Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Urumieh–Dokhtar magmatic arc

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 21085 KiB  
Article
Unraveling the Protracted Magmatic Evolution in the Central Urumieh–Dokhtar Magmatic Arc (Northeast Saveh, Iran): Zircon U-Pb Dating, Lu-Hf Isotopes, and Geochemical Constraints
by Mohammad Goudarzi, Hassan Zamanian, Urs Klötzli, Jiří Sláma, Jitka Míková, Jolanta Burda, David R. Lentz, Matee Ullah and Jiranan Homnan
Minerals 2025, 15(4), 375; https://doi.org/10.3390/min15040375 - 3 Apr 2025
Viewed by 769
Abstract
Cenozoic plutonic rocks in northeast Saveh, part of the central Urumieh–Dokhtar Magmatic Arc (UDMA) in Iran, comprise monzonite, monzodiorite, gabbro, and gabbrodiorite. Geochemical, zircon U-Pb geochronology, and Hf isotopic data reveal that these plutonic rocks belong to a medium-K calc-alkaline, metaluminous series with [...] Read more.
Cenozoic plutonic rocks in northeast Saveh, part of the central Urumieh–Dokhtar Magmatic Arc (UDMA) in Iran, comprise monzonite, monzodiorite, gabbro, and gabbrodiorite. Geochemical, zircon U-Pb geochronology, and Hf isotopic data reveal that these plutonic rocks belong to a medium-K calc-alkaline, metaluminous series with arc-related signatures. Zircon U-Pb ages (ca. 60 to 3 Ma) indicate prolonged magmatic evolution from the Middle Paleocene to the Middle Pliocene. Contrary to earlier reports of a 15 Ma period of reduced magmatic activity (ca. 72–57 Ma), our data indicate a shorter interval (ca. 10–12 Ma) during which magmatic activity decreased significantly. Key magmatic pulses occurred during the Late Eocene (ca. 40–47 Ma), Early Miocene (ca. 23–18 Ma), and Late Miocene–Pliocene (ca. 11–5.2 Ma), with geochemical data indicating a subduction-related origin. The most recent magmatic pulses in the central UDMA, potentially extending across the entire UDMA, are dated between 5 and 2.5 Ma, identified in a cluster of zircons from gabbroic rocks, which could correspond to the concluding stages of slab steepening related to continental subduction. Zircon εHf(t) values (−11.43 to 12.5) and geochemical data suggest fractional crystallization, crustal assimilation, and mantle-derived melts. The clinopyroxene crystallization temperatures (1150–1200 °C) and supporting geochemical data imply that magma was produced in a metasomatized spinel–lherzolite mantle at depths <80 km. This generation is associated with asthenospheric upwelling and slab rollback, which, in turn, triggered the partial melting of the lithosphere and fueled the region’s magmatic activity. Full article
Show Figures

Figure 1

17 pages, 17665 KiB  
Article
Genesis of the Mahour Base Metal Deposit, Iran: Constraints from Fluid Inclusions and Sulfur Isotopes
by Zahra Moradiani, Majid Ghaderi, Hossein-Ali Tajeddin and Pura Alfonso
Minerals 2024, 14(4), 435; https://doi.org/10.3390/min14040435 - 22 Apr 2024
Viewed by 1817
Abstract
The Mahour base metal deposit is located northeast of Badroud in the middle of the Urumieh–Dokhtar magmatic arc in the Isfahan province of Iran. The main host rocks to the ores are Eocene volcanic and volcaniclastic rocks. Hypogene ore minerals constituting the main [...] Read more.
The Mahour base metal deposit is located northeast of Badroud in the middle of the Urumieh–Dokhtar magmatic arc in the Isfahan province of Iran. The main host rocks to the ores are Eocene volcanic and volcaniclastic rocks. Hypogene ore minerals constituting the main ore body are galena, sphalerite, pyrite, and chalcopyrite. In addition to gangue quartz, a variety of supergene minerals comprising gypsum, goethite, hematite, “limonite”, malachite, azurite, covellite, and chalcocite are also present; gangue minerals are quartz, barite, calcite, sericite, and chlorite. Silicification, intermediate argillic, and propylitic are the main wall-rock alteration types. The presence of fluid inclusions with different vapor/liquid ratios in quartz and sphalerite could indicate a boiling process. The primary liquid-rich fluid inclusions suggest that the homogenization temperature was between 107 and 298 °C from fluids with salinities from 1.5 to 13.7 wt.% NaCl equiv. These data suggest that the ore-forming fluids were magmatic with a contribution from meteoric waters. The δ34S values of sulfides range from 1.9 to 3.4‰, those of barite range from 12.1 to 13.2‰, and those of gypsum range from 4.3 to 5.6‰. These data suggest that sulfur was mostly of magmatic origin with a minor contribution from sedimentary rocks. Our data suggest that the boiling of fluids formed an intermediate-sulfidation style of epithermal mineralization for the Mahour deposit. Full article
(This article belongs to the Special Issue New Insights into Porphyry, Epithermal, and Skarn Deposits)
Show Figures

Figure 1

32 pages, 30473 KiB  
Article
Magnetic Fabric and Paleomagnetic Analyses of the Zaghar and Tafresh Areas, Central Urumieh-Dokhtar Magmatic Arc, Iran
by Maryam Sheibi, Nima Rahimi, Pierre Rochette, François Demory and Hassan Mirnejad
Geosciences 2023, 13(9), 275; https://doi.org/10.3390/geosciences13090275 - 12 Sep 2023
Viewed by 2091
Abstract
Magnetic fabric, paleomagnetic, and petrophysical studies were conducted on rocks in the Tafresh area of the central Urumieh-Dokhtar magmatic arc in Iran. The samples included Late Triassic dark gray sandstone, a mafic dyke, diorites, and a felsic dyke in the Zaghar region. Hydrothermal [...] Read more.
Magnetic fabric, paleomagnetic, and petrophysical studies were conducted on rocks in the Tafresh area of the central Urumieh-Dokhtar magmatic arc in Iran. The samples included Late Triassic dark gray sandstone, a mafic dyke, diorites, and a felsic dyke in the Zaghar region. Hydrothermal alteration in the Spid intrusion was investigated to understand the effects of alteration on magnetic fabric patterns. The AMS measurements support the theory that the Nayband Formation was constructed under a crustal extension regime. Magnetic susceptibility anisotropy in a microdioritic dyke indicates compression from the NNE-SSW, likely due to tectonic activity. AMS results from diorites in Zaghar suggest intrusions were emplaced in extensional spaces between the Tafresh and Chaghar thrust faults. The Spid intrusion’s magnetite is the primary carrier of magnetic susceptibility, but hydrothermal alteration has partly converted it into hematite, resulting in lower susceptibility and higher porosity in altered diorites. This process leads to a bimodal distribution of magnetic lineation trends. The Spid and Zaghar massifs underwent a northward tilt of about 30 degrees around an east-west axis following the Early Miocene. Post-Eocene rotations in the area are typically within ±20 degrees. This study demonstrates how magnetic properties can provide new insights into the evolution of tectono-magmatic processes and structural controls within a magmatic arc. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

19 pages, 10076 KiB  
Article
Two-Dimensional Attenuation and Velocity Tomography of Iran
by Thomas M. Hearn
Geosciences 2022, 12(11), 397; https://doi.org/10.3390/geosciences12110397 - 26 Oct 2022
Cited by 3 | Viewed by 2054
Abstract
Seismic bulletin data collected by the Iranian Seismological Center are used to image crust and mantle seismic attenuation, group velocity, and phase velocities for Lg, Pg, Sn, and Pn phases. This is possible because the peak amplitude time is picked, and amplitude measurements [...] Read more.
Seismic bulletin data collected by the Iranian Seismological Center are used to image crust and mantle seismic attenuation, group velocity, and phase velocities for Lg, Pg, Sn, and Pn phases. This is possible because the peak amplitude time is picked, and amplitude measurements can be associated with the phase based on travel time plots. The group velocity is the apparent velocity of the maximum amplitude arrival and represents the combined effect of phase velocity and seismic scattering. Thus, it can be used in combination with the attenuation to identify where scattering attenuation is dominant. The Arabian–Iranian plate boundary separates low-velocity Zagros sediments from central Iran; however, in the mantle, it separates a high-velocity Arabian shield from central Iran. Scattering attenuation is low within the Arabian mantle and crust, and the Zagros sediments do not cause Lg or Pg attenuation. The Eocene Urumieh Dokhtar Magmatic Arc has high attenuation within both the crust and mantle, and while there is no partial melting in the crust, there may be some in the mantle. The northern Eocene Sistan Suture Zone shows particularly high attenuation that is accompanied by high scattering. It represents an incompletely closed ocean basin that has undergone intense alteration. The Alborz Mountains have high attenuation with some scattering. Full article
(This article belongs to the Special Issue Methods for Exploration of the Continental Crust)
Show Figures

Figure 1

25 pages, 10380 KiB  
Article
Application of Dirichlet Process and Support Vector Machine Techniques for Mapping Alteration Zones Associated with Porphyry Copper Deposit Using ASTER Remote Sensing Imagery
by Mastoureh Yousefi, Seyed Hassan Tabatabaei, Reyhaneh Rikhtehgaran, Amin Beiranvand Pour and Biswajeet Pradhan
Minerals 2021, 11(11), 1235; https://doi.org/10.3390/min11111235 - 6 Nov 2021
Cited by 22 | Viewed by 3308
Abstract
The application of machine learning (ML) algorithms for processing remote sensing data is momentous, particularly for mapping hydrothermal alteration zones associated with porphyry copper deposits. The unsupervised Dirichlet Process (DP) and the supervised Support Vector Machine (SVM) techniques can be executed for mapping [...] Read more.
The application of machine learning (ML) algorithms for processing remote sensing data is momentous, particularly for mapping hydrothermal alteration zones associated with porphyry copper deposits. The unsupervised Dirichlet Process (DP) and the supervised Support Vector Machine (SVM) techniques can be executed for mapping hydrothermal alteration zones associated with porphyry copper deposits. The main objective of this investigation is to practice an algorithm that can accurately model the best training data as input for supervised methods such as SVM. For this purpose, the Zefreh porphyry copper deposit located in the Urumieh-Dokhtar Magmatic Arc (UDMA) of central Iran was selected and used as training data. Initially, using ASTER data, different alteration zones of the Zefreh porphyry copper deposit were detected by Band Ratio, Relative Band Depth (RBD), Linear Spectral Unmixing (LSU), Spectral Feature Fitting (SFF), and Orthogonal Subspace Projection (OSP) techniques. Then, using the DP method, the exact extent of each alteration was determined. Finally, the detected alterations were used as training data to identify similar alteration zones in full scene of ASTER using SVM and Spectral Angle Mapper (SAM) methods. Several high potential zones were identified in the study area. Field surveys and laboratory analysis were used to validate the image processing results. This investigation demonstrates that the application of the SVM algorithm for mapping hydrothermal alteration zones associated with porphyry copper deposits is broadly applicable to ASTER data and can be used for prospectivity mapping in many metallogenic provinces around the world. Full article
Show Figures

Figure 1

Back to TopTop