PPGLs patients into high-risk and low-risk subtypes, showing the significant differences in prognosis, underlying mechanisms correlated with specific molecular alterations, biological processes activation, and TME. Notably, high immune infiltration and tumor neoantigen in low-risk patients and further resulted in more responsive to immunotherapy. Conclusion: We indicated that tumor stemness could act as the potential biomarker for metastasis or prognosis of PPGLs, and integrated multi-data sources, analyzed valuable stemness-related genes, developed and verified a novel stemness scoring system to predict prognosis and guide the choice of treatment strategies. Full article
(This article belongs to the Special Issue Recent Advances in Cancer Bioinformatics)
Show Figures

Figure 1

14 pages, 877 KB  
Review
Hypoxia-Inducible Factor in Renal Cell Carcinoma: From Molecular Insights to Targeted Therapies
by Giandomenico Roviello, Irene De Gennaro, Ismaela Vascotto, Giulia Venturi, Alberto D’Angelo, Costanza Winchler, Adriana Guarino, Salvatore Cacioppo, Mikol Modesti, Marinella Micol Mela, Edoardo Francini, Laura Doni, Virginia Rossi, Elisabetta Gambale, Roberta Giorgione, Lorenzo Antonuzzo, Gabriella Nesi and Martina Catalano
Genes 2025, 16(1), 6; https://doi.org/10.3390/genes16010006 - 24 Dec 2024
Cited by 5 | Viewed by 3283
Abstract
Mutations of the von Hippel–Lindau (VHL) tumor suppressor gene occur frequently in clear cell renal cell carcinoma (RCC), the predominant histology of kidney cancer, and have been associated with its pathogenesis and progression. Alterations of VHL lead to impaired degradation of [...] Read more.
Mutations of the von Hippel–Lindau (VHL) tumor suppressor gene occur frequently in clear cell renal cell carcinoma (RCC), the predominant histology of kidney cancer, and have been associated with its pathogenesis and progression. Alterations of VHL lead to impaired degradation of hypoxia-inducible factor 1α (HIF1α) and HIF2α promoting neoangiogenesis, which is pivotal for cancer growth. As such, targeting the VHL-HIF axis holds relevant potential for therapeutic purposes. Belzutifan, an HIF-2α inhibitor, has been recently indicated for metastatic RCC and other antiangiogenic drugs directed against HIF-2α are currently under investigation. Further, clinical and preclinical studies of combination approaches for metastatic RCC including belzutifan with cyclin-dependent kinase 4–6 inhibitors, tyrosine kinase inhibitors, or immune checkpoint inhibitors achieved promising results or are ongoing. This review aims to summarize the existing evidence regarding the VHL/HIF pathway, and the approved and emerging treatment strategies that target this pivotal molecular axis and their mechanisms of resistance. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 3494 KB  
Article
Leveraging Tumor Mutation Profiles to Forecast Immune Checkpoint Blockade Resistance in Melanoma, Lung, Head and Neck, Bladder and Renal Cancers
by Guillaume Mestrallet
Onco 2024, 4(4), 439-457; https://doi.org/10.3390/onco4040031 - 10 Dec 2024
Cited by 1 | Viewed by 1579
Abstract
Immune checkpoint blockade (ICB), radiotherapy, chemotherapy and surgery are currently used as therapeutic strategies against melanoma, lung, bladder and renal cancers, but their efficacy is limited. Thus, I need to predict treatment response and resistance to address this challenge. In this study, I [...] Read more.
Immune checkpoint blockade (ICB), radiotherapy, chemotherapy and surgery are currently used as therapeutic strategies against melanoma, lung, bladder and renal cancers, but their efficacy is limited. Thus, I need to predict treatment response and resistance to address this challenge. In this study, I analyzed 350 lung cancer, 320 melanoma, 215 bladder cancer, 139 head and neck cancer and 151 renal carcinoma patients treated with ICB to identify tumor mutations associated with response and resistance to treatment. I identified several tumor mutations linked with a difference in survival outcomes following ICB. In lung cancer, missense mutations in ABL1, ASXL1, EPHA3, EPHA5, ERBB4, MET, MRE11A, MSH2, NOTCH1, PAK7, PAX5, PGR, ZFHX3, PIK3C3 and REL genes were indicative of favorable responses to ICB. Conversely, mutations in TGFBR2, ARID5B, CDKN2C, HIST1H3I, RICTOR, SMAD2, SMAD4 and TP53 genes were associated with shorter overall survival post-ICB treatment. In melanoma, mutations in FBXW7, CDK12, CREBBP, CTNNB1, NOTCH1 and RB1 genes predict resistance to ICB, whereas missense mutations in FAM46C and RHOA genes are associated with extended overall survival. In bladder cancer, mutations in HRAS genes predict resistance to ICB, whereas missense mutations in ERBB2, GNAS, ATM, CDKN2A and LATS1 genes, as well as nonsense mutations in NCOR1 and TP53 genes, are associated with extended overall survival. In head and neck cancer, mutations in genes like PIK3CA and KRAS correlated with longer survival, while mutations in genes like TERT and TP53 were linked to shorter survival. In renal carcinoma, mutations such as EPHA5, MGA, PIK3R1, PMS1, TSC1 and VHL were linked to prolonged overall survival, while others, including total splice mutations and mutations in B2M, BCOR, JUN, FH, IGF1R and MYCN genes were associated with shorter overall survival following ICB. Then, I developed predictive survival models by machine learning that correctly forecasted cancer patient survival following ICB within an error between 5 and 8 months based on their distinct tumor mutational attributes. In conclusion, this study advocates for personalized immunotherapy approaches in cancer patients. Full article
Show Figures

Figure 1

19 pages, 1159 KB  
Review
Pheochromocytoma–Paraganglioma Syndrome: A Multiform Disease with Different Genotype and Phenotype Features
by Mara Giacché, Maria Chiara Tacchetti, Claudia Agabiti-Rosei, Francesco Torlone, Francesco Bandera, Claudia Izzi and Enrico Agabiti-Rosei
Biomedicines 2024, 12(10), 2385; https://doi.org/10.3390/biomedicines12102385 - 18 Oct 2024
Cited by 3 | Viewed by 2850
Abstract
Pheochromocytoma and paraganglioma (PPGL) are rare tumors derived from the adrenal medulla and extra-adrenal chromaffin cells. Diagnosis is often challenging due to the great variability in clinical presentation; the complexity of management due to the dangerous effects of catecholamine excess and the potentially [...] Read more.
Pheochromocytoma and paraganglioma (PPGL) are rare tumors derived from the adrenal medulla and extra-adrenal chromaffin cells. Diagnosis is often challenging due to the great variability in clinical presentation; the complexity of management due to the dangerous effects of catecholamine excess and the potentially malignant behavior require in-depth knowledge of the pathology and multidisciplinary management. Nowadays, diagnostic ability has certainly improved and guidelines and consensus documents for treatment and follow-up are available. A major impulse to the development of this knowledge has come from the new findings on the genetic and molecular characteristics of PPGLs. Germline mutation in susceptibility genes is detected in 40% of subjects, with a mutation frequency of 10–12% also in patients with sporadic presentation and genetic testing should be incorporated within clinical care. PPGL susceptibility genes include “old genes” associated with Neurofibromatosis type 1 (NF1 gene), Von Hippel Lindau syndrome (VHL gene) and Multiple Endocrine Neoplasia type 2 syndrome (RET gene), the family of SDHx genes (SDHA, SDHB, SDHC, SDHD, SDHAF2), and genes less frequently involved such as TMEM, MAX, and FH. Each gene has a different risk of relapse, malignancy, and other organ involvement; for mutation carriers, affected or asymptomatic, it is possible to define a tailored long-life surveillance program according to the gene involved. In addition, molecular characterization of the tumor has allowed the identification of somatic mutations in other driver genes, bringing to 70% the PPGLs for which we know the mechanisms of tumorigenesis. This has expanded the catalog of tumor driver genes, which are identifiable in up to 70% of patients Integrated genomic and transcriptomic data over the last 10 years have revealed three distinct major molecular signatures, triggered by pathogenic variants in susceptibility genes and characterized by the activation of a specific oncogenic signaling: the pseudo hypoxic, the kinase, and the Wnt signaling pathways. These molecular clusters show a different biochemical phenotype and clinical behavior; they may also represent the prerequisite for implementing customized therapy and follow-up. Full article
(This article belongs to the Special Issue Adrenal Diseases: An Update)
Show Figures

Figure 1

Back to TopTop