Magnetic Fabric and Paleomagnetic Analyses of the Zaghar and Tafresh Areas, Central Urumieh-Dokhtar Magmatic Arc, Iran
Abstract
:1. Introduction
2. Geological Settings
3. Sampling
4. Materials and Methods
4.1. Anisotropy of Magnetic Susceptibility (AMS)
4.2. Paleomagnetism
4.3. Rock Magnetism
4.3.1. Thermomagnetic Measurements
4.3.2. Hysteresis Loop Study
4.4. Density and Porosity
5. Results
5.1. Anisotropy of Magnetic Susceptibility (AMS)
5.1.1. Zaghar Area
5.1.2. Spid Pluton
5.2. Rock Magnetic Properties
5.3. Density and Porosity vs. Magnetic Susceptibilty
5.4. Paleomagnetism
6. Discussion
6.1. Nayband Formation
6.2. Mafic Dyke Crosscutting the Nayband Formation
6.3. Diorites and Microdioritic Dyke in Zaghar
6.4. Spid Intrusion
7. Conclusions
- The AMS database revealed an extensional regime during the formation of shale and sandstone in the Nayband Formation, consistent with previous tectonic settings inferred from paleogeography and paleotectonic history. The findings from magnetic fabric analysis of this formation indicate that the magnetic lineations formed during the initial phases of deformation in extensional regimes can endure, even when subsequent tectonic events occur.
- The vertical magnetic lineation of the mafic dyke is aligned with a major shortening trend proposed by previous studies and the regional stress field of NW–SE convergence in the UDMA.
- A sub-horizontal NW–SE trending lineation and a sub-vertical NW–SE striking foliation from the AMS results of diorites in the Zaghar reveal the intrusions emplaced along some tensional spaces that were developed between two thrusts of the Tafresh and Chaghar faults. The microdioritic dykes that occurred in this area were consistent with NNE–SSW shortening, which was particularly well-developed from the late Miocene onward.
- Detailed investigations of the Spid pluton provide conclusive evidence that the mineralogical changes in the altered samples have, indeed, resulted in modifications to their magnetic susceptibility, grain density, and porosity. While the magnetic fabrics within the intrusion are predominantly foliation-dominant, they can be classified into two subsets based on the plunge of the lineation. The oblique relationship between the shear zone and the second magnetic lineations in the altered samples of the Spid intrusion, as well as the reinforcement of the magnetic lineations with increasing magnetic anisotropy, provide evidence of the development of secondary fabrics resulting from the flow of hydrothermal fluids through an E–W oriented conduit. Therefore, one of the outstanding advantages of the AMS method is its ability to serve as a valuable tool for quantifying the structural controls on mineralization and for exploring prospective areas.
- Paleomagnetic investigations demonstrate that the Spid and Zaghar massifs had similar average directions with mostly reverse polarity, indicating that they experienced the same dominant polarity chron and tectonic rotation after acquiring ChRM. The study proposes that the massifs underwent a northward tilting of approximately 30° around an EW axis after the Early Miocene. However, it was not possible to determine the likelihood of rotation around a vertical axis due to the lack of sufficient paleohorizontal constraints. The study also noted that post-Eocene rotations in the area were typically within ±20°, which did not significantly impact the estimation of the northward tilting of both massifs.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rochette, P.; Jackson, M.; Aubourg, C. Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev. Geophys. 1992, 30, 209–226. [Google Scholar] [CrossRef]
- Bouchez, J.L. Granite is never isotropic: An introduction to AMS studies of granitic rocks. In Granite: From Segregation of Melt to Emplacement Fabrics; Springer: Berlin/Heidelberg, Germany, 1997; pp. 95–112. [Google Scholar]
- Nédélec, A.; Bouchez, J.-L. Granites: Petrology, Structure, Geological Setting, and Metallogeny; OUP: Oxford, UK, 2015. [Google Scholar]
- Seifivand, A.; Sheibi, M. Ballooning emplacement and alteration of the Chah-Musa subvolcanic intrusion (NE Iran) inferred from magnetic susceptibility and fabric. Geol. Mag. 2020, 157, 621–639. [Google Scholar] [CrossRef]
- Duermeijer, C.; Nyst, M.; Meijer, P.T.; Langereis, C.; Spakman, W. Neogene evolution of the Aegean arc: Paleomagnetic and geodetic evidence for a rapid and young rotation phase. Earth Planet. Sci. Lett. 2000, 176, 509–525. [Google Scholar] [CrossRef]
- Kaymakcı, N.; Langereis, C.; Özkaptan, M.; Özacar, A.A.; Gülyüz, E.; Uzel, B.; Sözbilir, H. Paleomagnetic evidence for upper plate response to a STEP fault, SW Anatolia. Earth Planet. Sci. Lett. 2018, 498, 101–115. [Google Scholar] [CrossRef]
- Lazos, I.; Sboras, S.; Chousianitis, K.; Kondopoulou, D.; Pikridas, C.; Bitharis, S.; Pavlides, S. Temporal evolution of crustal rotation in the Aegean region based on primary geodetically-derived results and palaeomagnetism. Acta Geod. Geophys. 2022, 57, 317–334. [Google Scholar] [CrossRef]
- van Hinsbergen, D.J.; Dekkers, M.J.; Bozkurt, E.; Koopman, M. Exhumation with a twist: Paleomagnetic constraints on the evolution of the Menderes metamorphic core complex, western Turkey. Tectonics 2010, 29, TC3009. [Google Scholar] [CrossRef]
- Cañón-Tapia, E.; Chávez-Álvarez, M. Rotation of uniaxial ellipsoidal particles during simple shear revisited: The influence of elongation ratio, initial distribution of a multiparticle system and amount of shear in the acquisition of a stable orientation. J. Struct. Geol. 2004, 26, 2073–2087. [Google Scholar] [CrossRef]
- Tauxe, L.; Gee, J.; Staudigel, H. Flow directions in dikes from anisotropy of magnetic susceptibility data: The bootstrap way. J. Geophys. Res. Solid Earth 1998, 103, 17775–17790. [Google Scholar] [CrossRef]
- Aranguren, A.; Cuevas, J.; Tubia, J.; Román-Berdiel, T.; Casas-Sainz, A.; Casas-Ponsati, A. Granite laccolith emplacement in the Iberian arc: AMS and gravity study of the La Tojiza pluton (NW Spain). J. Geol. Soc. 2003, 160, 435–445. [Google Scholar] [CrossRef]
- Burton-Johnson, A.; Macpherson, C.; Muraszko, J.; Harrison, R.; Jordan, T.A. Tectonic strain recorded by magnetic fabrics (AMS) in plutons, including Mt Kinabalu, Borneo: A tool to explore past tectonic regimes and syn-magmatic deformation. J. Struct. Geol. 2019, 119, 50–60. [Google Scholar] [CrossRef]
- Austin, J.; McFarelane, H.; Schlegel, T.; Patterson, B.; Birchall, R.; Walshe, J.; Björk, A.; Shelton, T. Tectono-Metasomatic History and Structural Controls of the Ernest Henry Iron Oxide-Copper-Gold (IOCG) Deposit: Insights from Integrated Mineralogy and Magnetic Fabric Studies; CSIRO: Canberra, Australia, 2021; p. 66. [Google Scholar]
- Burton-Johnson, A.; Riley, T.; Harrison, R.; Mac Niocaill, C.; Muraszko, J.; Rowley, P. Does tectonic deformation control episodic continental arc magmatism? Evidence from granitic magnetic fabrics (AMS). Gondwana Res. 2022, 112, 1–23. [Google Scholar] [CrossRef]
- Finizola, A.; Sortino, F.; Lénat, J.-F.; Valenza, M. Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO2 surveys. J. Volcanol. Geotherm. Res. 2002, 116, 1–18. [Google Scholar] [CrossRef]
- Hurwitz, S.; Garfunkel, Z.; Ben-Gai, Y.; Reznikov, M.; Rotstein, Y.; Gvirtzman, H. The tectonic framework of a complex pull-apart basin: Seismic reflection observations in the Sea of Galilee, Dead Sea transform. Tectonophysics 2002, 359, 289–306. [Google Scholar] [CrossRef]
- Hase, H.; Hashimoto, T.; Sakanaka, S.y.; Kanda, W.; Tanaka, Y. Hydrothermal system beneath Aso volcano as inferred from self-potential mapping and resistivity structure. J. Volcanol. Geotherm. Res. 2005, 143, 259–277. [Google Scholar] [CrossRef]
- Pola, A.; Crosta, G.; Fusi, N.; Barberini, V.; Norini, G. Influence of alteration on physical properties of volcanic rocks. Tectonophysics 2012, 566, 67–86. [Google Scholar] [CrossRef]
- Pola, A.; Crosta, G.B.; Fusi, N.; Castellanza, R. General characterization of the mechanical behaviour of different volcanic rocks with respect to alteration. Eng. Geol. 2014, 169, 1–13. [Google Scholar] [CrossRef]
- Mehegan, J.M.; Robinson, P.T.; Delaney, J.R. Secondary mineralization and hydrothermal alteration in the Reydarfjordur drill core, eastern Iceland. J. Geophys. Res. Solid Earth 1982, 87, 6511–6524. [Google Scholar] [CrossRef]
- Cox, M.E.; Browne, P. Hydrothermal alteration mineralogy as an indicator of hydrology at the Ngawha geothermal field, New Zealand. Geothermics 1998, 27, 259–270. [Google Scholar] [CrossRef]
- Lumb, P. Engineering properties of fresh and decomposed igneous rocks from Hong Kong. Eng. Geol. 1983, 19, 81–94. [Google Scholar] [CrossRef]
- Arel, E.; Tugrul, A. Weathering and its relation to geomechanical properties of Cavusbasi granitic rocks in northwestern Turkey. Bull. Eng. Geol. Environ. 2001, 60, 123–133. [Google Scholar]
- Begonha, A.; Braga, M.S. Weathering of the Oporto granite: Geotechnical and physical properties. Catena 2002, 49, 57–76. [Google Scholar] [CrossRef]
- Arıkan, F.; Ulusay, R.; Aydın, N. Characterization of weathered acidic volcanic rocks and a weathering classification based on a rating system. Bull. Eng. Geol. Environ. 2007, 66, 415–430. [Google Scholar] [CrossRef]
- Chang, C.; Zoback, M.D.; Khaksar, A. Empirical relations between rock strength and physical properties in sedimentary rocks. J. Pet. Sci. Eng. 2006, 51, 223–237. [Google Scholar] [CrossRef]
- Kahraman, S.; Gunaydin, O.; Fener, M. The effect of porosity on the relation between uniaxial compressive strength and point load index. Int. J. Rock Mech. Min. Sci. 2005, 42, 584–589. [Google Scholar] [CrossRef]
- Sousa, R.; Guilhermino, L.; Antunes, C. Molluscan fauna in the freshwater tidal area of the River Minho estuary, NW of Iberian Peninsula. Ann. Limnol. Int. J. Limnol. 2005, 41, 141–147. [Google Scholar] [CrossRef]
- Tamrakar, N.K.; Yokota, S.; Shrestha, S.D. Relationships among mechanical, physical and petrographic properties of Siwalik sandstones, Central Nepal Sub-Himalayas. Eng. Geol. 2007, 90, 105–123. [Google Scholar] [CrossRef]
- Ceryan, S.; Tudes, S.; Ceryan, N. Influence of weathering on the engineering properties of Harsit granitic rocks (NE Turkey). Bull. Eng. Geol. Environ. 2008, 67, 97–104. [Google Scholar] [CrossRef]
- Mirnejad, H.; Raeisi, D.; McFarlane, C.; Sheibi, M. Tafresh intrusive rocks within the urumieh-dokhtar magmatic arc: Appraisal of neo-tethys subduction. Geol. J. 2019, 54, 1745–1755. [Google Scholar] [CrossRef]
- Raeisi, D.; Mirnejad, H.; Sheibi, M. Emplacement mechanism of the Tafresh granitoids, central part of the Urumieh–Dokhtar Magmatic Arc, Iran: Evidence from magnetic fabrics. Geol. Mag. 2019, 156, 1510–1526. [Google Scholar] [CrossRef]
- Hosseinian, A. Using Magnetic Susceptibility Anisotropy (AMS) Technique for Evaluating the Magnetic Susceptibility and the Alteration Associated with Fe Mineralization in Moushakieh Intrusive Pluton (Northwest Qom); University of Tehran: Tehran, Iran, 2017. [Google Scholar]
- Karamian, M. The Study of the Spid Iron Deposit Genesis by Using a Combination of Geochemical, Geophysical and Petrographic Data; University of Tehran: Tehran, Iran, 2015. [Google Scholar]
- Rahimi, N. Using Anisotropy of Magnetic Susceptibility (AMS) Technique for the Identification of Hydrothermal Alteration Passages in the Intrusive Body Associated with Spid Iron Deposit (West Qom); University of Tehran: Tehran, Iran, 2017. [Google Scholar]
- Stöcklin, J. Structural history and tectonics of Iran: A review. AAPG Bull. 1968, 52, 1229–1258. [Google Scholar]
- Berberian, M.; King, G. Towards a paleogeography and tectonic evolution of Iran: Reply. Can. J. Earth Sci. 1981, 18, 1764–1766. [Google Scholar] [CrossRef]
- Berberian, F.; Muir, I.; Pankhurst, R.; Berberian, M. Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. J. Geol. Soc. 1982, 139, 605–614. [Google Scholar] [CrossRef]
- Alavi, M. Tectonics of the Zagros orogenic belt of Iran: New data and interpretations. Tectonophysics 1994, 229, 211–238. [Google Scholar] [CrossRef]
- Dercourt, J.; Zonenshain, L.; Ricou, L.-E.; Kazmin, V.; Le Pichon, X.; Knipper, A.; Grandjacquet, C.; Sbortshikov, I.; Geyssant, J.; Lepvrier, C.; et al. Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophysics 1986, 123, 241–315. [Google Scholar] [CrossRef]
- Alavi, M. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am. J. Sci. 2004, 304, 1–20. [Google Scholar] [CrossRef]
- Agard, P.; Omrani, J.; Jolivet, L.; Whitechurch, H.; Vrielynck, B.; Spakman, W.; Monié, P.; Meyer, B.; Wortel, R. Zagros orogeny: A subduction-dominated process. Geol. Mag. 2011, 148, 692–725. [Google Scholar] [CrossRef]
- Hajian, H. Geological Map of the Tafresh Area: Tehran; Geological Survey of Iran: Tehran, Iran, 1977.
- Radfar, J.; Kohansal, R.; Hadjian, J. Geological Quadrangle Map of Farmahin; Geological Survey of Iran: Tehran, Iran, 2006; p. 5959.
- Kazemi Mehrnia, M.; Hajian, J.; Ghorbani, M. Geological Map of Saidiyeh; Geological Survey of Iran: Tehran, Iran, 2015; p. 5959.
- Shahhosseini, A.; Alipour-Asll, M.; Hosseina, L.; Bahar-Firouzi, K. Geology, mineralization, fluid inclusion, and stable isotope characteristics of the Zaghar and Sarabadan Cu-(Au) skarn deposits, Tafresh, Central Iran. Ore Geol. Rev. 2020, 124, 103646. [Google Scholar] [CrossRef]
- Emami, M.; Hajian, J. Geological map of the Qom, Scale 1: 250,000. Geol. Surv. Iran Sheet No. NI 1991, 39–46. [Google Scholar]
- Babazadeh, S.; Raeisi, D.; D’Antonio, M.; Zhao, M.; Long, L.E.; Cottle, J.M.; Modabberi, S. Petrogenesis of Miocene igneous rocks in the Tafresh area (central Urumieh-Dokhtar magmatic arc, Iran): Insights into mantle sources and geodynamic processes. Geol. J. 2022, 57, 2884–2903. [Google Scholar] [CrossRef]
- Verdel, C.; Wernicke, B.P.; Hassanzadeh, J.; Guest, B. A Paleogene extensional arc flare-up in Iran. Tectonics 2011, 30, TC3008. [Google Scholar] [CrossRef]
- Ghorbani, M.R.; Graham, I.T.; Ghaderi, M. Oligocene–Miocene geodynamic evolution of the central part of Urumieh-Dokhtar Arc of Iran. Int. Geol. Rev. 2014, 56, 1039–1050. [Google Scholar] [CrossRef]
- Bazgir, E.; Alavi, S.A.; Ehteshami Moinabadi, M.; Ebadi, L. Stress regime change from Miocene to pliocene-Quaternary and its relationship with structures and dykes emplacement in thd Salafchegan area Oroumiyeh-Dokhtar magmatic belt. J. Tecton. 2018, 2, 15–25. [Google Scholar]
- Knight, M.D.; Walker, G.P. Magma flow directions in dikes of the Koolau Complex, Oahu, determined from magnetic fabric studies. J. Geophys. Res. Solid Earth 1988, 93, 4301–4319. [Google Scholar] [CrossRef]
- Tarling, D.; Hrouda, F. The Magnetic Anisotropy of Rocks; Chapman & Hall: London, UK, 1993; 217p. [Google Scholar]
- Kouémo, J.T.; Njanko, T.; Kwékam, M.; Naba, S.; Nké, B.E.B.; Sandjo, A.F.Y.; Fozing, E.M.; Njonfang, E. Kinematic evolution of the Fodjomekwet-Fotouni Shear Zone (West-Cameroon): Implications for emplacement of the Fomopéa and Bandja plutons. J. Afr. Earth Sci. 2014, 99, 261–275. [Google Scholar] [CrossRef]
- Owens, W. Mathematical model studies on factors affecting the magnetic anisotropy of deformed rocks. Tectonophysics 1974, 24, 115–131. [Google Scholar] [CrossRef]
- Guillet, P.; Bouchez, J.L.; Wagner, J.J. Anisotropy of magnetic susceptibility and magmatic structures in the Guérande granite massif (France). Tectonics 1983, 2, 419–429. [Google Scholar] [CrossRef]
- Bouchez, J.L.; Gleizes, G.; Djouadi, T.; Rochette, P. Microstructure and magnetic susceptibility applied to emplacement kinematics of granites: The example of the Foix pluton (French Pyrenees). Tectonophysics 1990, 184, 157–171. [Google Scholar] [CrossRef]
- Jelinek, V. Characterization of the magnetic fabric of rocks. Tectonophysics 1981, 79, T63–T67. [Google Scholar] [CrossRef]
- Mertanen, S.; Karell, F. Palaeomagnetic and AMS studies on Satulinmaki and Koijarvi fault and shear zones. Geol. Surv. Finl. Spec. Pap. 2012, 52, 195–226. [Google Scholar]
- Kirschvink, J. The least-squares line and plane and the analysis of palaeomagnetic data. Geophys. J. Int. 1980, 62, 699–718. [Google Scholar] [CrossRef]
- Cogné, J. PaleoMac: A Macintosh™ application for treating paleomagnetic data and making plate reconstructions. Geochem. Geophys. Geosyst. 2003, 4, 34–67. [Google Scholar] [CrossRef]
- Fisher, R.A. Dispersion on a sphere. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1953, 217, 295–305. [Google Scholar] [CrossRef]
- Lattard, D.; Engelmann, R.; Kontny, A.; Sauerzapf, U. Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: Effects of composition, crystal chemistry, and thermomagnetic methods. J. Geophys. Res. Solid Earth 2006, 111, B12S28.1–B12S28.18. [Google Scholar] [CrossRef]
- Dunlop, D.J.; Özdemir, Ö. Rock Magnetism: Fundamentals and Frontiers; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Bouchez, J.L.; Delas, C.; Gleizes, G.r.; Nédélec, A.; Cuney, M. Submagmatic microfractures in granites. Geology 1992, 20, 35–38. [Google Scholar] [CrossRef]
- Rochette, P. Magnetic susceptibility of the rock matrix related to magnetic fabric studies. J. Struct. Geol. 1987, 9, 1015–1020. [Google Scholar] [CrossRef]
- Sheibi, M.; Bouchez, J.; Esmaeily, D.; Siqueira, R. The Shir-Kuh pluton (Central Iran): Magnetic fabric evidences for the coalescence of magma batches during emplacement. J. Asian Earth Sci. 2012, 46, 39–51. [Google Scholar] [CrossRef]
- Rochette, P.; Aubourg, C.; Perrin, M. Is this magnetic fabric normal? A review and case studies in volcanic formations. Tectonophysics 1999, 307, 219–234. [Google Scholar] [CrossRef]
- Day, R.; Fuller, M.; Schmidt, V. Hysteresis properties of titanomagnetites: Grain-size and compositional dependence. Phys. Earth Planet. Inter. 1977, 13, 260–267. [Google Scholar] [CrossRef]
- Dunlop, D. Theory and application of the Day plot ([M. sub. rs]/[M. sub. s] versus [H. sub. cr]/[H. sub. c]), 2. Application to data for rocks. J. Geophys. Res. 2002, 107, 2057. [Google Scholar] [CrossRef]
- Astudillo, N.; Roperch, P.; Townley, B.; Arriagada, C.; Maksaev, V. Importance of small-block rotations in damage zones along transcurrent faults. Evidence from the Chuquicamata open pit, Northern Chile. Tectonophysics 2008, 450, 1–20. [Google Scholar] [CrossRef]
- Krása, D.; Herrero-Bervera, E. Alteration induced changes of magnetic fabric as exemplified by dykes of the Koolau volcanic range. Earth Planet. Sci. Lett. 2005, 240, 445–453. [Google Scholar] [CrossRef]
- Petrovsky, E.; Hulka, Z.; Kapicka, A. A new tool for in situ measurements of the vertical distribution of magnetic susceptibility in soils as basis for mapping deposited dust. Environ. Technol. 2004, 25, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Zijderveld, J. AC demagnetization of rocks: Analysis of results. In Developments in Solid Earth Geophysics; Elsevier: Amsterdam, The Netherlands, 2013; pp. 254–286. [Google Scholar]
- Mattei, M.; Cifelli, F.; Muttoni, G.; Zanchi, A.; Berra, F.; Mossavvari, F.; Eshraghi, S.A. Neogene block rotation in central Iran: Evidence from paleomagnetic data. Bulletin 2012, 124, 943–956. [Google Scholar] [CrossRef]
- Mattei, M.; Cifelli, F.; Muttoni, G.; Rashid, H. Post-Cimmerian (Jurassic–Cenozoic) paleogeography and vertical axis tectonic rotations of Central Iran and the Alborz Mountains. J. Asian Earth Sci. 2015, 102, 92–101. [Google Scholar] [CrossRef]
- Song, P.; Ding, L.; Zhang, L.; Cai, F.; Zhang, Q.; Li, Z.; Wang, H.; Jafari, M.K.; Talebian, M. Paleomagnetism From Central Iran Reveals Arabia-Eurasia Collision Onset at the Eocene/Oligocene Boundary. Geophys. Res. Lett. 2023, 50, e2023GL103858. [Google Scholar] [CrossRef]
- Zijderveld, J. The natural remanent magnetizations of the Exeter volcanic traps (Permian, Europe). Tectonophysics 1967, 4, 121–153. [Google Scholar] [CrossRef]
- Flinn, D. On tests of significance of preferred orientation in three-dimensional fabric diagrams. J. Geol. 1958, 66, 526–539. [Google Scholar] [CrossRef]
- Mattei, M.; Speranza, F.; Argentieri, A.; Rossetti, F.; Sagnotti, L.; Funiciello, R. Extensional tectonics in the Amantea basin (Calabria, Italy): A comparison between structural and magnetic anisotropy data. Tectonophysics 1999, 307, 33–49. [Google Scholar] [CrossRef]
- Cifelli, F.; Mattei, M.; Hirt, A.M.; Günther, A. The origin of tectonic fabrics in “undeformed” clays: The early stages of deformation in extensional sedimentary basins. Geophys. Res. Lett. 2004, 31, L09604.1–L09604.4. [Google Scholar] [CrossRef]
- Cifelli, F.; Mattei, M.; Chadima, M.; Hirt, A.M.; Hansen, A. The origin of tectonic lineation in extensional basins: Combined neutron texture and magnetic analyses on “undeformed” clays. Earth Planet. Sci. Lett. 2005, 235, 62–78. [Google Scholar] [CrossRef]
- Etesampour, A.; Mahboubi, A.; Moussavi-Harami, R.; Arzani, N.; Salehi, M.A. Sandstone petrography and geochemistry of the Nayband Formation (Upper Triassic, Central Iran): Implications for sediment provenance and tectonic setting. Austrian J. Earth Sci. 2019, 112, 20–41. [Google Scholar] [CrossRef]
- Fürsich, F.T.; Hautmann, M.; Senowbari-Daryan, B.; Seyed-Emami, K. The Upper Triassic Nayband and Darkuh formations of east-central Iran: Stratigraphy, facies patterns and biota of extensional basins on an accreted terrane. Beringeria 2005, 35, 53–133. [Google Scholar]
- Rochette, P.; Jenatton, L.; Dupuy, C.; Boudier, F.; Reuber, I. Diabase dikes emplacement in the Oman ophiolite: A magnetic fabric study with reference to geochemistry. In Proceedings of the Ophiolite Genesis and Evolution of the Oceanic Lithosphere: Proceedings of the Ophiolite Conference, Muscat, Oman, 7–18 January 1990; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Kazemi, H. Petrology of Dykes in East of Tafresh, Iran; Shahid Beheshti University: Tehran, Iran, 2005. [Google Scholar]
- Arvin, M.; Pan, Y.; Dargahi, S.; Malekizadeh, A.; Babaei, A. Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: Implications for initiation of Neotethys subduction. J. Asian Earth Sci. 2007, 30, 474–489. [Google Scholar] [CrossRef]
- Hessami, K.; Jamali, F.; Tabassi, H. Major Active Faults of Iran: Tehran; International Institute of Earthquake Engineering and Seismology: Tajrish, Iran, 2003. [Google Scholar]
- Titus, S.J.; Clark, R.; Tikoff, B. Geologic and geophysical investigation of two fine-grained granites, Sierra Nevada Batholith, California: Evidence for structural controls on emplacement and volcanism. Geol. Soc. Am. Bull. 2005, 117, 1256–1271. [Google Scholar] [CrossRef]
- Rajabioun, J. Brittle Deformation Analysis in Tafresh Area with Emphasize Paleostress Reconstruction; Tarbiat Modares University: Tehran, Iran, 2000. [Google Scholar]
- Morley, C.K.; Kongwung, B.; Julapour, A.A.; Abdolghafourian, M.; Hajian, M.; Waples, D.; Warren, J.; Otterdoom, H.; Srisuriyon, K.; Kazemi, H. Structural development of a major late Cenozoic basin and transpressional belt in central Iran: The Central Basin in the Qom-Saveh area. Geosphere 2009, 5, 325–362. [Google Scholar] [CrossRef]
- Ramsay, J.G.; Huber, M.I.; Lisle, R.J. The Techniques of Modern Structural Geology: Folds and Fractures; Academic Press: Cambridge, MA, USA, 1983; Volume 2. [Google Scholar]
- Davoodi, Z. Influence of the basement strike-slip fault on the 2005 and 2014 Earthquakes, Qeshm Island, Iran. J. Seismol. Earthq. Eng. 2016, 18, 219–230. [Google Scholar]
Spid Pluton | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Station | Long. | Lat. | Km (µSI) | T | P% | K1d | K1i | K2d | K2i | Fol. Az/Pol to Fol | |
S01 | 438,042 | 3,837,766 | 15,000 | 0.30 | 2.5 | 117.8 | 34.2 | 211.5 | 5.5 | 129.6 | 34.8 |
S02 | 437,952 | 3,837,765 | 5310 | −0.18 | 4.6 | 177.5 | 38.4 | 80.0 | 9.3 | 158.7 | 39.9 |
S03 | 437,887 | 3,837,773 | 5750 | −0.08 | 6.7 | 174.0 | 11.7 | 77.2 | 29.6 | 103.2 | 32.3 |
S04 | 437,747 | 3,837,786 | 12,900 | −0.55 | 7.3 | 180.9 | 12.8 | 87.9 | 13.1 | 133.8 | 18.5 |
S05 | 437,652 | 3,837,739 | 15,200 | 0.02 | 2.7 | 68.5 | 26.4 | 336.5 | 4.0 | 58.5 | 26.8 |
S06 | 437,873 | 3,837,739 | 21,500 | 0.01 | 6.2 | 166.0 | 10.8 | 72.8 | 15.9 | 108.7 | 19.4 |
S07 | 437,849 | 3,837,685 | 18,700 | 0.43 | 4.9 | 19.3 | 6.4 | 112.5 | 26.5 | 96.6 | 27.4 |
S08 | 437,737 | 3,837,680 | 11,000 | 0.21 | 4.3 | 225.4 | 16.1 | 121.1 | 40.7 | 152.1 | 45.1 |
S09 | 437,752 | 3,837,620 | 31,200 | 0.37 | 3.4 | 65.6 | 15.2 | 161.1 | 19.4 | 120.0 | 25.0 |
S10 | 437,527 | 3,837,588 | 15,500 | 0.00 | 6.3 | 139.3 | 14.2 | 41.6 | 28.0 | 73.2 | 31.9 |
S11 | 437,581 | 3,837,671 | 19,100 | 0.38 | 3.4 | 24.2 | 0.4 | 114.3 | 8.8 | 111.4 | 8.8 |
S12 | 437,471 | 3,837,601 | 19,400 | −0.09 | 4.1 | 14.6 | 3.8 | 107.7 | 39.1 | 100.1 | 39.3 |
S13 | 437,488 | 3,837,671 | 13,600 | 0.39 | 3.8 | 184.2 | 9.2 | 89.5 | 26.7 | 111.6 | 28.5 |
S14 | 437,427 | 3,837,708 | 146 | −0.80 | 0.4 | 208.0 | 11.5 | 101.9 | 53.9 | 125.8 | 56.3 |
S15 | 437,386 | 3,837,650 | 29,100 | 0.12 | 5.0 | 165.8 | 7.6 | 73.6 | 16.0 | 100.5 | 17.8 |
S16 | 437,334 | 3,837,773 | 22,900 | −0.38 | 5.0 | 149.2 | 20.7 | 56.6 | 6.8 | 129.5 | 21.9 |
S17 | 437,230 | 3,837,931 | 269 | −0.04 | 1.0 | 5.6 | 53.1 | 182.6 | 36.9 | 93.6 | 88.5 |
S18 | 437,227 | 3,838,039 | 8240 | −0.56 | 1.6 | 161.4 | 0.7 | 71.3 | 4.0 | 81.1 | 4.0 |
S19 | 437,308 | 3,837,968 | 5870 | −0.67 | 8.9 | 4.6 | 4.1 | 96.3 | 22.3 | 84.7 | 22.7 |
S20 | 437,414 | 3,837,917 | 10,000 | −0.71 | 6.5 | 253.8 | 76.2 | 10.1 | 6.2 | 281.0 | 77.7 |
S21 | 437,461 | 3,837,963 | 10,300 | −0.22 | 8.2 | 345.0 | 13.0 | 89.0 | 29.7 | 335.0 | 33.0 |
S22 | 437,539 | 3,837,920 | 331 | −0.04 | 7.0 | 345.0 | 21.0 | 232.6 | 6.4 | 242.0 | 18.0 |
S23 | 437,607 | 3,837,806 | 419 | 0.12 | 1.8 | 167.7 | 10.4 | 104.1 | 16.6 | 11.0 | 17.0 |
S24 | 437,569 | 3,837,753 | 27,460 | 0.21 | 5.1 | 1.0 | 28.3 | 137.9 | 13.8 | 303.0 | 32.0 |
S25 | 437,462 | 3,837,802 | 5060 | −0.14 | 10.5 | 125.0 | 14.0 | 124.6 | 6.8 | 27.0 | 15.0 |
SB | 437,213 | 3,837,889 | 458 | 0.17 | 0.9 | 112.6 | 19.5 | 184.1 | 31.5 | 121.5 | 45.0 |
SC | 437,287 | 3,837,873 | 535 | 0.33 | 0.5 | 127.7 | 22.9 | 144.0 | 27.2 | 148.0 | 41.6 |
SD | 437,370 | 3,837,843 | 223 | 0.17 | 0.4 | 33.4 | 11.3 | 145.7 | 47.8 | 203.0 | 51.6 |
SE | 437,365 | 3,837,886 | 302 | 0.59 | 0.6 | 177.1 | 6.4 | 85.8 | 14.8 | 200.7 | 17.7 |
SF | 437,414 | 3,837,814 | 482 | 0.53 | 0.5 | 179.9 | 11.7 | 93.0 | 15.4 | 137.5 | 20.7 |
SG1 | 437,457 | 3,837,769 | 27,946 | −0.489 | 7 | 166.3 | 17.8 | 74 | 6.9 | 323.8 | 70.8 |
SG2 | 437,457 | 3,837,769 | 21,419 | −0.466 | 7.8 | 178.6 | 21.6 | 81 | 18.4 | 314.2 | 61 |
SG3 | 437,457 | 3,837,769 | 453 | −0.468 | 1.9 | 64 | 11.4 | 224.6 | 77.9 | 333.2 | 3.9 |
SG4 | 437,457 | 3,837,769 | 1816 | −0.778 | 4.4 | 171.2 | 16 | 68.5 | 37.4 | 279.9 | 48.2 |
SG5 | 437,457 | 3,837,769 | 462 | −0.473 | 1.7 | 179 | 13.7 | 81.9 | 26.7 | 293.4 | 59.4 |
SG6 | 437,457 | 3,837,769 | 401 | −0.778 | 1 | 162.5 | 16.6 | 293.6 | 65.6 | 67.2 | 17.4 |
SG (mean) | 437,457 | 3,837,769 | 8750 | −0.58 | 4.0 | 153.6 | 16.2 | 137.3 | 38.8 | 178.6 | 46.6 |
Zaghar area | |||||||||||
ZA | 403,798 | 383,9011 | 201 | 0.08 | 4.3 | 170.0 | 23.1 | 96.0 | 20.5 | 238.2 | 33.8 |
ZB | 403,680 | 3,838,955 | 388 | 0.02 | 1.7 | 127.8 | 15.9 | 271.7 | 23.1 | 37.6 | 33.2 |
ZC | 403,680 | 3,838,112 | 384 | 0.24 | 3.4 | 138.1 | 34.3 | 252.1 | 18.4 | 109.2 | 46.9 |
ZD | 403,750 | 3,838,480 | 2386 | 0.08 | 1.9 | 93.6 | 39.0 | 238.5 | 42.2 | 157.4 | 73.8 |
ZE | 403,746 | 3,838,577 | 156 | 0.10 | 0.4 | 114.1 | 19.4 | 176.8 | 42.1 | 138.2 | 52.8 |
ZF | 403,737 | 3,838,503 | 184 | −0.26 | 1.6 | 161.9 | 7.5 | 163.5 | 23.7 | 150.6 | 27.4 |
ZG | 405,072 | 3,834,328 | 283 | 0.50 | 2.7 | 181.2 | 23.7 | 127.5 | 6.8 | 51.3 | 25.3 |
Sample | Ms (mAm2/kg) | Mrs/Ms | Bc (mT) | Bcr (mT) | χhf (10−9 m3/kg) | S Ratio |
---|---|---|---|---|---|---|
ZG3 | 0.17 | 61.0 | 52.1 | 0.87 | ||
ZF1 | 0.07 | 47.4 | ||||
ZE5 | 0.42 | 59.0 | ||||
ZD5 | 465 | 0.17 | 21.2 | 53.8 | 103.0 | 0.95 |
ZA2 | 0.32 | 50.8 | ||||
ZC2 | 0.31 | 146.0 | 119.0 | 0.78 | ||
SC2 | 7.62 | 0.46 | 123.0 | 261.0 | 199.6 | 0.10 |
SB7 | 20.5 | 0.49 | 69.4 | 119.0 | 192.9 | 0.55 |
SG5 | 14.6 | 0.16 | 17.3 | 57.0 | 64.5 | 0.99 |
SD3 | 8.1 | 0.35 | 65.9 | 232.0 | 66.7 | 0.20 |
SF1 | 1.31 | 103.2 | ||||
SE2 | 3.19 | 0.35 | 45.1 | 122.0 | 60.6 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheibi, M.; Rahimi, N.; Rochette, P.; Demory, F.; Mirnejad, H. Magnetic Fabric and Paleomagnetic Analyses of the Zaghar and Tafresh Areas, Central Urumieh-Dokhtar Magmatic Arc, Iran. Geosciences 2023, 13, 275. https://doi.org/10.3390/geosciences13090275
Sheibi M, Rahimi N, Rochette P, Demory F, Mirnejad H. Magnetic Fabric and Paleomagnetic Analyses of the Zaghar and Tafresh Areas, Central Urumieh-Dokhtar Magmatic Arc, Iran. Geosciences. 2023; 13(9):275. https://doi.org/10.3390/geosciences13090275
Chicago/Turabian StyleSheibi, Maryam, Nima Rahimi, Pierre Rochette, François Demory, and Hassan Mirnejad. 2023. "Magnetic Fabric and Paleomagnetic Analyses of the Zaghar and Tafresh Areas, Central Urumieh-Dokhtar Magmatic Arc, Iran" Geosciences 13, no. 9: 275. https://doi.org/10.3390/geosciences13090275
APA StyleSheibi, M., Rahimi, N., Rochette, P., Demory, F., & Mirnejad, H. (2023). Magnetic Fabric and Paleomagnetic Analyses of the Zaghar and Tafresh Areas, Central Urumieh-Dokhtar Magmatic Arc, Iran. Geosciences, 13(9), 275. https://doi.org/10.3390/geosciences13090275