Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Utopia Planitia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 10915 KiB  
Review
Geochemistry of Mars with Laser-Induced Breakdown Spectroscopy (LIBS): ChemCam, SuperCam, and MarSCoDe
by Roger C. Wiens, Agnes Cousin, Samuel M. Clegg, Olivier Gasnault, Zhaopeng Chen, Sylvestre Maurice and Rong Shu
Minerals 2025, 15(8), 882; https://doi.org/10.3390/min15080882 - 21 Aug 2025
Abstract
Laser-induced breakdown spectroscopy (LIBS) has been used to explore the chemistry of three regions of Mars on respective missions by NASA and CNSA, with CNES contributions. All three LIBS instruments use ~100 mm diameter telescopes projecting pulsed infrared laser beams of 10–14 mJ [...] Read more.
Laser-induced breakdown spectroscopy (LIBS) has been used to explore the chemistry of three regions of Mars on respective missions by NASA and CNSA, with CNES contributions. All three LIBS instruments use ~100 mm diameter telescopes projecting pulsed infrared laser beams of 10–14 mJ to enable LIBS at 2–10 m distances, eliminating the need to position the rover and instrument directly onto targets. Over 1.3 million LIBS spectra have been used to provide routine compositions for eight major elements and several minor and trace elements on >3000 targets on Mars. Onboard calibration targets common to all three instruments allow careful intercomparison of results. Operating over thirteen years, ChemCam on Curiosity has explored lacustrine sediments and diagenetic features in Gale crater, which was a long-lasting (>1 My) lake during Mars’ Hesperian period. SuperCam on Perseverance is exploring the ultramafic igneous floor, fluvial–deltaic features, and the rim of Jezero crater. MarSCoDe on the Zhurong rover investigated for one year the local blocks, soils, and transverse aeolian ridges of Utopia Planitia. The pioneering work of these three stand-off LIBS instruments paves the way for future space exploration with LIBS, where advantages of light-element (H, C, N, O) quantification can be used on icy regions. Full article
Show Figures

Graphical abstract

20 pages, 4852 KiB  
Article
Geological Mapping and Rover Mobility Planning Integration: A Case Study for Zhurong Rover’s Landing Area
by Haoli Ding, Enhui Zou, Lihui Lian, Wenzhen Ma, Yantong Huang and Teng Hu
Remote Sens. 2025, 17(14), 2400; https://doi.org/10.3390/rs17142400 - 11 Jul 2025
Viewed by 412
Abstract
This study conducted a comprehensive geological background investigation of the Zhurong rover’s landing area in Utopia Planitia using 3.5 m/pixel DEM and 0.7 m/pixel DOM data and completed the compilation of a 1:250,000-scale geological map. A total of 17 geological structures were systematically [...] Read more.
This study conducted a comprehensive geological background investigation of the Zhurong rover’s landing area in Utopia Planitia using 3.5 m/pixel DEM and 0.7 m/pixel DOM data and completed the compilation of a 1:250,000-scale geological map. A total of 17 geological structures were systematically identified within the landing area. Additionally, focusing on scientific questions regarding the evolution of troughs, cone units, and mesas, we theoretically designed an exploration route considering slope constraints by taking the Zhurong rover route design as a case study. This route, a conceptual design, starts from the hibernation location of the Zhurong rover and has a total length of 126 km. It can provide a reference for advancing detection strategies for volatile components (e.g., water and ice) and contribute to the design of the Tianwen-3 exploration route. Ultimately, this study aims to establish a general guideline for integrating geological mapping with rover mobility planning in future extraterrestrial exploration missions. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Graphical abstract

15 pages, 17805 KiB  
Article
Evidence of Widespread Volcanic Activity near Hebrus Valles on Mars Revealed by SHARAD
by Stefano Nerozzi, Michael S. Christoffersen, John W. Holt and Christopher W. Hamilton
Remote Sens. 2023, 15(20), 4967; https://doi.org/10.3390/rs15204967 - 14 Oct 2023
Cited by 2 | Viewed by 2447
Abstract
Hebrus Valles is an outflow channel system in the plain-forming terrains of southeastern Utopia Planitia, Mars. These terrains may have formed through a combination of liquid water and volcanic processes, yet their nature, subsurface structure, and composition remain unclear. We investigate these terrains [...] Read more.
Hebrus Valles is an outflow channel system in the plain-forming terrains of southeastern Utopia Planitia, Mars. These terrains may have formed through a combination of liquid water and volcanic processes, yet their nature, subsurface structure, and composition remain unclear. We investigate these terrains by mapping subsurface reflectors across 540 Shallow Radar (SHARAD) profiles and applying two complementary loss tangent inversion techniques. We find moderate loss tangent values across some subregions of Granicus Valles and Hyblaeus Fossae (tan δ = 0.0162 ± 0.0004 and tan δ = 0.019 ± 0.002, respectively), suggesting the presence of basaltic lava flows. We interpret non-detections in the other flows in Granicus Valles to be due to the presence of radar-lossy materials formed through aqueous processes, which supports the hypothesized occurrence of lahars in this region. A small area near Hebrus Valles exhibits subsurface reflectors with low to moderate loss tangents (tan δ = 0.010 ± 0.003), suggesting the presence of pristine lava flows or sedimentary materials capped by lava flows. We also find a widespread occurrence of very low-loss tangent materials near Hyblaeus Dorsa (tan δ = 0.0045 ± 0.0002), which may represent a lobe of the Medusae Fossae Formation or similar high-porosity materials buried underneath a lava flow. Together, these findings suggest that volcanic activity played a central role in the formation of terrains across the broader Hebrus Valles region. Full article
(This article belongs to the Special Issue Radar for Planetary Exploration)
Show Figures

Figure 1

14 pages, 3244 KiB  
Article
Wavelength Calibration for the LIBS Spectra of the Zhurong Mars Rover
by Yizhong Zhang, Xin Ren, Zhaopeng Chen, Wangli Chen, Zhenqiang Zhang, Xiangfeng Liu, Weiming Xu, Jianjun Liu and Chunlai Li
Remote Sens. 2023, 15(6), 1494; https://doi.org/10.3390/rs15061494 - 8 Mar 2023
Cited by 9 | Viewed by 3038
Abstract
China’s first Mars rover, Zhurong, landed on the southern region of Utopia Planitia, Mars, on 14 May 2021 (UTC). Zhurong is equipped with the Mars Surface Composition Detection Package (MarSCoDe), which analyzes the Martian surface’s material composition. Composed of laser-induced breakdown spectroscopy (LIBS), [...] Read more.
China’s first Mars rover, Zhurong, landed on the southern region of Utopia Planitia, Mars, on 14 May 2021 (UTC). Zhurong is equipped with the Mars Surface Composition Detection Package (MarSCoDe), which analyzes the Martian surface’s material composition. Composed of laser-induced breakdown spectroscopy (LIBS), short-wave infrared spectroscopy (SWIR), and a microimaging camera, MarsCoDe can work at a distance of 1.6–7 m to analyze element abundance and the mineralogy of targets on the Martian surface. Analysis shows that the wavelengths of MarSCoDe onboard LIBS spectra acquired within the same probe period will have different degrees of drift, leading to deviation in qualitative and quantitative elemental analysis. This paper finds that the spectrum drift follows a quadratic function relationship with the CCD temperature of the MarSCoDe spectrometer, based on which a wavelength calibration method is established. According to the function, the drift of a certain channel is calculated by the corresponding CCD temperature, and then the wavelength of the spectrum is calibrated by the drift. The accuracy of this calibration method for the position of peak wavelength in the LIBS spectrum can reach about 1/5 of the apparatus spectral width, and the cross-validation analysis using a norite standard sample shows that it is comparable to the wavelength calibration accuracy of the ChemCam onboard data product. Full article
Show Figures

Graphical abstract

17 pages, 2450 KiB  
Technical Note
The Analysis of Cones within the Tianwen-1 Landing Area
by Hai Huang, Jianjun Liu, Xing Wang, Yuan Chen, Qing Zhang, Dawei Liu, Wei Yan and Xin Ren
Remote Sens. 2022, 14(11), 2590; https://doi.org/10.3390/rs14112590 - 27 May 2022
Cited by 14 | Viewed by 3844
Abstract
On 15 May 2021, the Zhurong rover of China’s first Mars mission, Tianwen-1 (TW-1), successfully landed in southern Utopia Planitia on Mars. Various landforms were present in the landing area, and this area recorded a complex geological history. Cones are one of the [...] Read more.
On 15 May 2021, the Zhurong rover of China’s first Mars mission, Tianwen-1 (TW-1), successfully landed in southern Utopia Planitia on Mars. Various landforms were present in the landing area, and this area recorded a complex geological history. Cones are one of the typical landforms in the landing area and Utopia Planitia, and they have a great significance to the local geological processes due to the diversity of their origins. Using High-Resolution Imaging Camera (HiRIC) images collected by the TW-1 orbiter, we identified a total of 272 well-preserved circular cones in the landing area. Detailed surveys of their spatial distribution, morphological characteristics, and morphometric parameters were conducted. A preliminary analysis of the surface characteristics of these cones also provides additional information to strengthen our understanding of them. The results of the high-resolution topographic analysis show that the cone heights are in the range of 10.5–90.8 m and their basal diameters range from 178.9–1206.6 m. We compared the morphometric parameters of the cones in the landing area with terrestrial and Martian analogous features and found that our measured cones are consistent with the ranges of mud volcanoes and also a small subset of igneous origin cones. However, the result of spatial analysis is more favorable to mud volcanoes, and the lower thermal inertia of the cones in the landing area compared to their surrounding materials is also a typical characteristic of mud volcanoes. Based on current evidence and analysis, we favor interpreting the cones in the TW-1 landing area as mud volcanoes. Full article
(This article belongs to the Special Issue Planetary Remote Sensing: Chang’E-4/5 and Mars Applications)
Show Figures

Graphical abstract

13 pages, 4189 KiB  
Article
Initial In-Flight Spectral Calibration of the Near-Infrared Spectra Acquired by the MarSCoDe Onboard the Zhurong Rover
by Bing Wu, Chengyu Liu, Rui Xu, Honglei Lin, Xuesen Xu, Wei Yan, Yongjian Tan, Bin Liu, Xin Ren, Weiming Xu, Xiangfeng Liu, Zhenqiang Zhang, Benyong Yang, Zhiping He and Rong Shu
Remote Sens. 2022, 14(9), 2137; https://doi.org/10.3390/rs14092137 - 29 Apr 2022
Cited by 5 | Viewed by 3182
Abstract
The Zhurong rover successfully landed in southern Utopia Planitia as part of the Tianwen-1 mission on 15 May 2021. One of the objectives of the Mars Surface Composition Detector (MarSCoDe) onboard the rover is to investigate mineral compositions on the Martian surface by [...] Read more.
The Zhurong rover successfully landed in southern Utopia Planitia as part of the Tianwen-1 mission on 15 May 2021. One of the objectives of the Mars Surface Composition Detector (MarSCoDe) onboard the rover is to investigate mineral compositions on the Martian surface by measuring the near-infrared reflectance spectra. Before conducting spectral interpretation, in-flight data calibration is a crucial step due to the significant differences between the laboratory and the Martian environment. The work of the MarSCoDe spectrometer is based on an acousto-optic tunable filter (AOTF). The temperature variation of the AOTF could induce wavelength offset, making mineral identification uncertain. We first analyzed the viewing geometry of the spectral measurements of the calibration targets on the Mars rover according to its attitude to identify the anomalous data. The wavelength offsets were then determined by fitting the absorption positions of CO2 at ~1400 and ~2000 nm, representing the primary composition of the Martian atmosphere. The results showed 2–8 nm wavelength offsets, which correlated well with AOTF temperatures. The artifacts were removed in the wavelength-corrected reflectance spectra, which is critical to identify the material types on Mars, especially water-related minerals. Full article
(This article belongs to the Special Issue Planetary Remote Sensing: Chang’E-4/5 and Mars Applications)
Show Figures

Figure 1

17 pages, 7714 KiB  
Article
Characteristics of Dust Devils in Two Pre-Selected Landing Regions of the Tianwen-1 Mission—Comparing Observations and Predictions Using Numerical Model
by Ye-Meng Wang, Kim-Chiu Chow, Jing Xiao and Yi Xu
Remote Sens. 2022, 14(9), 2117; https://doi.org/10.3390/rs14092117 - 28 Apr 2022
Viewed by 1989
Abstract
The spatial and temporal distribution of dust devils (DDs) in the two pre-selected landing regions (ZA and ZB) of the Tianwen-1 mission in southern Utopia Planitia have been investigated by using images from the Context Camera (CTX) of the Mars Reconnaissance Orbiter (MRO). [...] Read more.
The spatial and temporal distribution of dust devils (DDs) in the two pre-selected landing regions (ZA and ZB) of the Tianwen-1 mission in southern Utopia Planitia have been investigated by using images from the Context Camera (CTX) of the Mars Reconnaissance Orbiter (MRO). From the images of the regions in 8 Martian years, no DD was found in ZA, while 77 DDs were found in ZB. The observed DDs are mainly distributed in the northeastern part of ZB. The temporal variation in the observed DDs shows a prominent two-peak pattern in their local early spring and late summer. The size and height of the observed DDs have also been evaluated from the images, and they show a similar temporal variation as the occurrence. To investigate the possible conditions pertinent to these observed patterns of DD distribution, some analysis based on the thermodynamic theory of heat engines was performed using the output of the Mars climate model, MarsWRF. The spatial and temporal distribution of the simulated DDs are generally consistent with the observation, with significantly more DDs in ZB. Analysis of the model results suggests that the spatial distributions of the predicted DDs are mainly related to the distribution of sensible heat flux, which, in turn, is mainly determined by the surface-to-air temperature difference. The difference in DDs between ZA and ZB (more DDs in ZB) is dominated by the difference in sensible heat flux, which, in turn, is mainly related to the spatial variation of surface albedo. Full article
Show Figures

Figure 1

17 pages, 3322 KiB  
Article
Evaluation and Analysis of Dust Storm Activity in Tianwen-1 Landing Area Based on the Moderate Resolution Imaging Camera Observations and Mars Daily Global Maps
by Shaojie Qu, Bo Li, Jiang Zhang, Yi Wang, Chenfan Li, Yuzhou Zhu, Zongcheng Ling and Shengbo Chen
Remote Sens. 2022, 14(1), 8; https://doi.org/10.3390/rs14010008 - 21 Dec 2021
Cited by 8 | Viewed by 4196
Abstract
The first Mars exploration mission from China (Tianwen-1) was launched on 23 July 2020 with the goal of “orbiting, landing, and roving”. The occurrence of dust storm activities is an important criterion of assessing atmospheric risk for the Tianwen-1 landing process. Dust storm [...] Read more.
The first Mars exploration mission from China (Tianwen-1) was launched on 23 July 2020 with the goal of “orbiting, landing, and roving”. The occurrence of dust storm activities is an important criterion of assessing atmospheric risk for the Tianwen-1 landing process. Dust storm activities from Mars Year (MY) 24 to MY32 in southern Utopia Planitia were identified. Most dust storms only appeared in one Mars Daily Global Map (MDGM), with a lifetime of less than or equal to solar longitude (Ls) = 0.5°. Only if the lifetime of a dust storm is greater than or equal to Ls = 1° can it reach the primary landing ellipse. From Ls = 0–50°, dust storms are mostly in the diffusion stage with a maximum speed of movement of 2479 km/Ls. Then, the speed gradually decreases to the minimum value of 368 km/Ls when the dust storm is in the dissipation stage. If a dust storm moves at an average speed of 750 km/Ls, the safe landing zone is a circle within a radius of 750 km centered on the primary landing ellipse. From March to May 2021, eight dust storms were identified in the Moderate Resolution Imaging Camera (MoRIC) mosaics. Because there was no dust storm activity in MoRIC mosaic on 13 May 2021, we concluded that there would be no dust storm in the primary landing ellipse on 15 May (MY36, Ls = 45.1°). Therefore, the landing time of the Tianwen-1 probe was finally determined as 15 May, which successfully landed in the south of the Utopia Planitia, and the in-situ investigation was carried out by the Zhurong Mars rover. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

12 pages, 5560 KiB  
Technical Note
Visual Localization of the Tianwen-1 Lander Using Orbital, Descent and Rover Images
by Wenhui Wan, Tianyi Yu, Kaichang Di, Jia Wang, Zhaoqin Liu, Lichun Li, Bin Liu, Yexin Wang, Man Peng, Zheng Bo, Lejia Ye, Runzhi Wang, Li Yin, Meiping Yang, Ke Shi, Ximing He, Zuoyu Zhang, Hui Zhang, Hao Lu and Shuo Bao
Remote Sens. 2021, 13(17), 3439; https://doi.org/10.3390/rs13173439 - 30 Aug 2021
Cited by 31 | Viewed by 5396
Abstract
Tianwen-1, China’s first Mars exploration mission, was successfully landed in the southern part of Utopia Planitia on 15 May 2021 (UTC+8). Timely and accurately determining the landing location is critical for the subsequent mission operations. For timely localization, the remote landmarks, selected from [...] Read more.
Tianwen-1, China’s first Mars exploration mission, was successfully landed in the southern part of Utopia Planitia on 15 May 2021 (UTC+8). Timely and accurately determining the landing location is critical for the subsequent mission operations. For timely localization, the remote landmarks, selected from the panorama generated by the earliest received Navigation and Terrain Cameras (NaTeCam) images, were matched with the Digital Orthophoto Map (DOM) generated by high resolution imaging camera (HiRIC) images to obtain the initial result based on the triangulation method. Then, the initial localization result was refined by the descent images received later and the NaTeCam DOM. Finally, the lander location was determined to be (25.066°N, 109.925°E). Verified by the new orbital image with the lander and Zhurong rover visible, the localization accuracy was within a pixel of the HiRIC DOM. Full article
(This article belongs to the Special Issue Planetary 3D Mapping, Remote Sensing and Machine Learning)
Show Figures

Graphical abstract

12 pages, 2958 KiB  
Technical Note
Water Ice Detection Research in Utopia Planitia Based on Simulation of Mars Rover Full-Polarimetric Subsurface Penetrating Radar
by Ying Wang, Xuan Feng, Haoqiu Zhou, Zejun Dong, Wenjing Liang, Cewen Xue and Xiaotian Li
Remote Sens. 2021, 13(14), 2685; https://doi.org/10.3390/rs13142685 - 8 Jul 2021
Cited by 13 | Viewed by 3744
Abstract
The probe of China’s first Mars exploration mission, Tianwen-1, has been successfully launched. It will carry out scientific exploration on the topography, soil characteristics, water ice, climate, ionosphere, and physical fields of Mars. Different from other rovers landing on the moon and Mars, [...] Read more.
The probe of China’s first Mars exploration mission, Tianwen-1, has been successfully launched. It will carry out scientific exploration on the topography, soil characteristics, water ice, climate, ionosphere, and physical fields of Mars. Different from other rovers landing on the moon and Mars, the Zhurong rover is equipped with a full polarimetric subsurface penetrating radar (FP-SPR) system for the first time. The radar’s mission is to depict the shallow subsurface structure of Mars and search for possible water ice. Therefore, in this paper, a 3D realistic structure model is established and numerically simulated based on the possible subsurface structure of Utopia Planitia (the landing area). Influencing factors such as topographical fluctuations, rocks, water ice, and the variation of dielectric constant of different layers are added to the model. The analysis of the acquired FP-SPR data set shows that the two-dimensional principal component analysis (2D-PCA) method can extract effective reflected signals from the radar data with noise interference and improve the data quality. These clearly imaged targets may be water ice blocks, so the application of 2D-PCA to FP-SPR data increases the imaging quality of suspected water ice targets. The results of this paper are the basis for future processing of the measured FP-SPR data on Mars, which will help to identify more details of subsurface structures. Full article
(This article belongs to the Special Issue Advanced Ground Penetrating Radar Theory and Applications)
Show Figures

Graphical abstract

16 pages, 2724 KiB  
Article
The Preliminary Study of Dust Devil Tracks in Southern Utopia Planitia, Landing Area of Tianwen-1 Mission
by Yi Wang, Bo Li, Jiang Zhang, Zongcheng Ling, Le Qiao, Shengbo Chen and Shaojie Qu
Remote Sens. 2021, 13(13), 2601; https://doi.org/10.3390/rs13132601 - 2 Jul 2021
Cited by 8 | Viewed by 3539
Abstract
China’s first Mars exploration mission (Tianwen-1) landed on the southern part of Mars’ Utopia Planitia on 15 May 2021. The Zhurong rover will focus on high-resolution and in situ observations of key areas on the surface of Mars. Dust devils (DDs) are heat-driven [...] Read more.
China’s first Mars exploration mission (Tianwen-1) landed on the southern part of Mars’ Utopia Planitia on 15 May 2021. The Zhurong rover will focus on high-resolution and in situ observations of key areas on the surface of Mars. Dust devils (DDs) are heat-driven vortices that lift material from the surface and inject it into the atmosphere. The dark or bright surface lineaments left by DDs are called dust devil tracks (DDTs). Dust devils can clear dust from solar panels deposited by gusts and dust storms. Therefore, it is of importance to study the encounter rates of dust devils at the Tianwen-1 landing site for achieving the rover’s long-term scientific goals. Based on High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) images, 248 newly formed DDTs in 12 image pairs were firstly identified, and their lengths, widths, and direction in the study area were measured. The distribution of their width frequency follows a −2 differential power law. Secondly, DDT formation rates were computed and analyzed with the range of 0.00006 to 0.1275 ddt km−2 sol−1, mainly affected by factors such as seasons and dust storm occurrence. Thirdly, the solar panel clearing recurrence interval derived from the orbital data in our study area was calculated from ~980 to 166,700 sols. The dust storm occurrence probability at the Tianwen-1 landing area is less than 3%, and there is a special anti-dust coating on board the Zhurong rover. Thus, the Zhurong rover can be considered competent for scientific exploration. Full article
(This article belongs to the Special Issue Planetary Remote Sensing: Chang’E-4/5 and Mars Applications)
Show Figures

Figure 1

22 pages, 46802 KiB  
Article
Spatial Autocorrelation of Martian Surface Temperature and Its Spatio-Temporal Relationships with Near-Surface Environmental Factors across China’s Tianwen-1 Landing Zone
by Yaowen Luo, Jianguo Yan, Fei Li and Bo Li
Remote Sens. 2021, 13(11), 2206; https://doi.org/10.3390/rs13112206 - 4 Jun 2021
Cited by 11 | Viewed by 4179
Abstract
Variations in the Martian surface temperature indicate patterns of surface energy exchange. The Martian surface temperature at a location is similar to those in adjacent locations; but, an understanding of temperature clusters in multiple locations will deepen our knowledge of planetary surface processes [...] Read more.
Variations in the Martian surface temperature indicate patterns of surface energy exchange. The Martian surface temperature at a location is similar to those in adjacent locations; but, an understanding of temperature clusters in multiple locations will deepen our knowledge of planetary surface processes overall. The spatial coherence of the Martian surface temperature (ST) at different locations, the spatio-temporal variations in temperature clusters, and the relationships between ST and near-surface environmental factors, however, are not well understood. To fill this gap, we studied an area to the south of Utopia Planitia, the landing zone for the Tianwen-1 Mars Exploration mission. The spatial aggregation of three Martian ST indicators (STIs), including sol average temperature (SAT), sol temperature range (STR), and sol-to-sol temperature change (STC), were quantitatively evaluated using clustering analysis at the global and local scale. In addition, we also detected the spatio-temporal variations in relations between the STIs and seven potential driving factors, including thermal inertia, albedo, dust, elevation, slope, and zonal and meridional winds, across the study area during 81 to 111 sols in Martian years 29–32, based on a geographically and temporally weighted regression model (GTWR). We found that the SAT, STR, and STC were not randomly distributed over space but exhibited signs of significant spatial aggregation. Thermal inertia and dust made the greatest contribution to the fluctuation in STIs over time. The local surface temperature was likely affected by the slope, wind, and local circulation, especially in the area with a large slope and low thermal inertia. In addition, the sheltering effects of the mountains at the edge of the basin likely contributed to the spatial difference in SAT and STR. These results are a reminder that the spatio-temporal variation in the local driving factors associated with Martian surface temperature cannot be neglected. Our research contributes to the understanding of the surface environment that might compromise the survival and operations of the Tianwen-1 lander on the Martian surface. Full article
(This article belongs to the Special Issue Cartography of the Solar System: Remote Sensing beyond Earth)
Show Figures

Graphical abstract

15 pages, 4378 KiB  
Communication
Probing the Hidden Geology of Isidis Planitia (Mars) with Impact Craters
by Graziella Caprarelli and Roberto Orosei
Geosciences 2015, 5(1), 30-44; https://doi.org/10.3390/geosciences5010030 - 13 Feb 2015
Cited by 1 | Viewed by 11611
Abstract
In this study we investigated Isidis Planitia, a 1325 km diameter multi-ring impact basin intersecting the Martian hemispheric dichotomy, located in the eastern hemisphere, between Syrtis Major and Utopia Planitia. From Mars Orbiter Laser Altimeter gridded data we observed that in the center [...] Read more.
In this study we investigated Isidis Planitia, a 1325 km diameter multi-ring impact basin intersecting the Martian hemispheric dichotomy, located in the eastern hemisphere, between Syrtis Major and Utopia Planitia. From Mars Orbiter Laser Altimeter gridded data we observed that in the center of Isidis the −3700 m and −3800 m isolines strike NW-SE, being quasi-parallel to the diameter of the basin. We interpreted this as evidence that the basement of Isidis Planitia was faulted prior to being completely covered by layers of sediments and volcanic rocks. Plotting the morphometric data of impact craters located on the floor of the basin in a measured depths vs. predicted depths diagram (MPD), we concluded that the fault planes should dip SW, which is consistent with the location of the most topographically depressed sector of Isidis Planitia. We also estimated a minimum vertical displacement of ~1–2 km. Considering that the crust under Isidis Planitia is only a few km thick, our estimate implies brittle behavior of the lithosphere under the basin, suggesting that a low geothermal gradient and rheologically strong material characterize this Martian location. Full article
(This article belongs to the Special Issue Planetary Geosciences and Space Exploration)
Show Figures

Figure 1

Back to TopTop