Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = UV scattering communication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1609 KiB  
Article
Research on Networking Protocols for Large-Scale Mobile Ultraviolet Communication Networks
by Leitao Wang, Zhiyong Xu, Jingyuan Wang, Jiyong Zhao, Yang Su, Cheng Li and Jianhua Li
Photonics 2025, 12(7), 710; https://doi.org/10.3390/photonics12070710 - 14 Jul 2025
Viewed by 278
Abstract
Ultraviolet (UV) communication, characterized by non-line-of-sight (NLOS) scattering, holds substantial potential for enabling communication networking in unmanned aerial vehicle (UAV) formations within strong electromagnetic interference environments. This paper proposes a networking protocol for large-scale mobile ultraviolet communication networks (LSM-UVCN). In large-scale networks, the [...] Read more.
Ultraviolet (UV) communication, characterized by non-line-of-sight (NLOS) scattering, holds substantial potential for enabling communication networking in unmanned aerial vehicle (UAV) formations within strong electromagnetic interference environments. This paper proposes a networking protocol for large-scale mobile ultraviolet communication networks (LSM-UVCN). In large-scale networks, the proposed protocol establishes multiple non-interfering transmission paths based on a connection matrix simultaneously, ensuring reliable space division multiplexing (SDM) and optimizing the utilization of network channel resources. To address frequent network topology changes in mobile scenarios, the protocol employs periodic maintenance of the connection matrix, significantly reducing the adverse impacts of node mobility on network performance. Simulation results demonstrate that the proposed protocol achieves superior performance in large-scale mobile UV communication networks. By dynamically adjusting the connection matrix update frequency, it adapts to varying node mobility intensities, effectively minimizing control overhead and data loss rates while enhancing network throughput. This work underscores the protocol’s adaptability to dynamic network environments, providing a robust solution for high-reliability communication requirements in complex electromagnetic scenarios, particularly for UAV swarm applications. The integration of SDM and adaptive matrix maintenance highlights its scalability and efficiency, positioning it as a viable technology for next-generation wireless communication systems in challenging operational conditions. Full article
(This article belongs to the Special Issue Free-Space Optical Communication and Networking Technology)
Show Figures

Figure 1

7 pages, 1948 KiB  
Proceeding Paper
Synthesis, Self-Assembling and Photophysical Property Exploration of Water Self-Dispersible, Grafted Poly(p-Phenylene Vinylene)s with Nonionic, Hydrophilic and Biocompatible Side Chains
by Anca-Dana Bendrea, Demet Göen-Colak, Luminita Cianga, Elena-Gabriela Hitruc, Ioan Cianga and Mariana Pinteala
Chem. Proc. 2024, 16(1), 73; https://doi.org/10.3390/ecsoc-28-20198 - 14 Nov 2024
Viewed by 373
Abstract
Conjugated polymers (CPs), in particular poly(p-phenylene vinylene)s (PPVs), are recognized as “smart” materials with potential applications ranging from optoelectronic devices to emergent technologies and to precision medicine. The present communication reports on the synthesis and structural characterization of new dibrominated macromonomers and their [...] Read more.
Conjugated polymers (CPs), in particular poly(p-phenylene vinylene)s (PPVs), are recognized as “smart” materials with potential applications ranging from optoelectronic devices to emergent technologies and to precision medicine. The present communication reports on the synthesis and structural characterization of new dibrominated macromonomers and their derived PPVs, of rod–graft–coil architecture, whose grafted, biocompatible and hydrophilic side chains are either PEG-2000 or poly(2-methyl-2-oxazoline) or poly(2-ethyl-2-oxazoline). The Suzuki–Heck cascade reaction was used for PPVs’ obtainment. After PPVs’ structural characterization using specific techniques (such as 1H-NMR; GPC), the micellar, fluorescent nanoparticles formed by spontaneous self-assembling during simple direct dissolution in water were evaluated using dynamic light scattering for their size, complementarily combined with Atom Force Microscopy (AFM) for their shape assessing. The PPV micelles’ photophysical properties were revealed using UV-vis spectroscopy and fluorescence measurements. Full article
Show Figures

Figure 1

10 pages, 2868 KiB  
Article
Improved UV Photoresponse Performance of ZnO Nanowire Array Photodetector via Effective Pt Nanoparticle Coupling
by Nan Wang, Jianbo Li, Chong Wang, Xiaoqi Zhang, Song Ding, Zexuan Guo, Yuhan Duan and Dayong Jiang
Nanomaterials 2024, 14(17), 1442; https://doi.org/10.3390/nano14171442 - 4 Sep 2024
Cited by 6 | Viewed by 1770
Abstract
Ultraviolet (UV) photodetectors (PDs) based on nanowire (NW) hold significant promise for applications in fire detection, optical communication, and environmental monitoring. As optoelectronic devices evolve towards lower dimensionality, multifunctionality, and integrability, multicolor PDs have become a research hotspot in optics and electronic information. [...] Read more.
Ultraviolet (UV) photodetectors (PDs) based on nanowire (NW) hold significant promise for applications in fire detection, optical communication, and environmental monitoring. As optoelectronic devices evolve towards lower dimensionality, multifunctionality, and integrability, multicolor PDs have become a research hotspot in optics and electronic information. This study investigates the enhancement of detection capability in a light-trapping ZnO NW array through modification with Pt nanoparticles (NPs) via magnetron sputtering and hydrothermal synthesis. The optimized PD exhibits superior performance, achieving a responsivity of 12.49 A/W, detectivity of 4.07 × 1012 Jones, and external quantum efficiency (EQE) of 4.19 × 103%, respectively. In addition, the Pt NPs/ZnO NW/ZnO PD maintains spectral selectivity in the UV region. These findings show the pivotal role of Pt NPs in enhancing photodetection performance through their strong light absorption and scattering properties. This improvement is associated with localized surface plasmon resonance induced by the Pt NPs, leading to enhanced incident light and interfacial charge separation for the specialized configurations of the nanodevice. Utilizing metal NPs for device modification represents a breakthrough that positively affects the preparation of high-performance ZnO-based UV PDs. Full article
(This article belongs to the Special Issue Nanophotonic: Structure, Devices and System)
Show Figures

Figure 1

17 pages, 5880 KiB  
Article
Design and Optimization of an Ultraviolet Scattering Communication System Based on Duty Cycle Regulation
by Yu Jiao, Yingkai Zhao, Li Kuang, Ranxi Lin, Jin Ning and Jianguo Liu
Photonics 2024, 11(7), 662; https://doi.org/10.3390/photonics11070662 - 16 Jul 2024
Cited by 2 | Viewed by 1346
Abstract
In this paper, a novel ultraviolet (UV) scatter communication scheme is presented, designed to dynamically adjust the signal duty cycle to optimize on–off keying (OOK) modulation and reduce the bit error rate (BER), particularly under varying rate settings. This approach addresses the significant [...] Read more.
In this paper, a novel ultraviolet (UV) scatter communication scheme is presented, designed to dynamically adjust the signal duty cycle to optimize on–off keying (OOK) modulation and reduce the bit error rate (BER), particularly under varying rate settings. This approach addresses the significant challenge posed by LED tailing effects, which cause signal fluctuations and increase BER in high-speed communications. This BER suppression scheme is proposed for the first time in UV communication research, enhancing communication performance without the need for additional hardware or complex algorithms. A UV communication model that incorporates both path loss and LED tailing effects is introduced, with the probability density function of the signal from transmitter to receiver derived. By varying the signal duty cycle, tailing-induced BER is effectively minimized. Additionally, a closed-form expression for signal transmission BER using a single-scattering model is provided, and the proposed UV communication system is validated through comprehensive simulations and experimental tests. The results indicate that LED tailing has a pronounced impact on BER at higher communication speeds, while its effects are less significant at lower speeds. By optimizing the duty cycle parameters for various communication rates, findings demonstrate that lower duty cycle settings significantly reduce the BER at higher speeds. This further demonstrates the excellent performance of the proposed UV communication solution for OOK-modulated optical communication. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

18 pages, 4881 KiB  
Article
Biological Synthesis, Characterization, and Therapeutic Potential of S. commune-Mediated Gold Nanoparticles
by Yaser E. Alqurashi, Sami G. Almalki, Ibrahim M. Ibrahim, Aisha O. Mohammed, Amal E. Abd El Hady, Mehnaz Kamal, Faria Fatima and Danish Iqbal
Biomolecules 2023, 13(12), 1785; https://doi.org/10.3390/biom13121785 - 13 Dec 2023
Cited by 14 | Viewed by 2376
Abstract
Green-synthesized gold nanoparticles demonstrate several therapeutic benefits due to their safety, non-toxicity, accessibility, and ecological acceptance. In our study, gold nanoparticles (AuNPs) were created using an extracellular extract from the fungus Schizophyllum commune (S. commune). The reaction color was observed to [...] Read more.
Green-synthesized gold nanoparticles demonstrate several therapeutic benefits due to their safety, non-toxicity, accessibility, and ecological acceptance. In our study, gold nanoparticles (AuNPs) were created using an extracellular extract from the fungus Schizophyllum commune (S. commune). The reaction color was observed to be a reddish pink after a 24 h reaction, demonstrating the synthesis of the nanoparticles. The myco-produced nanoparticles were investigated using transmission electron microscopy (TEM), dynamic light scattering (DLS), and UV–visible spectroscopy. The TEM pictures depicted sphere-like shapes with sizes ranging from 60 and 120 nm, with an average diameter of 90 nm, which is in agreement with the DLS results. Furthermore, the efficiency of the AuNPs’ antifungal and cytotoxic properties, as well as their production of intracellular ROS, was evaluated. Our findings showed that the AuNPs have strong antifungal effects against Trichoderma sp. and Aspergillus flavus at increasing doses. Additionally, the AuNPs established a dose-dependent activity against human alveolar basal epithelial cells with adenocarcinoma (A549), demonstrating the potency of synthesized AuNPs as a cytotoxic agent. After 4 h of incubation with AuNPs, a significant increase in intracellular ROS was observed in cancer cells. Therefore, these metallic AuNPs produced by fungus (S. commune) can be used as an effective antifungal, anticancer, and non-toxic immunomodulatory delivery agent. Full article
Show Figures

Graphical abstract

30 pages, 2741 KiB  
Review
Plasmonic Nanomaterials for Micro- and Nanoplastics Detection
by Serena Schiavi, Miriam Parmigiani, Pietro Galinetto, Benedetta Albini, Angelo Taglietti and Giacomo Dacarro
Appl. Sci. 2023, 13(16), 9291; https://doi.org/10.3390/app13169291 - 16 Aug 2023
Cited by 11 | Viewed by 4645
Abstract
Detecting and quantifying micro- and nanoplastics (MNPs) in the environment is a crucial task that needs to be addressed as soon as possible by the scientific community. Many analytical techniques have been proposed, but a common agreement on analytical protocols and regulations still [...] Read more.
Detecting and quantifying micro- and nanoplastics (MNPs) in the environment is a crucial task that needs to be addressed as soon as possible by the scientific community. Many analytical techniques have been proposed, but a common agreement on analytical protocols and regulations still has to be reached. Nanomaterial-based techniques have shown promising results in this field. In this review, we focus on the recent results published on the use of plasmonic noble metal materials for the detection of MNPs. Plasmonic materials can be exploited in different ways due to their peculiar optical end electronic properties. Surface plasmon resonance, plasmon enhanced fluorescence, UV–Vis spectroscopy, and surface enhanced Raman scattering (SERS) will be considered in this review, examining the advantages and drawbacks of each approach. Full article
Show Figures

Figure 1

13 pages, 3460 KiB  
Article
Assessing the In Vitro Digestion of Lactoferrin-Curcumin Nanoparticles Using the Realistic Gastric Model
by Daniel A. Madalena, João F. Araújo, Óscar L. Ramos, António A. Vicente and Ana C. Pinheiro
Nanomaterials 2023, 13(15), 2237; https://doi.org/10.3390/nano13152237 - 2 Aug 2023
Cited by 5 | Viewed by 1981
Abstract
Nanosized delivery systems have been the subject of research and discussion in the scientific community due to their unique properties and functionality. However, studies reporting the behaviour of nanodelivery systems under dynamic in vitro digestion conditions are still very scarce. To address this [...] Read more.
Nanosized delivery systems have been the subject of research and discussion in the scientific community due to their unique properties and functionality. However, studies reporting the behaviour of nanodelivery systems under dynamic in vitro digestion conditions are still very scarce. To address this gap, this study aims to assess the dynamic in vitro gastric digestion of lactoferrin/curcumin nanoparticles in the realistic gastric model (RGM). For this purpose, the INFOGEST standard semi-dynamic digestion protocol was used. The nanosystems were characterized in terms of hydrodynamic size, size distribution, polydispersity index (PdI), and zeta potential using dynamic light scattering (DLS), before and during the digestion process. Confocal laser scanning microscopy (CLSM) was also used to examine particle aggregation. In addition, the release of curcumin was evaluated spectroscopically and the intrinsic fluorescence of lactoferrin was measured throughout the digestion process. The protein hydrolysis was also determined by UV-VIS-SWNIR spectroscopy to estimate, in real-time, the presence of free NH2 groups during gastric digestion. It was possible to observe that lactoferrin/curcumin nanoparticles were destabilized during the dynamic digestion process. It was also possible to conclude that low sample volumes can pose a major challenge in the application of dynamic in vitro digestion models. Full article
(This article belongs to the Special Issue Nanomaterials for Food Science and Technology)
Show Figures

Figure 1

18 pages, 5541 KiB  
Article
Photocatalytic Activity of the V2O5 Catalyst toward Selected Pharmaceuticals and Their Mixture: Influence of the Molecular Structure on the Efficiency of the Process
by Sanja J. Armaković, Aleksandra Jovanoski Kostić, Andrijana Bilić, Maria M. Savanović, Nataša Tomić, Aleksandar Kremenović, Maja Šćepanović, Mirjana Grujić-Brojčin, Jovana Ćirković and Stevan Armaković
Molecules 2023, 28(2), 655; https://doi.org/10.3390/molecules28020655 - 9 Jan 2023
Cited by 6 | Viewed by 3115
Abstract
Due to the inability of conventional wastewater treatment procedures to remove organic pharmaceutical pollutants, active pharmaceutical components remain in wastewater and even reach tap water. In terms of pharmaceutical pollutants, the scientific community focuses on β-blockers due to their extensive (over)usage and moderately [...] Read more.
Due to the inability of conventional wastewater treatment procedures to remove organic pharmaceutical pollutants, active pharmaceutical components remain in wastewater and even reach tap water. In terms of pharmaceutical pollutants, the scientific community focuses on β-blockers due to their extensive (over)usage and moderately high solubility. In this study, the photocatalytic activity of V2O5 was investigated through the degradation of nadolol (NAD), pindolol (PIN), metoprolol (MET), and their mixture under ultraviolet (UV) irradiation in water. For the preparation of V2O5, facile hydrothermal synthesis was used. The structural, morphological, and surface properties and purity of synthesized V2O5 powder were investigated by scanning electron microscopy (SEM), X-ray, and Raman spectroscopy. SEM micrographs showed hexagonal-shaped platelets with well-defined morphology of materials with diameters in the range of 10–65 µm and thickness of around a few microns. X-ray diffraction identified only one crystalline phase in the sample. The Raman scattering measurements taken on the catalyst confirmed the result of XRPD. Degradation kinetics were monitored by ultra-fast liquid chromatography with diode array detection. The results showed that in individual solutions, photocatalytic degradation of MET and NAD was relatively insignificant (<10%). However, in the PIN case, the degradation was significant (64%). In the mixture, the photodegradation efficiency of MET and NAD slightly increased (15% and 13%). Conversely, it reduced the PIN to the still satisfactory value of 40%. Computational analysis based on molecular and periodic density functional theory calculations was used to complement our experimental findings. Calculations of the average local ionization energy indicate that the PIN is the most reactive of all three considered molecules in terms of removing an electron from it. Full article
Show Figures

Figure 1

10 pages, 3259 KiB  
Article
Characteristic Study of Non-Line-of-Sight Scattering Ultraviolet Communication System at Small Elevation Angle
by Axin Du, Yuehui Wang, Jing Zhang, Yingkai Zhao, Ning Sun and Jianguo Liu
Photonics 2022, 9(5), 363; https://doi.org/10.3390/photonics9050363 - 23 May 2022
Cited by 4 | Viewed by 2779
Abstract
Ultraviolet (UV) communication is considered an effective complement to traditional wireless communication. However, the scattering models of existing non-line-of-sight (NLOS) UV, which are complex, are difficult to combine with the test. In this paper, the single scattering isosceles model with a small elevation [...] Read more.
Ultraviolet (UV) communication is considered an effective complement to traditional wireless communication. However, the scattering models of existing non-line-of-sight (NLOS) UV, which are complex, are difficult to combine with the test. In this paper, the single scattering isosceles model with a small elevation angle is proposed first. Then, the relationships between the path loss of single scattering isosceles and elevation angle, emission beam angle, receiving field angle, and transmission distance are studied. Finally, we consider outdoor NLOS UV solar-blind communications test at ranges of up to 100 m and 400 m, with different transmit and receive elevation angles. The results show that the isosceles model is in good agreement with the experiments. In addition, the UV isosceles model exhibits good properties compared with the existing scattering model. The proposed UV isosceles model can be employed as a reference for practical applications in outdoor tests. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

12 pages, 2688 KiB  
Article
Methylammonium Lead Bromide Perovskite Nano-Crystals Grown in a Poly[styrene-co-(2-(dimethylamino)ethyl Methacrylate)] Matrix Immobilized on Exfoliated Graphene Nano-Sheets
by Anastasios Stergiou, Ioanna K. Sideri, Martha Kafetzi, Anna Ioannou, Raul Arenal, Georgios Mousdis, Stergios Pispas and Nikos Tagmatarchis
Nanomaterials 2022, 12(8), 1275; https://doi.org/10.3390/nano12081275 - 8 Apr 2022
Cited by 4 | Viewed by 3084
Abstract
Development of graphene/perovskite heterostructures mediated by polymeric materials may constitute a robust strategy to resolve the environmental instability of metal halide perovskites and provide barrierless charge transport. Herein, a straightforward approach for the growth of perovskite nano-crystals and their electronic communication with graphene [...] Read more.
Development of graphene/perovskite heterostructures mediated by polymeric materials may constitute a robust strategy to resolve the environmental instability of metal halide perovskites and provide barrierless charge transport. Herein, a straightforward approach for the growth of perovskite nano-crystals and their electronic communication with graphene is presented. Methylammonium lead bromide (CH3NH3PbBr3) nano-crystals were grown in a poly[styrene-co-(2-(dimethylamino)ethyl methacrylate)], P[St-co-DMAEMA], bi-functional random co-polymer matrix and non-covalently immobilized on graphene. P[St-co-DMAEMA] was selected as a bi-modal polymer capable to stabilize the perovskite nano-crystals via electrostatic interactions between the tri-alkylamine amine sites of the co-polymer and the A-site vacancies of the perovskite and simultaneously enable Van der Waals attractive interactions between the aromatic arene sites of the co-polymer and the surface of graphene. The newly synthesized CH3NH3PbBr3/co-polymer and graphene/CH3NH3PbBr3/co-polymer ensembles were formed by physical mixing of the components in organic media at room temperature. Complementary characterization by dynamic light scattering, microscopy, and energy-dispersive X-ray spectroscopy revealed the formation of uniform spherical perovskite nano-crystals immobilized on the graphene nano-sheets. Complementary photophysical characterization by UV-Vis absorption, steady-state, and time-resolved fluorescence spectroscopy unveiled the photophysical properties of the CH3NH3PbBr3/co-polymer colloid perovskite solution and verified the electronic communication within the graphene/CH3NH3PbBr3/co-polymer ensembles at the ground and excited states. Full article
Show Figures

Graphical abstract

12 pages, 3018 KiB  
Article
Silver Nanoparticle Production Mediated by Vitis vinifera Cane Extract: Characterization and Antibacterial Activity Evaluation
by Jana Michailidu, Olga Maťátková, Irena Kolouchová, Jan Masák and Alena Čejková
Plants 2022, 11(3), 443; https://doi.org/10.3390/plants11030443 - 5 Feb 2022
Cited by 12 | Viewed by 2907
Abstract
The ever-growing range of possible applications of nanoparticles requires their mass production. However, there are problems resulting from the prevalent methods of nanoparticle production; physico-chemical routes of nanoparticle synthesis are not very environmentally friendly nor cost-effective. Due to this, the scientific community started [...] Read more.
The ever-growing range of possible applications of nanoparticles requires their mass production. However, there are problems resulting from the prevalent methods of nanoparticle production; physico-chemical routes of nanoparticle synthesis are not very environmentally friendly nor cost-effective. Due to this, the scientific community started exploring new methods of nanoparticle assembly with the aid of biological agents. In this study, ethanolic Vitis vinifera cane extract combined with silver nitrate was used to produce silver nanoparticles. These were subsequently characterized using UV-visible (UV-Vis) spectrometry, transmission electron microscopy, and dynamic light-scattering analysis. The antimicrobial activity of produced nanoparticles was tested against the planktonic cells of five strains of Gram-negative bacterium Pseudomonas aeruginosa (PAO1, ATCC 10145, ATCC 15442, DBM 3081, and DBM 3777). After that, bactericidal activity was assessed using solid medium cultivation. In the end, nanoparticles’ inhibitory effect on adhering cells was analyzed by measuring changes in metabolic activity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay-MTT). Our results confirmed that ethanolic Vitis vinifera cane extract is capable of mediating silver nanoparticle production; synthesis was conducted using 10% of extract and 1 mM of silver nitrate. The silver nanoparticles’ Z-average was 68.2 d nm, and their zeta potential was –30.4 mV. These silver nanoparticles effectively inhibited planktonic cells of all P. aeruginosa strains in concentrations less than 5% v/v and inhibited biofilm formation in concentrations less than 6% v/v. Moreover, minimum bactericidal concentration was observed to be in the range of 10–16% v/v. According to the results in this study, the use of wine agriculture waste is an ecological and economical method for the production of silver nanoparticles exhibiting significant antimicrobial properties. Full article
(This article belongs to the Special Issue Biological Activities of Plant Extracts)
Show Figures

Graphical abstract

26 pages, 4463 KiB  
Article
Photophysical and Antibacterial Properties of Porphyrins Encapsulated inside Acetylated Lignin Nanoparticles
by Nidia Maldonado-Carmona, Tan-Sothea Ouk, Nicolas Villandier, Claude Alain Calliste, Mário J. F. Calvete, Mariette M. Pereira and Stéphanie Leroy-Lhez
Antibiotics 2021, 10(5), 513; https://doi.org/10.3390/antibiotics10050513 - 30 Apr 2021
Cited by 21 | Viewed by 3603
Abstract
Lignin has recently attracted the attention of the scientific community, as a suitable raw material for biomedical applications. In this work, acetylated lignin was used to encapsulate five different porphyrins, aiming to preserve their photophysical properties, and for further use as antibacterial treatment. [...] Read more.
Lignin has recently attracted the attention of the scientific community, as a suitable raw material for biomedical applications. In this work, acetylated lignin was used to encapsulate five different porphyrins, aiming to preserve their photophysical properties, and for further use as antibacterial treatment. The obtained nanoparticles were physically characterized, through dynamic light scattering size measurement, polydispersity index and zeta potential values. Additionally, the photophysical properties of the nanoparticles, namely UV-vis absorption, fluorescence emission, singlet oxygen production and photobleaching, were compared with those of the free porphyrins. It was found that all the porphyrins were susceptible to encapsulation, with an observed decrease in their fluorescence quantum yield and singlet oxygen production. These nanoparticles were able to exert an effective photodynamic bactericide effect (blue-LED light, 450–460 nm, 15 J/cm2) on Staphylococcus aureus and Escherichia coli. Furthermore, it was achieved a photodynamic bactericidal activity on an encapsulated lipophillic porphyrin, where the free porphyrin failed to diminish the bacterial survival. In this work it was demonstrated that acetylated lignin encapsulation works as a universal, cheap and green material for the delivery of porphyrins, while preserving their photophysical properties. Full article
(This article belongs to the Special Issue New and Innovative Applications of Antimicrobial Photodynamic Therapy)
Show Figures

Graphical abstract

14 pages, 2210 KiB  
Article
Synthesis of Silver Nanoparticles with Gemini Surfactants as Efficient Capping and Stabilizing Agents
by Bogumił Brycki, Adrianna Szulc and Mariia Babkova
Appl. Sci. 2021, 11(1), 154; https://doi.org/10.3390/app11010154 - 26 Dec 2020
Cited by 34 | Viewed by 4301
Abstract
The scientific community has paid special attention to silver nanoparticles (AgNPs) in recent years due to their huge technological capacities, particularly in biomedical applications, such as antimicrobials, drug-delivery carriers, device coatings, imaging probes, diagnostic, and optoelectronic platforms. The most popular method of obtaining [...] Read more.
The scientific community has paid special attention to silver nanoparticles (AgNPs) in recent years due to their huge technological capacities, particularly in biomedical applications, such as antimicrobials, drug-delivery carriers, device coatings, imaging probes, diagnostic, and optoelectronic platforms. The most popular method of obtaining silver nanoparticles as a colloidal dispersion in aqueous solution is chemical reduction. The choice of the capping agent is particularly important in order to obtain the desired size distribution, shape, and dispersion rate of AgNPs. Gemini alkylammonium salts are named as multifunctional surfactants, and possess a wide variety of applications, which include their use as capping agents for metal nanoparticles synthesis. Because of the high antimicrobial activity of gemini surfactants, AgNPs stabilized by this kind of surfactant may possess unique and strengthened biocidal properties. The present paper presents the synthesis of AgNPs stabilized by gemini surfactants with hexadecyl substituent and variable structure of spacer, obtained via ecofriendly synthesis. UV-Vis spectroscopy and dynamic light scattering were used as analyzing tools in order to confirm physicochemical characterization of the AgNPs (characteristic UV-Vis bands, hydrodynamic diameter of NPs, polydispersity index (PDI)). Full article
Show Figures

Figure 1

14 pages, 4402 KiB  
Article
Performance Modeling of Ultraviolet Atmospheric Scattering of Different Light Sources Based on Monte Carlo Method
by Qiushi Zhang, Xin Zhang, Lingjie Wang, Guangwei Shi, Qiang Fu and Tao Liu
Appl. Sci. 2020, 10(10), 3564; https://doi.org/10.3390/app10103564 - 21 May 2020
Cited by 10 | Viewed by 4123
Abstract
Since the atmosphere has a strong scattering effect on ultraviolet light, the transmission of non-line-of-sight (NLOS) signals can be realized in the atmosphere. In previous articles, ultraviolet (UV) light atmospheric scattering has been characterized by many scattering models based on spot light sources [...] Read more.
Since the atmosphere has a strong scattering effect on ultraviolet light, the transmission of non-line-of-sight (NLOS) signals can be realized in the atmosphere. In previous articles, ultraviolet (UV) light atmospheric scattering has been characterized by many scattering models based on spot light sources with uniformly distributed light intensity. In order to explore the role of light sources in atmospheric transmission, this work proposed a UV light atmospheric transport model under different types of light source, including light-emitting diode (LED), laser, and ordinary light sources, based on the Monte Carlo point probability method. The simulation of the light source in the proposed model is a departure from the use of a light source with uniform intensity distribution in previous articles. The atmospheric transmission efficiency of different light sources was calculated and compared with the data of existing models. The simulation results showed that the type of light source can significantly change the shape of the received signal and the received energy density. The Monte Carlo (MC) point probability method dramatically reduced the calculation time and the number of photons. The transmission characteristics of different ultraviolet light sources in the atmosphere provide a theoretical foundation for the design of ultraviolet detection and near-ultraviolet signal communication in the future. Full article
(This article belongs to the Special Issue Atmospheric Optics)
Show Figures

Figure 1

17 pages, 1090 KiB  
Article
Trehalose Effect on The Aggregation of Model Proteins into Amyloid Fibrils
by Eleonora Mari, Caterina Ricci, Silvia Pieraccini, Francesco Spinozzi, Paolo Mariani and Maria Grazia Ortore
Life 2020, 10(5), 60; https://doi.org/10.3390/life10050060 - 13 May 2020
Cited by 22 | Viewed by 5019
Abstract
Protein aggregation into amyloid fibrils is a phenomenon that attracts attention from a wide and composite part of the scientific community. Indeed, the presence of mature fibrils is associated with several neurodegenerative diseases, and in addition these supramolecular aggregates are considered promising self-assembling [...] Read more.
Protein aggregation into amyloid fibrils is a phenomenon that attracts attention from a wide and composite part of the scientific community. Indeed, the presence of mature fibrils is associated with several neurodegenerative diseases, and in addition these supramolecular aggregates are considered promising self-assembling nanomaterials. In this framework, investigation on the effect of cosolutes on protein propensity to aggregate into fibrils is receiving growing interest, and new insights on this aspect might represent valuable steps towards comprehension of highly complex biological processes. In this work we studied the influence exerted by the osmolyte trehalose on fibrillation of two model proteins, that is, lysozyme and insulin, investigated during concomitant variation of the solution ionic strength due to NaCl. In order to monitor both secondary structures and the overall tridimensional conformations, we have performed UV spectroscopy measurements with Congo Red, Circular Dichroism, and synchrotron Small Angle X-ray Scattering. For both proteins we describe the effect of trehalose in changing the fibrillation pattern and, as main result, we observe that ionic strength in solution is a key factor in determining trehalose efficiency in slowing down or blocking protein fibrillation. Ionic strength reveals to be a competitive element with respect to trehalose, being able to counteract its inhibiting effects toward amyloidogenesis. Reported data highlight the importance of combining studies carried out on cosolutes with valuation of other physiological parameters that may affect the aggregation process. Also, the obtained experimental results allow to hypothesize a plausible mechanism adopted by the osmolyte to preserve protein surface and prevent protein fibrillation. Full article
(This article belongs to the Section Biochemistry, Biophysics and Computational Biology)
Show Figures

Graphical abstract

Back to TopTop