Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = V2O5-WO3-TiO2 monolith

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5020 KiB  
Article
Role of Vanadium in Thermal and Hydrothermal Aging of a Commercial V2O5-WO3/TiO2 Monolith for Selective Catalytic Reduction of NOx: A Case Study
by Luca Consentino, Giuseppe Pantaleo, Valeria La Parola, Eleonora La Greca, Nunzio Gallì, Giuseppe Marcì, Roberto Fiorenza, Salvatore Scirè and Leonarda Francesca Liotta
Catalysts 2024, 14(4), 241; https://doi.org/10.3390/catal14040241 - 5 Apr 2024
Cited by 1 | Viewed by 1966
Abstract
In recent years, increased attention to air pollutants such as NOx has led the scientific community to focus meaningfully on developing strategies for NOx reduction. Selective catalytic reduction of NOx by ammonia (NO SCR by NH3) is currently [...] Read more.
In recent years, increased attention to air pollutants such as NOx has led the scientific community to focus meaningfully on developing strategies for NOx reduction. Selective catalytic reduction of NOx by ammonia (NO SCR by NH3) is currently the main method to remove NOx from diesel engine exhaust emissions. The catalysts with typical V2O5-WO3/TiO2 (VWTi) composition are widely used in NH3-SCR for their high NOx conversion activity, low cost, and robustness, especially concerning sulfur poisoning. However, in real diesel engine working conditions, the thermal and hydrothermal aging of catalysts can occur after several hours of operation at high temperature, affecting the catalytic performance. In this study, the stability of a commercial VWTi monolith, self-supported and containing glass fibers and bentonite in its matrix, was investigated as a case study. In laboratory conditions, NO SCR tests were performed for 50 h in the range of 150 to 350 °C. Subsequently, the VWTi monolith was thermally and hydrothermally aged at 600 °C for 6 h. The thermal aging increased the NOx conversion, especially at low temperature (<250 °C), while the hydrothermal aging did not affect the SCR. The differences in NOx conversion before and after aging were associated with the change in vanadium and tungsten oxide surface coverage and with the reduction in the surface area of catalysts. In order to correlate the change in SCR activity with the modifications occurring after aging processes, the monolithic samples were characterized by several techniques, namely XRD, SSA and pore analysis, TPR, XPS, Raman, TGA and SEM/EDX. Full article
Show Figures

Figure 1

18 pages, 3497 KiB  
Article
Insights of Selective Catalytic Reduction Technology for Nitrogen Oxides Control in Marine Engine Applications
by Pierpaolo Napolitano, Leonarda Francesca Liotta, Chiara Guido, Cinzia Tornatore, Giuseppe Pantaleo, Valeria La Parola and Carlo Beatrice
Catalysts 2022, 12(10), 1191; https://doi.org/10.3390/catal12101191 - 8 Oct 2022
Cited by 13 | Viewed by 3259
Abstract
The international shipping industry is facing increasingly stringent limitations on nitrogen oxide (NOx) emissions. New solutions for reducing NOx emitted by marine engines need to be investigated to find the best technology. Selective Catalytic Reduction (SCR) is an advanced active [...] Read more.
The international shipping industry is facing increasingly stringent limitations on nitrogen oxide (NOx) emissions. New solutions for reducing NOx emitted by marine engines need to be investigated to find the best technology. Selective Catalytic Reduction (SCR) is an advanced active emissions control technology successfully used in automotive diesel engines; it could be applied to marine engines with ad-hoc solutions to integrate it in the exhaust of large engines. In this study, a commercial SCR was tested at the exhaust of a diesel engine in inlet gas conditions typical of a marine engine. The SCR system consisted of a custom monolith (provided by Hug-Engineering AG) that enabled seamless integration for a broad range of engine sizes; the active phases were V2O5 (3 wt%)-WO3 (7 wt%)-TiO2 (75 wt%). The monolith was studied at the laboratory scale for its in-depth chemical/physical characterization and by means of an intermediate-scale engine, reproducing the exhaust gas conditions of a full-scale marine engine. The system’s effectiveness in terms of NOx removal for the selected engine operating conditions was evaluated in a wide range of temperature and NOx emissions values and for different quantities of the reduction agent (AdBlue or ammonia) added to exhaust gases. The investigated technological solution resulted in efficient NOx emission control from a marine engine. Full article
(This article belongs to the Special Issue Catalytic Removal and Resource Utilization of NOx)
Show Figures

Figure 1

13 pages, 2439 KiB  
Article
Tungsten Oxide Modified V2O5-Sb2O3/TiO2 Monolithic Catalyst: NH3-SCR Activity and Sulfur Resistance
by Liping Liu, Xiaodong Wu, Yue Ma, Jinyi Wang, Rui Ran, Zhichun Si and Duan Weng
Processes 2022, 10(7), 1333; https://doi.org/10.3390/pr10071333 - 8 Jul 2022
Cited by 4 | Viewed by 1835
Abstract
In this study, a V2O5-Sb2O3/TiO2 monolithic catalyst was modified by introducing WO3. The WO3-modified catalyst exhibited enhanced catalytic activity in the measuring temperature range of 175–320 °C. The changes in [...] Read more.
In this study, a V2O5-Sb2O3/TiO2 monolithic catalyst was modified by introducing WO3. The WO3-modified catalyst exhibited enhanced catalytic activity in the measuring temperature range of 175–320 °C. The changes in dispersion of vanadia species were investigated by ultraviolet-visible (UV-Vis) spectroscopy and H2 temperature-programmed reduction (H2-TPR). A durability test was conducted in a wet SO2-containing atmosphere at 220 °C for 25 h. The sulfate deposition was estimated by temperature-programmed decomposition (TPDC) of sulfates, thermo-gravimetric (TG) analysis, and temperature-programmed desorption (TPD) of NH3. Isothermal SO2 oxidation and temperature-programmed surface reaction (TPSR) of NH4HSO4 with NO were performed. Based on these characterizations, effects of WO3 modification on the sulfate tolerance of the catalyst were explored. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

14 pages, 4294 KiB  
Article
Second Life Application of Automotive Catalysts: Hydrodynamic Cavitation Recovery and Photo Water Splitting
by Adrian Ciocanea, Eugeniu Vasile, Viorel Ionescu, Florentina Iuliana Maxim, Cornelia Diac, Cristina Miron and Serban N. Stamatin
Metals 2020, 10(10), 1307; https://doi.org/10.3390/met10101307 - 29 Sep 2020
Cited by 4 | Viewed by 2795
Abstract
A hydrodynamic cavitation method was used to maximize the effect of destructuration of a honeycomb monolithic support of a spent Selective Catalyst Reduction (SCR) catalyst—V2O5-WO3/TiO2-type—for extracting crystalline titanium and tungsten oxides from the cordierite surface. [...] Read more.
A hydrodynamic cavitation method was used to maximize the effect of destructuration of a honeycomb monolithic support of a spent Selective Catalyst Reduction (SCR) catalyst—V2O5-WO3/TiO2-type—for extracting crystalline titanium and tungsten oxides from the cordierite surface. A high relative inlet pressure of 40 MPa was applied to a divergent nozzle for obtaining high shear stresses of the submerged cavitating jets and intensive micro- and nano-jets and shock waves acting on the particle surface of the milled catalyst. Scanning Electron Microscopy (SEM) analysis indicated the compact morphology of the thin metal oxide layer at the surface of the cordierite support and the high content of Ti and W elements in the sample. Energy dispersive spectroscopy (EDAX) performed along with TEM investigations on different nano-zones from the sample established the elemental composition of WO3-TiO2 agglomerates separated after hydrodynamic cavitation processing and identified as independent nanocrystalline structures through Bright Field Transmission Electron Microscopy (BF-TEM) and High Resolution Transmission Electron Microscopy (HR-TEM) measurements. The tetragonal anatase phase of TiO2 and cubic phase of WO3 were established by both interplanar d spacing measurements and X-ray diffraction analysis. The photoelectrochemical results showed the possible second life application of automotive catalysts. Full article
(This article belongs to the Special Issue Metal Removal and Recycling)
Show Figures

Figure 1

14 pages, 3993 KiB  
Article
Modification of V2O5-WO3/TiO2 Catalyst by Loading of MnOx for Enhanced Low-Temperature NH3-SCR Performance
by Xianlong Zhang, Qinchao Diao, Xiaorui Hu, Xueping Wu, Kesong Xiao and Junwei Wang
Nanomaterials 2020, 10(10), 1900; https://doi.org/10.3390/nano10101900 - 23 Sep 2020
Cited by 18 | Viewed by 3005
Abstract
V2O5-WO3/TiO2 as a commercial selective catalytic reduction (SCR) catalyst usually used at middle-high temperatures was modified by loading of MnOx for the purpose of enhancing its performance at lower temperatures. Manganese oxides were loaded onto [...] Read more.
V2O5-WO3/TiO2 as a commercial selective catalytic reduction (SCR) catalyst usually used at middle-high temperatures was modified by loading of MnOx for the purpose of enhancing its performance at lower temperatures. Manganese oxides were loaded onto V-W/Ti monolith by the methods of impregnation (I), precipitation (P), and in-situ growth (S), respectively. SCR activity of each modified catalyst was investigated at temperatures in the range of 100–340 °C. Catalysts were characterized by specific surface area and pore size determination (BET), X-ray diffraction (XRD), temperature programmed reduction (TPR), etc. Results show that the loading of MnOx remarkably enhanced the SCR activity at a temperature lower than 280 °C. The catalyst prepared by the in-situ growth method was found to be most active for SCR. Full article
Show Figures

Figure 1

25 pages, 997 KiB  
Review
The Deactivation of Industrial SCR Catalysts—A Short Review
by Agnieszka Szymaszek, Bogdan Samojeden and Monika Motak
Energies 2020, 13(15), 3870; https://doi.org/10.3390/en13153870 - 29 Jul 2020
Cited by 65 | Viewed by 6859
Abstract
One of the most harmful compounds are nitrogen oxides. Currently, the common industrial method of nitrogen oxides emission control is selective catalytic reduction with ammonia (NH3-SCR). Among all of the recognized measures, NH3-SCR is the most effective and reaches [...] Read more.
One of the most harmful compounds are nitrogen oxides. Currently, the common industrial method of nitrogen oxides emission control is selective catalytic reduction with ammonia (NH3-SCR). Among all of the recognized measures, NH3-SCR is the most effective and reaches even up to 90% of NOx conversion. The presence of the catalyst provides the surface for the reaction to proceed and lowers the activation energy. The optimum temperature of the process is in the range of 150–450 °C and the majority of the commercial installations utilize vanadium oxide (V2O5) supported on titanium oxide (TiO2) in a form of anatase, wash coated on a honeycomb monolith or deposited on a plate-like structures. In order to improve the mechanical stability and chemical resistance, the system is usually promoted with tungsten oxide (WO3) or molybdenum oxide (MoO3). The efficiency of the commercial V2O5-WO3-TiO2 catalyst of NH3-SCR, can be gradually decreased with time of its utilization. Apart from the physical deactivation, such as high temperature sintering, attrition and loss of the active elements by volatilization, the system can suffer from chemical poisoning. All of the presented deactivating agents pass for the most severe poisons of V2O5-WO3-TiO2. In order to minimize the harmful influence of H2O, SO2, alkali metals, heavy metals and halogens, a number of methods has been developed. Some of them improve the resistance to poisons and some are focused on recovery of the catalytic system. Nevertheless, since the amount of highly contaminated fuels combusted in power plants and industry gradually increases, more effective poisoning-preventing and regeneration measures are still in high demand. Full article
(This article belongs to the Special Issue Green Energy)
Show Figures

Figure 1

16 pages, 2520 KiB  
Article
A Case Study for the Deactivation and Regeneration of a V2O5-WO3/TiO2 Catalyst in a Tail-End SCR Unit of a Municipal Waste Incineration Plant
by Stefano Cimino, Claudio Ferone, Raffaele Cioffi, Giovanni Perillo and Luciana Lisi
Catalysts 2019, 9(5), 464; https://doi.org/10.3390/catal9050464 - 20 May 2019
Cited by 21 | Viewed by 5382
Abstract
In this work, we set out to investigate the deactivation of a commercial V2O5-WO3/TiO2 monolith catalyst that operated for a total of 18,000 h in a selective catalytic reduction unit treating the exhaust gases of a [...] Read more.
In this work, we set out to investigate the deactivation of a commercial V2O5-WO3/TiO2 monolith catalyst that operated for a total of 18,000 h in a selective catalytic reduction unit treating the exhaust gases of a municipal waste incinerator in a tail end configuration. Extensive physical and chemical characterization analyses were performed comparing results for fresh and aged catalyst samples. The nature of poisoning species was determined with regards to their impact on the DeNOx catalytic activity which was experimentally evaluated through catalytic tests in the temperature range 90–500 °C at a gas hourly space velocity of 100,000 h−1 (NO = NH3 = 400 ppmv, 6% O2). Two simple regeneration strategies were also investigated: thermal treatment under static air at 400–450 °C and water washing at room temperature. The effectiveness of each treatment was determined on the basis of its ability to remove specific poisoning compounds and to restore the original performance of the virgin catalyst. Full article
(This article belongs to the Special Issue Catalysts Deactivation, Poisoning and Regeneration)
Show Figures

Figure 1

11 pages, 805 KiB  
Review
Strategies of Coping with Deactivation of NH3-SCR Catalysts Due to Biomass Firing
by Leonhard Schill and Rasmus Fehrmann
Catalysts 2018, 8(4), 135; https://doi.org/10.3390/catal8040135 - 30 Mar 2018
Cited by 11 | Viewed by 5350
Abstract
Firing of biomass can lead to rapid deactivation of the vanadia-based NH3-SCR catalyst, which reduces NOx to harmless N2. The deactivation is mostly due to the high potassium content in biomasses, which results in submicron aerosols containing mostly [...] Read more.
Firing of biomass can lead to rapid deactivation of the vanadia-based NH3-SCR catalyst, which reduces NOx to harmless N2. The deactivation is mostly due to the high potassium content in biomasses, which results in submicron aerosols containing mostly KCl and K2SO4. The main mode of deactivation is neutralization of the catalyst’s acid sites. Four ways of dealing with high potassium contents were identified: (1) potassium removal by adsorption, (2) tail-end placement of the SCR unit, (3) coating SCR monoliths with a protective layer, and (4) intrinsically potassium tolerant catalysts. Addition of alumino silicates, often in the form of coal fly ash, is an industrially proven method of removing K aerosols from flue gases. Tail-end placement of the SCR unit was also reported to result in acceptable catalyst stability; however, flue-gas reheating after the flue gas desulfurization is, at present, unavoidable due to the lack of sulfur and water tolerant low temperature catalysts. Coating the shaped catalysts with thin layers of, e.g., MgO or sepiolite reduces the K uptake by hindering the diffusion of K+ into the catalyst pore system. Intrinsically potassium tolerant catalysts typically contain a high number of acid sites. This can be achieved by, e.g., using zeolites as support, replacing WO3 with heteropoly acids, and by preparing highly loaded, high surface area, very active V2O5/TiO2 catalyst using a special sol-gel method. Full article
(This article belongs to the Special Issue Selective Catalytic Reduction of NOx)
Show Figures

Graphical abstract

Back to TopTop