Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = VHH single-domain antibody

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3401 KiB  
Article
Interleukin 21-Armed EGFR-VHH-CAR-T Cell Therapy for the Treatment of Esophageal Squamous Cell Carcinoma
by Chenglin Zhang, Yanyan Liu, Haoran Guo, Ying Peng, Lei Huang, Shuangshuang Lu and Zhimin Wang
Biomedicines 2025, 13(7), 1598; https://doi.org/10.3390/biomedicines13071598 - 30 Jun 2025
Viewed by 494
Abstract
Background/Objectives: Esophageal squamous cell carcinoma (ESCC) is a common form of esophageal cancer with a poor prognosis and limited treatment options. Epidermal growth factor receptor (EGFR), an overexpressed oncogenic gene in all ESCC patients, is an attractive target for developing therapies against ESCC. [...] Read more.
Background/Objectives: Esophageal squamous cell carcinoma (ESCC) is a common form of esophageal cancer with a poor prognosis and limited treatment options. Epidermal growth factor receptor (EGFR), an overexpressed oncogenic gene in all ESCC patients, is an attractive target for developing therapies against ESCC. There is an extremely urgent need to develop immunotherapy tools targeting EGFR for the treatment of ESCC. Methods: In this study, we developed human Interleukin-21 (hIL-21)-armed, chimeric-antigen-receptor-modified T (CAR-T) cells targeting EGFR as a new therapeutic approach. The CAR contains a variable domain of the llama heavy chain of heavy-chain antibodies (VHHs), also known as nanobodies (Nbs), as a promising substitute for the commonly used single-chain variable fragment (ScFv) for CAR-T development. Results: We show that nanobody-derived, EGFR-targeting CAR-T cells specifically kill EGFR-positive esophageal cancer cells in vitro and in animal models. Human IL-21 expression in CAR-T cells further improved their expansion and antitumor ability and were observed to secrete more interferon-gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and Interleukin-2 (IL-2) when co-cultured with ESCC cell lines in vitro. More CD8+ CAR-T cells and CD3+CD8+CD45RO+CD62L+ central memory T cells were detected in CAR-T cells expressing hIL-21 cells. Notably, hIL-21-expressing CAR-T cells showed superior antitumor activity in vivo in a KYSE-150 xenograft mouse model. Conclusions: Our results show that hIL-21-armed, nanobody-derived, EGFR-specific CAR-T cell therapy is a highly promising option for treating ESCC patients. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

17 pages, 1733 KiB  
Article
Humanized VHH-hFc Fusion Proteins Targeting the L-HN Fragment of Tetanus Toxin Provided Protection In Vivo
by Yating Li, Kexuan Cheng, Jiazheng Guo, Yujia Jiang, Qinglin Kang, Rong Wang, Peng Du, Chen Gao, Yunzhou Yu, Zhixin Yang, Wei Wang and Jiansheng Lu
Antibodies 2025, 14(2), 48; https://doi.org/10.3390/antib14020048 - 13 Jun 2025
Viewed by 461
Abstract
Background: Tetanus toxin, produced by Clostridium tetani, is the second deadliest known toxin. Antibodies capable of neutralizing tetanus toxin (TeNT) are vital for preventing and treating tetanus disease. Methods: Herein, we screened thirty-six single variable domains on a heavy chain (VHHs) binding [...] Read more.
Background: Tetanus toxin, produced by Clostridium tetani, is the second deadliest known toxin. Antibodies capable of neutralizing tetanus toxin (TeNT) are vital for preventing and treating tetanus disease. Methods: Herein, we screened thirty-six single variable domains on a heavy chain (VHHs) binding to the light chain (L) and the translocation domain (HN) (L-HN) fragment of TeNT from a phage-display library. Then, the L-HN-specific clones were identified, humanized, and fused with a human fragment crystallizable region (hFc) to form humanized VHH-hFc fusion proteins. Results: The humanized VHH-hFc fusion proteins TL-16-h1-hFc, TL-25-h1-hFc, and TL-34-h1-hFc possessed potent efficacy with high binding affinity, specificity, and neutralizing activity. Only 0.3125 μg was required for TL-16-h1-hFc or TL-25-h1-hFc, and 0.625 μg was required for TL-34-h1-hFc to provide full protection against 10 × Lethal Dose 50 (LD50) TeNT. In the prophylactic setting, 125 μg/kg of TL-16-h1-hFc or TL-25-h1-hFc provided full protection even when they were injected 12 days before exposure to 10 × LD50 TeNT, while TL-34-h1-hFc was less effective. In the therapeutic setting, 25 μg/kg of TL-16-h1-hFc or TL-25-h1-hFc could provide complete protection when administered 24 h after exposure to 5 × LD50 TeNT, while TL-34-h1-hFc required 50 μg/kg. Conclusion: Our results suggest that TL-16-h1-hFc, TL-25-h1-hFc, and TL-34-h1-hFc provide a bright future for the development of anti-TeNT preventive or therapeutic drugs. Full article
Show Figures

Figure 1

40 pages, 3437 KiB  
Review
Nanobodies: From Discovery to AI-Driven Design
by Haoran Zhu and Yu Ding
Biology 2025, 14(5), 547; https://doi.org/10.3390/biology14050547 - 14 May 2025
Cited by 1 | Viewed by 2256
Abstract
Nanobodies, derived from naturally occurring heavy-chain antibodies in camelids (VHHs) and sharks (VNARs), are unique single-domain antibodies that have garnered significant attention in therapeutic, diagnostic, and biotechnological applications due to their small size, stability, and high specificity. This review first traces [...] Read more.
Nanobodies, derived from naturally occurring heavy-chain antibodies in camelids (VHHs) and sharks (VNARs), are unique single-domain antibodies that have garnered significant attention in therapeutic, diagnostic, and biotechnological applications due to their small size, stability, and high specificity. This review first traces the historical discovery of nanobodies, highlighting key milestones in their isolation, characterization, and therapeutic development. We then explore their structure–function relationship, emphasizing features like their single-domain architecture and long CDR3 loop that contribute to their binding versatility. Additionally, we examine the growing interest in multiepitope nanobodies, in which binding to different epitopes on the same antigen not only enhances neutralization and specificity but also allows these nanobodies to be used as controllable modules for precise antigen manipulation. This review also discusses the integration of AI in nanobody design and optimization, showcasing how machine learning and deep learning approaches are revolutionizing rational design, humanization, and affinity maturation processes. With continued advancements in structural biology and computational design, nanobodies are poised to play an increasingly vital role in addressing both existing and emerging biomedical challenges. Full article
Show Figures

Figure 1

26 pages, 7008 KiB  
Article
Single-Domain Antibodies That Specifically Recognize Intact Capsids of Multiple Foot-and-Mouth Disease Serotype O Strains
by Michiel M. Harmsen, Nishi Gupta, Quillan Dijkstra, Sandra van de Water, Marga van Setten and Aldo Dekker
Vaccines 2025, 13(5), 500; https://doi.org/10.3390/vaccines13050500 - 8 May 2025
Viewed by 630
Abstract
Background/Objectives: Intact (146S) foot-and-mouth disease virus (FMDV) particles easily dissociate into 12S particles with a concomitant decreased immunogenicity. Vaccine quality control with 146S-specific single-domain antibodies (VHHs) is hampered by the high strain specificity of most 146S-specific VHHs. This study aimed to isolate 146S-specific [...] Read more.
Background/Objectives: Intact (146S) foot-and-mouth disease virus (FMDV) particles easily dissociate into 12S particles with a concomitant decreased immunogenicity. Vaccine quality control with 146S-specific single-domain antibodies (VHHs) is hampered by the high strain specificity of most 146S-specific VHHs. This study aimed to isolate 146S-specific VHHs that recognize all serotype O strains. Methods: Biopanning was performed with the FMDV strain O/SKR/7/2010 146S, using a secondary library of mutagenized M170F VHH that did not recognize O/SKR/7/2010 or using phage-display libraries from llamas immunized with other serotype O strains. Novel VHHs were yeast-produced and their strain-, particle-, and antigenic-site specificities were determined by ELISA. Results: M170F mutagenesis did not improve the cross-reaction with O/SKR/7/2010. However, selection from immune libraries resulted in four VHHs that exhibited high 146S specificity for all five serotype O strains analyzed. These VHHs presumably recognize all serotype O strains since the five strains analyzed represent different phylogenetic clades. They bind the same antigenic site as M170F, which was previously shown to be a conserved site in serotypes A and O, and which has an altered 3D structure when 146S dissociates into 12S particles. M916F had the lowest limit of detection, which varied from 0.7 to 5.9 ng/mL 146S particles for three serotype O strains. Conclusions: We identified four VHHs (M907F, M910F, M912F, and M916F) that specifically bind 146S particles of probably all serotype O strains. They enable further improved FMDV vaccine quality control. Full article
(This article belongs to the Special Issue Vaccine and Vaccination in Veterinary Medicine)
Show Figures

Figure 1

17 pages, 3611 KiB  
Article
Characterization of Nanobody Binding to Distinct Regions of the SARS-CoV-2 Spike Protein by Flow Virometry
by Mariam Maltseva, Martin A. Rossotti, Jamshid Tanha and Marc-André Langlois
Viruses 2025, 17(4), 571; https://doi.org/10.3390/v17040571 - 15 Apr 2025
Viewed by 891
Abstract
Nanobodies, or single-domain antibodies (VHHs) from camelid heavy-chain-only antibodies, offer significant advantages in therapeutic and diagnostic applications due to their small size and ability to bind cryptic protein epitopes inaccessible to conventional antibodies. In this study, we examined nanobodies specific to [...] Read more.
Nanobodies, or single-domain antibodies (VHHs) from camelid heavy-chain-only antibodies, offer significant advantages in therapeutic and diagnostic applications due to their small size and ability to bind cryptic protein epitopes inaccessible to conventional antibodies. In this study, we examined nanobodies specific to regions of the SARS-CoV-2 spike glycoprotein, including the receptor-binding domain (RBD), N-terminal domain (NTD), and subunit 2 (S2). Using flow virometry, a high-throughput technique for viral quantification, we achieved the efficient detection of pseudotyped viruses expressing the spike glycoprotein. RBD-targeting nanobodies showed the most effective staining, followed by NTD-targeting ones, while S2-specific nanobodies exhibited limited resolution. The simple genetic structure of nanobodies enables the creation of multimeric formats, improving binding specificity and avidity. Bivalent VHH-Fc constructs (VHHs fused to the Fc region of human IgG) outperformed monovalent formats in resolving viral particles from background noise. However, S2-specific monovalent VHHs demonstrated improved staining efficiency, suggesting their smaller size better accesses restricted antigenic sites. Furthermore, direct staining of cell supernatants was possible without virus purification. This versatile nanobody platform, initially developed for antiviral therapy against SARS-CoV-2, can be readily adapted for flow virometry applications and other diagnostic assays. Full article
(This article belongs to the Special Issue Flow Virometry: A New Tool for Studying Viruses)
Show Figures

Graphical abstract

11 pages, 2759 KiB  
Article
A Novel Method for Preparing Uniform Micro-Sized Dry Powder Formulations, Including Aggregation-Controlled VHH
by Tatsuru Moritani, Hidekazu Masaki, Ryo Yonehara, Takeru Suzuki, Hidenao Arai, Masayuki Tsuchiya and Naoto Nemoto
Antibodies 2025, 14(2), 29; https://doi.org/10.3390/antib14020029 - 31 Mar 2025
Viewed by 1281
Abstract
Background: The preparation of antibodies in powder form without changing their physicochemical properties may enable their use in new drug delivery system therapies or non-refrigerated storage. The variable domain of heavy-chain antibodies (VHHs) is more suited for this purpose than that of conventional [...] Read more.
Background: The preparation of antibodies in powder form without changing their physicochemical properties may enable their use in new drug delivery system therapies or non-refrigerated storage. The variable domain of heavy-chain antibodies (VHHs) is more suited for this purpose than that of conventional antibodies because of VHHs’ high thermal stability and ability to refold. Methods: In this report, the fine droplet drying (FDD) process was selected as the powderization technique because of its favorable features, such as mild drying conditions and the generation of uniform particle sizes. The aggregation, binding, particle, and in vitro inhalation properties of the prepared VHH powders (VHHps) were evaluated. Results: The amount of aggregated VHHs present in the VHHps depended on the flow temperature during the FDD process, with higher temperatures yielding a higher aggregation ratio. In contrast, no significant difference in binding activity was observed between each VHHp preparation and the native VHHs. However, this process degraded VHHs or inactivated their function, and ultimately, only about 30% of the original VHHs were functional, whereas the remaining VHHs that were not degraded showed little loss of functionality, even after storage at room temperature for more than two years. Analysis of the VHHp samples revealed that the particles were uniformly spherical with a single-micron size. The VHHps showed fine inhalation properties in the inhalation property test. Conclusions: These findings suggest that the FDD process affords various VHH powder formulations, including pharmaceutical formulations. Full article
Show Figures

Figure 1

16 pages, 2125 KiB  
Article
The Use of Heterologous Antigens for Biopanning Enables the Selection of Broadly Neutralizing Nanobodies Against SARS-CoV-2
by Vazirbek S. Aripov, Anna V. Zaykovskaya, Ludmila V. Mechetina, Alexander M. Najakshin, Alexander A. Bondar, Sergey G. Arkhipov, Egor A. Mustaev, Margarita G. Ilyina, Sophia S. Borisevich, Alexander A. Ilyichev, Valentina S. Nesmeyanova, Anastasia A. Isaeva, Ekaterina A. Volosnikova, Dmitry N. Shcherbakov and Natalia V. Volkova
Antibodies 2025, 14(1), 23; https://doi.org/10.3390/antib14010023 - 7 Mar 2025
Viewed by 995
Abstract
Background: Since the emergence of SARS-CoV-2 in the human population, the virus genome has undergone numerous mutations, enabling it to enhance transmissibility and evade acquired immunity. As a result of these mutations, most monoclonal neutralizing antibodies have lost their efficacy, as they are [...] Read more.
Background: Since the emergence of SARS-CoV-2 in the human population, the virus genome has undergone numerous mutations, enabling it to enhance transmissibility and evade acquired immunity. As a result of these mutations, most monoclonal neutralizing antibodies have lost their efficacy, as they are unable to neutralize new variants. Antibodies that neutralize a broad range of SARS-CoV-2 variants are of significant value in combating both current and potential future variants, making the identification and development of such antibodies an ongoing critical goal. This study discusses the strategy of using heterologous antigens in biopanning rounds. Methods: After four rounds of biopanning, nanobody variants were selected from a phage display library. Immunochemical methods were used to evaluate their specificity to the S protein of various SARS-CoV-2 variants, as well as to determine their competitive ability against ACE2. Viral neutralization activity was analyzed. A three-dimensional model of nanobody interaction with RBD was constructed. Results: Four nanobodies were obtained that specifically bind to the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein and exhibit neutralizing activity against various SARS-CoV-2 strains. Conclusions: The study demonstrates that performing several rounds of biopanning with heterologous antigens allows the selection of nanobodies with a broad reactivity spectrum. However, the fourth round of biopanning does not lead to the identification of nanobodies with improved characteristics. Full article
(This article belongs to the Section Antibody Discovery and Engineering)
Show Figures

Graphical abstract

18 pages, 2970 KiB  
Article
Redirecting a Broad-Spectrum Nanobody Against the Receptor-Binding Domain of SARS-CoV-2 to Target Omicron Variants
by Kwanpet Intasurat, Nonth Submunkongtawee, Phoomintara Longsompurana, Apisitt Thaiprayoon, Warisara Kasemsukwimol, Suwitchaya Sirimanakul, Siriphan Boonsilp, Supaphron Seetaha, Kiattawee Choowongkomon and Dujduan Waraho-Zhmayev
Appl. Sci. 2024, 14(22), 10548; https://doi.org/10.3390/app142210548 - 15 Nov 2024
Cited by 1 | Viewed by 1536
Abstract
The urgent need for an effective COVID-19 therapy has propelled the exploration of innovative strategies to combat the fast-mutating SARS-CoV-2 virus. This study attempted to develop nanobodies (Nbs) against the SARS-CoV-2 Omicron variants by redirecting the 1.29 neutralizing Nb, a receptor-binding domain (RBD)-specific [...] Read more.
The urgent need for an effective COVID-19 therapy has propelled the exploration of innovative strategies to combat the fast-mutating SARS-CoV-2 virus. This study attempted to develop nanobodies (Nbs) against the SARS-CoV-2 Omicron variants by redirecting the 1.29 neutralizing Nb, a receptor-binding domain (RBD)-specific Nb that can protect against various SARS-CoV-2 variants other than Omicron, to target SARS-CoV-2 Omicron subvariant BA.5, the variant used for the development of the bivalent vaccine. Error-prone libraries of the 1.29 Nb were constructed. Following two rounds of selection using the functional ligand-binding identification by Tat-based recognition of associating proteins (FLI-TRAP) technique, we rapidly identified two Nbs, namely, C11 and K9, that could target the RBD of the Omicron subvariant BA.5, XBB.1.5, and XBB.1.16 subvariants. Molecular docking provided insights into how these Nbs interact with the RBD of the BA.5 and JN.1 variants. The application of directed evolution via utilization of error-prone PCR and the synthetic E. coli applied in the FLI-TRAP selection method may be a powerful tool for facilitating simple, fast and economical selection to redirect existing antibodies and to generate antibody fragments to target proteins susceptible to autonomous mutation, not only for viral infection but also other diseases, such as cancer. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

16 pages, 3283 KiB  
Article
Functional Divergence in the Affinity and Stability of Non-Canonical Cysteines and Non-Canonical Disulfide Bonds: Insights from a VHH and VNAR Study
by Mingce Xu, Zheng Zhao, Penghui Deng, Mengsi Sun, Cookson K. C. Chiu, Yujie Wu, Hao Wang and Yunchen Bi
Int. J. Mol. Sci. 2024, 25(18), 9801; https://doi.org/10.3390/ijms25189801 - 11 Sep 2024
Cited by 3 | Viewed by 2140
Abstract
Single-domain antibodies, including variable domains of the heavy chains of heavy chain-only antibodies (VHHs) from camelids and variable domains of immunoglobulin new antigen receptors (VNARs) from cartilaginous fish, show the therapeutic potential of targeting antigens in a cytosol reducing environment. A large proportion [...] Read more.
Single-domain antibodies, including variable domains of the heavy chains of heavy chain-only antibodies (VHHs) from camelids and variable domains of immunoglobulin new antigen receptors (VNARs) from cartilaginous fish, show the therapeutic potential of targeting antigens in a cytosol reducing environment. A large proportion of single-domain antibodies contain non-canonical cysteines and corresponding non-canonical disulfide bonds situated on the protein surface, rendering them vulnerable to environmental factors. Research on non-canonical disulfide bonds has been limited, with a focus solely on VHHs and utilizing only cysteine mutations rather than the reducing agent treatment. In this study, we examined an anti-lysozyme VNAR and an anti-BC2-tag VHH, including their non-canonical disulfide bond reduced counterparts and non-canonical cysteine mutants. Both the affinity and stability of the VNARs and VHHs decreased in the non-canonical cysteine mutants, whereas the reduced-state samples exhibited decreased thermal stability, with their affinity remaining almost unchanged regardless of the presence of reducing agents. Molecular dynamics simulations suggested that the decrease in affinity of the mutants resulted from increased flexibility of the CDRs, the disappearance of non-canonical cysteine–antigen interactions, and the perturbation of other antigen-interacting residues caused by mutations. These findings highlight the significance of non-canonical cysteines for the affinity of single-domain antibodies and demonstrate that the mutation of non-canonical cysteines is not equivalent to the disruption of non-canonical disulfide bonds with a reducing agent when assessing the function of non-canonical disulfide bonds. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

35 pages, 2926 KiB  
Systematic Review
Single-Domain Antibodies as Antibody–Drug Conjugates: From Promise to Practice—A Systematic Review
by Víctor Manuel Medina Pérez, Marta Baselga and Alberto J. Schuhmacher
Cancers 2024, 16(15), 2681; https://doi.org/10.3390/cancers16152681 - 27 Jul 2024
Cited by 9 | Viewed by 6219
Abstract
Background: Antibody–drug conjugates (ADCs) represent potent cancer therapies that deliver highly toxic drugs to tumor cells precisely, thus allowing for targeted treatment and significantly reducing off-target effects. Despite their effectiveness, ADCs can face limitations due to acquired resistance and potential side effects. Objectives: [...] Read more.
Background: Antibody–drug conjugates (ADCs) represent potent cancer therapies that deliver highly toxic drugs to tumor cells precisely, thus allowing for targeted treatment and significantly reducing off-target effects. Despite their effectiveness, ADCs can face limitations due to acquired resistance and potential side effects. Objectives: This study focuses on advances in various ADC components to improve both the efficacy and safety of these agents, and includes the analysis of several novel ADC formats. This work assesses whether the unique features of VHHs—such as their small size, enhanced tissue penetration, stability, and cost-effectiveness—make them a viable alternative to conventional antibodies for ADCs and reviews their current status in ADC development. Methods: Following PRISMA guidelines, this study focused on VHHs as components of ADCs, examining advancements and prospects from 1 January 2014 to 30 June 2024. Searches were conducted in PubMed, Cochrane Library, ScienceDirect and LILACS using specific terms related to ADCs and single-domain antibodies. Retrieved articles were rigorously evaluated, excluding duplicates and non-qualifying studies. The selected peer-reviewed articles were analyzed for quality and synthesized to highlight advancements, methods, payloads, and future directions in ADC research. Results: VHHs offer significant advantages for drug conjugation over conventional antibodies due to their smaller size and structure, which enhance tissue penetration and enable access to previously inaccessible epitopes. Their superior stability, solubility, and manufacturability facilitate cost-effective production and expand the range of targetable antigens. Additionally, some VHHs can naturally cross the blood–brain barrier or be easily modified to favor their penetration, making them promising for targeting brain tumors and metastases. Although no VHH–drug conjugates (nADC or nanoADC) are currently in the clinical arena, preclinical studies have explored various conjugation methods and linkers. Conclusions: While ADCs are transforming cancer treatment, their unique mechanisms and associated toxicities challenge traditional views on bioavailability and vary with different tumor types. Severe toxicities, often linked to compound instability, off-target effects, and nonspecific blood cell interactions, highlight the need for better understanding. Conversely, the rapid distribution, tumor penetration, and clearance of VHHs could be advantageous, potentially reducing toxicity by minimizing prolonged exposure. These attributes make single-domain antibodies strong candidates for the next generation of ADCs, potentially enhancing both efficacy and safety. Full article
(This article belongs to the Special Issue Molecular Insights into Drug Resistance in Cancer)
Show Figures

Figure 1

18 pages, 3109 KiB  
Article
Development, High-Throughput Profiling, and Biopanning of a Large Phage Display Single-Domain Antibody Library
by Hee Eon Lee, Ah Hyun Cho, Jae Hyeon Hwang, Ji Woong Kim, Ha Rim Yang, Taehoon Ryu, Yushin Jung and Sukmook Lee
Int. J. Mol. Sci. 2024, 25(9), 4791; https://doi.org/10.3390/ijms25094791 - 27 Apr 2024
Cited by 5 | Viewed by 4001
Abstract
Immunoglobulin G-based monoclonal antibodies (mAbs) have been effective in treating various diseases, but their large molecular size can limit their penetration of tissue and efficacy in multifactorial diseases, necessitating the exploration of alternative forms. In this study, we constructed a phage display library [...] Read more.
Immunoglobulin G-based monoclonal antibodies (mAbs) have been effective in treating various diseases, but their large molecular size can limit their penetration of tissue and efficacy in multifactorial diseases, necessitating the exploration of alternative forms. In this study, we constructed a phage display library comprising single-domain antibodies (sdAbs; or “VHHs”), known for their small size and remarkable stability, using a total of 1.6 × 109 lymphocytes collected from 20 different alpacas, resulting in approximately 7.16 × 1010 colonies. To assess the quality of the constructed library, next-generation sequencing-based high-throughput profiling was performed, analyzing approximately 5.65 × 106 full-length VHH sequences, revealing 92% uniqueness and confirming the library’s diverse composition. Systematic characterization of the library revealed multiple sdAbs with high affinity for three therapeutically relevant antigens. In conclusion, our alpaca sdAb phage display library provides a versatile resource for diagnostics and therapeutics. Furthermore, the library’s vast natural VHH antibody repertoire offers insights for generating humanized synthetic sdAb libraries, further advancing sdAb-based therapeutics. Full article
Show Figures

Figure 1

13 pages, 5232 KiB  
Article
Iterative In Silico Screening for Optimizing Stable Conformation of Anti-SARS-CoV-2 Nanobodies
by Wenyuan Shang, Xiujun Hu, Xiaoman Lin, Shangru Li, Shuchang Xiong, Bingding Huang and Xin Wang
Pharmaceuticals 2024, 17(4), 424; https://doi.org/10.3390/ph17040424 - 27 Mar 2024
Cited by 3 | Viewed by 2896
Abstract
Nanobodies (Nbs or VHHs) are single-domain antibodies (sdAbs) derived from camelid heavy-chain antibodies. Nbs have special and unique characteristics, such as small size, good tissue penetration, and cost-effective production, making Nbs a good candidate for the diagnosis and treatment of viruses and other [...] Read more.
Nanobodies (Nbs or VHHs) are single-domain antibodies (sdAbs) derived from camelid heavy-chain antibodies. Nbs have special and unique characteristics, such as small size, good tissue penetration, and cost-effective production, making Nbs a good candidate for the diagnosis and treatment of viruses and other pathologies. Identifying effective Nbs against COVID-19 would help us control this dangerous virus or other unknown variants in the future. Herein, we introduce an in silico screening strategy for optimizing stable conformation of anti-SARS-CoV-2 Nbs. Firstly, various complexes containing nanobodies were downloaded from the RCSB database, which were identified from immunized llamas. The primary docking between Nbs and the SARS-CoV-2 spike protein receptor-binding domain was performed through the ClusPro program, with the manual screening leaving the reasonable conformation to the next step. Then, the binding distances of atoms between the antigen–antibody interfaces were measured through the NeighborSearch algorithm. Finally, filtered nanobodies were acquired according to HADDOCK scores through HADDOCK docking the COVID-19 spike protein with nanobodies under restrictions of calculated molecular distance between active residues and antigenic epitopes less than 4.5 Å. In this way, those nanobodies with more reasonable conformation and stronger neutralizing efficacy were acquired. To validate the efficacy ranking of the nanobodies we obtained, we calculated the binding affinities (∆G) and dissociation constants (Kd) of all screened nanobodies using the PRODIGY web tool and predicted the stability changes induced by all possible point mutations in nanobodies using the MAESTROWeb server. Furthermore, we examined the performance of the relationship between nanobodies’ ranking and their number of mutation-sensitive sites (Spearman correlation > 0.68); the results revealed a robust correlation, indicating that the superior nanobodies identified through our screening process exhibited fewer mutation hotspots and higher stability. This correlation analysis demonstrates the validity of our screening criteria, underscoring the suitability of these nanobodies for future development and practical implementation. In conclusion, this three-step screening strategy iteratively in silico greatly improved the accuracy of screening desired nanobodies compared to using only ClusPro docking or default HADDOCK docking settings. It provides new ideas for the screening of novel antibodies and computer-aided screening methods. Full article
Show Figures

Graphical abstract

11 pages, 1311 KiB  
Article
Camel-Derived Nanobodies as Potent Inhibitors of New Delhi Metallo-β-Lactamase-1 Enzyme
by Rahma Ben Abderrazek, Emna Hamdi, Alessandra Piccirilli, Sayda Dhaouadi, Serge Muyldermans, Mariagrazia Perilli and Balkiss Bouhaouala-Zahar
Molecules 2024, 29(7), 1431; https://doi.org/10.3390/molecules29071431 - 22 Mar 2024
Viewed by 2286
Abstract
The injudicious usage of antibiotics during infections caused by Gram-negative bacteria leads to the emergence of β-lactamases. Among them, the NDM-1 enzyme poses a serious threat to human health. Developing new antibiotics or inhibiting β-lactamases might become essential to reduce and prevent bacterial [...] Read more.
The injudicious usage of antibiotics during infections caused by Gram-negative bacteria leads to the emergence of β-lactamases. Among them, the NDM-1 enzyme poses a serious threat to human health. Developing new antibiotics or inhibiting β-lactamases might become essential to reduce and prevent bacterial infections. Nanobodies (Nbs), the smallest antigen-binding single-domain fragments derived from Camelidae heavy-chain-only antibodies, targeting enzymes, are innovative alternatives to develop effective inhibitors. The biopanning of an immune VHH library after phage display has helped to retrieve recombinant antibody fragments with high inhibitory activity against recombinant-NDM-1 enzyme. Nb02NDM-1, Nb12NDM-1, and Nb17NDM-1 behaved as uncompetitive inhibitors against NDM-1 with Ki values in the nM range. Remarkably, IC50 values of 25.0 nM and 8.5 nM were noted for Nb02NDM-1 and Nb17NDM-1, respectively. The promising inhibition of NDM-1 by Nbs highlights their potential application in combating particular Gram-negative infections. Full article
Show Figures

Figure 1

13 pages, 2314 KiB  
Article
Combination Screening of a Naïve Antibody Library Using E. coli Display and Single-Step Colony Assay
by Mieko Kato and Yoshiro Hanyu
Appl. Microbiol. 2024, 4(1), 237-249; https://doi.org/10.3390/applmicrobiol4010016 - 23 Jan 2024
Viewed by 2867
Abstract
The use of single-domain camelid antibodies, termed VHHs or nanobodies, has found increasing application in diagnosis, pharmaceutical development, and research because of their superior properties, such as small size, elevated stability, high water solubility, and excellent affinity for the antigen. Antigen-specific VHHs are [...] Read more.
The use of single-domain camelid antibodies, termed VHHs or nanobodies, has found increasing application in diagnosis, pharmaceutical development, and research because of their superior properties, such as small size, elevated stability, high water solubility, and excellent affinity for the antigen. Antigen-specific VHHs are generated by screening VHH display libraries via bio-panning. However, the bio-panning step needs to be repeated multiple times, which is time-consuming and laborious. Here, we developed a simple and rapid screening method that combined Escherichia coli display and a single-step colony assay to successfully identify positive clones from a naïve VHH library. The library was constructed from peripheral blood mononuclear cells of alpaca, and VHHs were displayed on the surface of E. coli using the inverse autotransporter intimin. Libraries enriched by magnetic cell sorting were screened directly using a single-step colony assay. Colonies formed on the hydrophilic filter and antigen-coated membrane. The expression of VHHs was induced, and those bound to the antigen on the membrane were detected as positive clones. Screening and identification of positive clones required only two days, which saves considerable time and resources compared to existing protocols. Full article
Show Figures

Figure 1

25 pages, 930 KiB  
Review
Promising Diagnostic and Therapeutic Approaches Based on VHHs for Cancer Management
by Ying Cong, Nick Devoogdt, Philippe Lambin, Ludwig J. Dubois and Ala Yaromina
Cancers 2024, 16(2), 371; https://doi.org/10.3390/cancers16020371 - 15 Jan 2024
Cited by 7 | Viewed by 5217
Abstract
The discovery of the distinctive structure of heavy chain-only antibodies in species belonging to the Camelidae family has elicited significant interest in their variable antigen binding domain (VHH) and gained attention for various applications, such as cancer diagnosis and treatment. This article presents [...] Read more.
The discovery of the distinctive structure of heavy chain-only antibodies in species belonging to the Camelidae family has elicited significant interest in their variable antigen binding domain (VHH) and gained attention for various applications, such as cancer diagnosis and treatment. This article presents an overview of the characteristics, advantages, and disadvantages of VHHs as compared to conventional antibodies, and their usage in diverse applications. The singular properties of VHHs are explained, and several strategies that can augment their utility are outlined. The preclinical studies illustrating the diagnostic and therapeutic efficacy of distinct VHHs in diverse formats against solid cancers are summarized, and an overview of the clinical trials assessing VHH-based agents in oncology is provided. These investigations demonstrate the enormous potential of VHHs for medical research and healthcare. Full article
(This article belongs to the Section Clinical Research of Cancer)
Show Figures

Figure 1

Back to TopTop